/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #pragma clang diagnostic ignored "-Wextra" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "SurfaceFlinger.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BackgroundExecutor.h" #include "Client.h" #include "ClientCache.h" #include "Colorizer.h" #include "Display/DisplayMap.h" #include "DisplayDevice.h" #include "DisplayHardware/ComposerHal.h" #include "DisplayHardware/FramebufferSurface.h" #include "DisplayHardware/HWComposer.h" #include "DisplayHardware/Hal.h" #include "DisplayHardware/PowerAdvisor.h" #include "DisplayHardware/VirtualDisplaySurface.h" #include "DisplayRenderArea.h" #include "Effects/Daltonizer.h" #include "FlagManager.h" #include "FpsReporter.h" #include "FrameTimeline/FrameTimeline.h" #include "FrameTracer/FrameTracer.h" #include "FrontEnd/LayerCreationArgs.h" #include "FrontEnd/LayerHandle.h" #include "FrontEnd/LayerLifecycleManager.h" #include "FrontEnd/LayerSnapshot.h" #include "HdrLayerInfoReporter.h" #include "Layer.h" #include "LayerProtoHelper.h" #include "LayerRenderArea.h" #include "LayerVector.h" #include "MutexUtils.h" #include "NativeWindowSurface.h" #include "RegionSamplingThread.h" #include "Scheduler/EventThread.h" #include "Scheduler/LayerHistory.h" #include "Scheduler/Scheduler.h" #include "Scheduler/VsyncConfiguration.h" #include "Scheduler/VsyncModulator.h" #include "ScreenCaptureOutput.h" #include "StartPropertySetThread.h" #include "SurfaceFlingerProperties.h" #include "TimeStats/TimeStats.h" #include "TunnelModeEnabledReporter.h" #include "Utils/Dumper.h" #include "WindowInfosListenerInvoker.h" #include #include #include #undef NO_THREAD_SAFETY_ANALYSIS #define NO_THREAD_SAFETY_ANALYSIS \ _Pragma("GCC error \"Prefer or MutexUtils.h helpers.\"") // To enable layer borders in the system, change the below flag to true. #undef DOES_CONTAIN_BORDER #define DOES_CONTAIN_BORDER false namespace android { using namespace std::chrono_literals; using namespace std::string_literals; using namespace std::string_view_literals; using namespace hardware::configstore; using namespace hardware::configstore::V1_0; using namespace sysprop; using ftl::Flags; using namespace ftl::flag_operators; using aidl::android::hardware::graphics::common::DisplayDecorationSupport; using aidl::android::hardware::graphics::composer3::Capability; using aidl::android::hardware::graphics::composer3::DisplayCapability; using CompositionStrategyPredictionState = android::compositionengine::impl:: OutputCompositionState::CompositionStrategyPredictionState; using base::StringAppendF; using display::PhysicalDisplay; using display::PhysicalDisplays; using frontend::TransactionHandler; using gui::DisplayInfo; using gui::GameMode; using gui::IDisplayEventConnection; using gui::IWindowInfosListener; using gui::LayerMetadata; using gui::WindowInfo; using gui::aidl_utils::binderStatusFromStatusT; using scheduler::VsyncModulator; using ui::Dataspace; using ui::DisplayPrimaries; using ui::RenderIntent; using KernelIdleTimerController = scheduler::RefreshRateSelector::KernelIdleTimerController; namespace hal = android::hardware::graphics::composer::hal; namespace { static constexpr int FOUR_K_WIDTH = 3840; static constexpr int FOUR_K_HEIGHT = 2160; // TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity. constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV; float getDensityFromProperty(const char* property, bool required) { char value[PROPERTY_VALUE_MAX]; const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f; if (!density && required) { ALOGE("%s must be defined as a build property", property); return FALLBACK_DENSITY; } return density; } // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference. bool validateCompositionDataspace(Dataspace dataspace) { return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3; } std::chrono::milliseconds getIdleTimerTimeout(DisplayId displayId) { const auto displayIdleTimerMsKey = [displayId] { std::stringstream ss; ss << "debug.sf.set_idle_timer_ms_" << displayId.value; return ss.str(); }(); const int32_t displayIdleTimerMs = base::GetIntProperty(displayIdleTimerMsKey, 0); if (displayIdleTimerMs > 0) { return std::chrono::milliseconds(displayIdleTimerMs); } const int32_t setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms", 0); const int32_t millis = setIdleTimerMs ? setIdleTimerMs : sysprop::set_idle_timer_ms(0); return std::chrono::milliseconds(millis); } bool getKernelIdleTimerSyspropConfig(DisplayId displayId) { const auto displaySupportKernelIdleTimerKey = [displayId] { std::stringstream ss; ss << "debug.sf.support_kernel_idle_timer_" << displayId.value; return ss.str(); }(); const auto displaySupportKernelIdleTimer = base::GetBoolProperty(displaySupportKernelIdleTimerKey, false); return displaySupportKernelIdleTimer || sysprop::support_kernel_idle_timer(false); } bool isAbove4k30(const ui::DisplayMode& outMode) { using fps_approx_ops::operator>; Fps refreshRate = Fps::fromValue(outMode.refreshRate); return outMode.resolution.getWidth() >= FOUR_K_WIDTH && outMode.resolution.getHeight() >= FOUR_K_HEIGHT && refreshRate > 30_Hz; } void excludeDolbyVisionIf4k30Present(const std::vector& displayHdrTypes, ui::DisplayMode& outMode) { if (isAbove4k30(outMode) && std::any_of(displayHdrTypes.begin(), displayHdrTypes.end(), [](ui::Hdr type) { return type == ui::Hdr::DOLBY_VISION_4K30; })) { for (ui::Hdr type : displayHdrTypes) { if (type != ui::Hdr::DOLBY_VISION_4K30 && type != ui::Hdr::DOLBY_VISION) { outMode.supportedHdrTypes.push_back(type); } } } else { for (ui::Hdr type : displayHdrTypes) { if (type != ui::Hdr::DOLBY_VISION_4K30) { outMode.supportedHdrTypes.push_back(type); } } } } HdrCapabilities filterOut4k30(const HdrCapabilities& displayHdrCapabilities) { std::vector hdrTypes; for (ui::Hdr type : displayHdrCapabilities.getSupportedHdrTypes()) { if (type != ui::Hdr::DOLBY_VISION_4K30) { hdrTypes.push_back(type); } } return {hdrTypes, displayHdrCapabilities.getDesiredMaxLuminance(), displayHdrCapabilities.getDesiredMaxAverageLuminance(), displayHdrCapabilities.getDesiredMinLuminance()}; } uint32_t getLayerIdFromSurfaceControl(sp surfaceControl) { if (!surfaceControl) { return UNASSIGNED_LAYER_ID; } return LayerHandle::getLayerId(surfaceControl->getHandle()); } } // namespace anonymous // --------------------------------------------------------------------------- const String16 sHardwareTest("android.permission.HARDWARE_TEST"); const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER"); const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS"); const String16 sDump("android.permission.DUMP"); const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT"); const String16 sInternalSystemWindow("android.permission.INTERNAL_SYSTEM_WINDOW"); const String16 sWakeupSurfaceFlinger("android.permission.WAKEUP_SURFACE_FLINGER"); const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled"; static const int MAX_TRACING_MEMORY = 1024 * 1024 * 1024; // 1GB // --------------------------------------------------------------------------- int64_t SurfaceFlinger::dispSyncPresentTimeOffset; bool SurfaceFlinger::useHwcForRgbToYuv; bool SurfaceFlinger::hasSyncFramework; int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; uint32_t SurfaceFlinger::maxGraphicsWidth; uint32_t SurfaceFlinger::maxGraphicsHeight; bool SurfaceFlinger::useContextPriority; Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888; Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB; ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888; LatchUnsignaledConfig SurfaceFlinger::enableLatchUnsignaledConfig; std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { switch(displayColorSetting) { case DisplayColorSetting::kManaged: return std::string("Managed"); case DisplayColorSetting::kUnmanaged: return std::string("Unmanaged"); case DisplayColorSetting::kEnhanced: return std::string("Enhanced"); default: return std::string("Unknown ") + std::to_string(static_cast(displayColorSetting)); } } bool callingThreadHasPermission(const String16& permission) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(permission, pid, uid); } ui::Transform::RotationFlags SurfaceFlinger::sActiveDisplayRotationFlags = ui::Transform::ROT_0; SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag) : mFactory(factory), mPid(getpid()), mTimeStats(std::make_shared()), mFrameTracer(mFactory.createFrameTracer()), mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, mPid)), mCompositionEngine(mFactory.createCompositionEngine()), mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)), mTunnelModeEnabledReporter(sp::make()), mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)), mInternalDisplayDensity( getDensityFromProperty("ro.sf.lcd_density", !mEmulatedDisplayDensity)), mPowerAdvisor(std::make_unique(*this)), mWindowInfosListenerInvoker(sp::make()) { ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str()); } SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) { ALOGI("SurfaceFlinger is starting"); hasSyncFramework = running_without_sync_framework(true); dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0); useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false); maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2); maxGraphicsWidth = std::max(max_graphics_width(0), 0); maxGraphicsHeight = std::max(max_graphics_height(0), 0); mSupportsWideColor = has_wide_color_display(false); mDefaultCompositionDataspace = static_cast(default_composition_dataspace(Dataspace::V0_SRGB)); mWideColorGamutCompositionDataspace = static_cast(wcg_composition_dataspace( mSupportsWideColor ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB)); defaultCompositionDataspace = mDefaultCompositionDataspace; wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace; defaultCompositionPixelFormat = static_cast( default_composition_pixel_format(ui::PixelFormat::RGBA_8888)); wideColorGamutCompositionPixelFormat = static_cast(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888)); mColorSpaceAgnosticDataspace = static_cast(color_space_agnostic_dataspace(Dataspace::UNKNOWN)); mLayerCachingEnabled = [] { const bool enable = android::sysprop::SurfaceFlingerProperties::enable_layer_caching().value_or(false); return base::GetBoolProperty(std::string("debug.sf.enable_layer_caching"), enable); }(); useContextPriority = use_context_priority(true); mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries(); // debugging stuff... char value[PROPERTY_VALUE_MAX]; property_get("ro.build.type", value, "user"); mIsUserBuild = strcmp(value, "user") == 0; mDebugFlashDelay = base::GetUintProperty("debug.sf.showupdates"s, 0u); mBackpressureGpuComposition = base::GetBoolProperty("debug.sf.enable_gl_backpressure"s, true); ALOGI_IF(mBackpressureGpuComposition, "Enabling backpressure for GPU composition"); property_get("ro.surface_flinger.supports_background_blur", value, "0"); bool supportsBlurs = atoi(value); mSupportsBlur = supportsBlurs; ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported."); const size_t defaultListSize = MAX_LAYERS; auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize)); mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize; mGraphicBufferProducerListSizeLogThreshold = std::max(static_cast(0.95 * static_cast(mMaxGraphicBufferProducerListSize)), 1); property_get("debug.sf.luma_sampling", value, "1"); mLumaSampling = atoi(value); property_get("debug.sf.disable_client_composition_cache", value, "0"); mDisableClientCompositionCache = atoi(value); property_get("debug.sf.predict_hwc_composition_strategy", value, "1"); mPredictCompositionStrategy = atoi(value); property_get("debug.sf.treat_170m_as_sRGB", value, "0"); mTreat170mAsSrgb = atoi(value); mIgnoreHwcPhysicalDisplayOrientation = base::GetBoolProperty("debug.sf.ignore_hwc_physical_display_orientation"s, false); // We should be reading 'persist.sys.sf.color_saturation' here // but since /data may be encrypted, we need to wait until after vold // comes online to attempt to read the property. The property is // instead read after the boot animation if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) { // Without the override SurfaceFlinger cannot connect to HIDL // services that are not listed in the manifests. Considered // deriving the setting from the set service name, but it // would be brittle if the name that's not 'default' is used // for production purposes later on. ALOGI("Enabling Treble testing override"); android::hardware::details::setTrebleTestingOverride(true); } // TODO (b/270966065) Update the HWC based refresh rate overlay to support spinner mRefreshRateOverlaySpinner = property_get_bool("debug.sf.show_refresh_rate_overlay_spinner", 0); mRefreshRateOverlayRenderRate = property_get_bool("debug.sf.show_refresh_rate_overlay_render_rate", 0); mRefreshRateOverlayShowInMiddle = property_get_bool("debug.sf.show_refresh_rate_overlay_in_middle", 0); if (!mIsUserBuild && base::GetBoolProperty("debug.sf.enable_transaction_tracing"s, true)) { mTransactionTracing.emplace(); } mIgnoreHdrCameraLayers = ignore_hdr_camera_layers(false); mLayerLifecycleManagerEnabled = base::GetBoolProperty("persist.debug.sf.enable_layer_lifecycle_manager"s, false); mLegacyFrontEndEnabled = !mLayerLifecycleManagerEnabled || base::GetBoolProperty("persist.debug.sf.enable_legacy_frontend"s, false); } LatchUnsignaledConfig SurfaceFlinger::getLatchUnsignaledConfig() { if (base::GetBoolProperty("debug.sf.auto_latch_unsignaled"s, true)) { return LatchUnsignaledConfig::AutoSingleLayer; } if (base::GetBoolProperty("debug.sf.latch_unsignaled"s, false)) { return LatchUnsignaledConfig::Always; } return LatchUnsignaledConfig::Disabled; } SurfaceFlinger::~SurfaceFlinger() = default; void SurfaceFlinger::binderDied(const wp&) { // the window manager died on us. prepare its eulogy. mBootFinished = false; static_cast(mScheduler->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { // Sever the link to inputflinger since it's gone as well. mInputFlinger.clear(); initializeDisplays(); })); startBootAnim(); } void SurfaceFlinger::run() { mScheduler->run(); } sp SurfaceFlinger::createDisplay(const String8& displayName, bool secure, float requestedRefreshRate) { // onTransact already checks for some permissions, but adding an additional check here. // This is to ensure that only system and graphics can request to create a secure // display. Secure displays can show secure content so we add an additional restriction on it. const int uid = IPCThreadState::self()->getCallingUid(); if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) { ALOGE("Only privileged processes can create a secure display"); return nullptr; } class DisplayToken : public BBinder { sp flinger; virtual ~DisplayToken() { // no more references, this display must be terminated Mutex::Autolock _l(flinger->mStateLock); flinger->mCurrentState.displays.removeItem(wp::fromExisting(this)); flinger->setTransactionFlags(eDisplayTransactionNeeded); } public: explicit DisplayToken(const sp& flinger) : flinger(flinger) { } }; sp token = sp::make(sp::fromExisting(this)); Mutex::Autolock _l(mStateLock); // Display ID is assigned when virtual display is allocated by HWC. DisplayDeviceState state; state.isSecure = secure; state.displayName = displayName; state.requestedRefreshRate = Fps::fromValue(requestedRefreshRate); mCurrentState.displays.add(token, state); return token; } void SurfaceFlinger::destroyDisplay(const sp& displayToken) { Mutex::Autolock lock(mStateLock); const ssize_t index = mCurrentState.displays.indexOfKey(displayToken); if (index < 0) { ALOGE("%s: Invalid display token %p", __func__, displayToken.get()); return; } const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); if (state.physical) { ALOGE("%s: Invalid operation on physical display", __func__); return; } mCurrentState.displays.removeItemsAt(index); setTransactionFlags(eDisplayTransactionNeeded); } void SurfaceFlinger::enableHalVirtualDisplays(bool enable) { auto& generator = mVirtualDisplayIdGenerators.hal; if (!generator && enable) { ALOGI("Enabling HAL virtual displays"); generator.emplace(getHwComposer().getMaxVirtualDisplayCount()); } else if (generator && !enable) { ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use"); generator.reset(); } } VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution, ui::PixelFormat format) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { if (const auto id = generator->generateId()) { if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format)) { return *id; } generator->releaseId(*id); } else { ALOGW("%s: Exhausted HAL virtual displays", __func__); } ALOGW("%s: Falling back to GPU virtual display", __func__); } const auto id = mVirtualDisplayIdGenerators.gpu.generateId(); LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display"); return *id; } void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) { if (const auto id = HalVirtualDisplayId::tryCast(displayId)) { if (auto& generator = mVirtualDisplayIdGenerators.hal) { generator->releaseId(*id); } return; } const auto id = GpuVirtualDisplayId::tryCast(displayId); LOG_ALWAYS_FATAL_IF(!id); mVirtualDisplayIdGenerators.gpu.releaseId(*id); } std::vector SurfaceFlinger::getPhysicalDisplayIdsLocked() const { std::vector displayIds; displayIds.reserve(mPhysicalDisplays.size()); const auto defaultDisplayId = getDefaultDisplayDeviceLocked()->getPhysicalId(); displayIds.push_back(defaultDisplayId); for (const auto& [id, display] : mPhysicalDisplays) { if (id != defaultDisplayId) { displayIds.push_back(id); } } return displayIds; } std::optional SurfaceFlinger::getPhysicalDisplayIdLocked( const sp& displayToken) const { return ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_key); } sp SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const { Mutex::Autolock lock(mStateLock); return getPhysicalDisplayTokenLocked(displayId); } status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const { if (!outGetColorManagement) { return BAD_VALUE; } *outGetColorManagement = useColorManagement; return NO_ERROR; } HWComposer& SurfaceFlinger::getHwComposer() const { return mCompositionEngine->getHwComposer(); } renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const { return *mRenderEngine; } compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const { return *mCompositionEngine.get(); } void SurfaceFlinger::bootFinished() { if (mBootFinished == true) { ALOGE("Extra call to bootFinished"); return; } mBootFinished = true; if (mStartPropertySetThread->join() != NO_ERROR) { ALOGE("Join StartPropertySetThread failed!"); } if (mRenderEnginePrimeCacheFuture.valid()) { mRenderEnginePrimeCacheFuture.get(); } const nsecs_t now = systemTime(); const nsecs_t duration = now - mBootTime; ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); mFrameTracer->initialize(); mFrameTimeline->onBootFinished(); getRenderEngine().setEnableTracing(mFlagManager.use_skia_tracing()); // wait patiently for the window manager death const String16 name("window"); mWindowManager = defaultServiceManager()->getService(name); if (mWindowManager != 0) { mWindowManager->linkToDeath(sp::fromExisting(this)); } // stop boot animation // formerly we would just kill the process, but we now ask it to exit so it // can choose where to stop the animation. property_set("service.bootanim.exit", "1"); const int LOGTAG_SF_STOP_BOOTANIM = 60110; LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); sp input(defaultServiceManager()->getService(String16("inputflinger"))); static_cast(mScheduler->schedule([=]() FTL_FAKE_GUARD(kMainThreadContext) { if (input == nullptr) { ALOGE("Failed to link to input service"); } else { mInputFlinger = interface_cast(input); } readPersistentProperties(); mPowerAdvisor->onBootFinished(); const bool hintSessionEnabled = mFlagManager.use_adpf_cpu_hint(); mPowerAdvisor->enablePowerHintSession(hintSessionEnabled); const bool hintSessionUsed = mPowerAdvisor->usePowerHintSession(); ALOGD("Power hint is %s", hintSessionUsed ? "supported" : (hintSessionEnabled ? "unsupported" : "disabled")); if (hintSessionUsed) { std::optional renderEngineTid = getRenderEngine().getRenderEngineTid(); std::vector tidList; tidList.emplace_back(gettid()); if (renderEngineTid.has_value()) { tidList.emplace_back(*renderEngineTid); } if (!mPowerAdvisor->startPowerHintSession(tidList)) { ALOGW("Cannot start power hint session"); } } mBootStage = BootStage::FINISHED; if (base::GetBoolProperty("sf.debug.show_refresh_rate_overlay"s, false)) { ftl::FakeGuard guard(mStateLock); enableRefreshRateOverlay(true); } })); } uint32_t SurfaceFlinger::getNewTexture() { { std::lock_guard lock(mTexturePoolMutex); if (!mTexturePool.empty()) { uint32_t name = mTexturePool.back(); mTexturePool.pop_back(); ATRACE_INT("TexturePoolSize", mTexturePool.size()); return name; } // The pool was too small, so increase it for the future ++mTexturePoolSize; } // The pool was empty, so we need to get a new texture name directly using a // blocking call to the main thread auto genTextures = [this] { uint32_t name = 0; getRenderEngine().genTextures(1, &name); return name; }; if (std::this_thread::get_id() == mMainThreadId) { return genTextures(); } else { return mScheduler->schedule(genTextures).get(); } } void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { std::lock_guard lock(mTexturePoolMutex); // We don't change the pool size, so the fix-up logic in postComposition will decide whether // to actually delete this or not based on mTexturePoolSize mTexturePool.push_back(texture); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } static std::optional chooseRenderEngineTypeViaSysProp() { char prop[PROPERTY_VALUE_MAX]; property_get(PROPERTY_DEBUG_RENDERENGINE_BACKEND, prop, ""); if (strcmp(prop, "gles") == 0) { return renderengine::RenderEngine::RenderEngineType::GLES; } else if (strcmp(prop, "threaded") == 0) { return renderengine::RenderEngine::RenderEngineType::THREADED; } else if (strcmp(prop, "skiagl") == 0) { return renderengine::RenderEngine::RenderEngineType::SKIA_GL; } else if (strcmp(prop, "skiaglthreaded") == 0) { return renderengine::RenderEngine::RenderEngineType::SKIA_GL_THREADED; } else if (strcmp(prop, "skiavk") == 0) { return renderengine::RenderEngine::RenderEngineType::SKIA_VK; } else if (strcmp(prop, "skiavkthreaded") == 0) { return renderengine::RenderEngine::RenderEngineType::SKIA_VK_THREADED; } else { ALOGE("Unrecognized RenderEngineType %s; ignoring!", prop); return {}; } } // Do not call property_set on main thread which will be blocked by init // Use StartPropertySetThread instead. void SurfaceFlinger::init() FTL_FAKE_GUARD(kMainThreadContext) { ALOGI( "SurfaceFlinger's main thread ready to run. " "Initializing graphics H/W..."); addTransactionReadyFilters(); Mutex::Autolock lock(mStateLock); // Get a RenderEngine for the given display / config (can't fail) // TODO(b/77156734): We need to stop casting and use HAL types when possible. // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display. auto builder = renderengine::RenderEngineCreationArgs::Builder() .setPixelFormat(static_cast(defaultCompositionPixelFormat)) .setImageCacheSize(maxFrameBufferAcquiredBuffers) .setUseColorManagerment(useColorManagement) .setEnableProtectedContext(enable_protected_contents(false)) .setPrecacheToneMapperShaderOnly(false) .setSupportsBackgroundBlur(mSupportsBlur) .setContextPriority( useContextPriority ? renderengine::RenderEngine::ContextPriority::REALTIME : renderengine::RenderEngine::ContextPriority::MEDIUM); if (auto type = chooseRenderEngineTypeViaSysProp()) { builder.setRenderEngineType(type.value()); } mRenderEngine = renderengine::RenderEngine::create(builder.build()); mCompositionEngine->setRenderEngine(mRenderEngine.get()); mMaxRenderTargetSize = std::min(getRenderEngine().getMaxTextureSize(), getRenderEngine().getMaxViewportDims()); // Set SF main policy after initializing RenderEngine which has its own policy. if (!SetTaskProfiles(0, {"SFMainPolicy"})) { ALOGW("Failed to set main task profile"); } mCompositionEngine->setTimeStats(mTimeStats); mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName)); mCompositionEngine->getHwComposer().setCallback(*this); ClientCache::getInstance().setRenderEngine(&getRenderEngine()); enableLatchUnsignaledConfig = getLatchUnsignaledConfig(); if (base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false)) { enableHalVirtualDisplays(true); } // Process hotplug for displays connected at boot. LOG_ALWAYS_FATAL_IF(!configureLocked(), "Initial display configuration failed: HWC did not hotplug"); // Commit primary display. sp display; if (const auto indexOpt = mCurrentState.getDisplayIndex(getPrimaryDisplayIdLocked())) { const auto& displays = mCurrentState.displays; const auto& token = displays.keyAt(*indexOpt); const auto& state = displays.valueAt(*indexOpt); processDisplayAdded(token, state); mDrawingState.displays.add(token, state); display = getDefaultDisplayDeviceLocked(); } LOG_ALWAYS_FATAL_IF(!display, "Failed to configure the primary display"); LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(display->getPhysicalId()), "Primary display is disconnected"); // TODO(b/241285876): The Scheduler needlessly depends on creating the CompositionEngine part of // the DisplayDevice, hence the above commit of the primary display. Remove that special case by // initializing the Scheduler after configureLocked, once decoupled from DisplayDevice. initScheduler(display); dispatchDisplayHotplugEvent(display->getPhysicalId(), true); // Commit secondary display(s). processDisplayChangesLocked(); // initialize our drawing state mDrawingState = mCurrentState; onActiveDisplayChangedLocked(nullptr, *display); static_cast(mScheduler->schedule( [this]() FTL_FAKE_GUARD(kMainThreadContext) { initializeDisplays(); })); mPowerAdvisor->init(); char primeShaderCache[PROPERTY_VALUE_MAX]; property_get("service.sf.prime_shader_cache", primeShaderCache, "1"); if (atoi(primeShaderCache)) { if (setSchedFifo(false) != NO_ERROR) { ALOGW("Can't set SCHED_OTHER for primeCache"); } mRenderEnginePrimeCacheFuture = getRenderEngine().primeCache(); if (setSchedFifo(true) != NO_ERROR) { ALOGW("Can't set SCHED_OTHER for primeCache"); } } // Inform native graphics APIs whether the present timestamp is supported: const bool presentFenceReliable = !getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE); mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable); if (mStartPropertySetThread->Start() != NO_ERROR) { ALOGE("Run StartPropertySetThread failed!"); } ALOGV("Done initializing"); } void SurfaceFlinger::readPersistentProperties() { Mutex::Autolock _l(mStateLock); char value[PROPERTY_VALUE_MAX]; property_get("persist.sys.sf.color_saturation", value, "1.0"); mGlobalSaturationFactor = atof(value); updateColorMatrixLocked(); ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); property_get("persist.sys.sf.native_mode", value, "0"); mDisplayColorSetting = static_cast(atoi(value)); mForceColorMode = static_cast(base::GetIntProperty("persist.sys.sf.color_mode"s, 0)); } void SurfaceFlinger::startBootAnim() { // Start boot animation service by setting a property mailbox // if property setting thread is already running, Start() will be just a NOP mStartPropertySetThread->Start(); // Wait until property was set if (mStartPropertySetThread->join() != NO_ERROR) { ALOGE("Join StartPropertySetThread failed!"); } } // ---------------------------------------------------------------------------- status_t SurfaceFlinger::getSupportedFrameTimestamps( std::vector* outSupported) const { *outSupported = { FrameEvent::REQUESTED_PRESENT, FrameEvent::ACQUIRE, FrameEvent::LATCH, FrameEvent::FIRST_REFRESH_START, FrameEvent::LAST_REFRESH_START, FrameEvent::GPU_COMPOSITION_DONE, FrameEvent::DEQUEUE_READY, FrameEvent::RELEASE, }; ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); if (!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) { outSupported->push_back(FrameEvent::DISPLAY_PRESENT); } return NO_ERROR; } status_t SurfaceFlinger::getDisplayState(const sp& displayToken, ui::DisplayState* state) { if (!displayToken || !state) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } state->layerStack = display->getLayerStack(); state->orientation = display->getOrientation(); const Rect layerStackRect = display->getLayerStackSpaceRect(); state->layerStackSpaceRect = layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize(); return NO_ERROR; } status_t SurfaceFlinger::getStaticDisplayInfo(int64_t displayId, ui::StaticDisplayInfo* info) { if (!info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto id = DisplayId::fromValue(static_cast(displayId)); const auto displayOpt = mPhysicalDisplays.get(*id).and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); info->connectionType = snapshot.connectionType(); info->deviceProductInfo = snapshot.deviceProductInfo(); if (mEmulatedDisplayDensity) { info->density = mEmulatedDisplayDensity; } else { info->density = info->connectionType == ui::DisplayConnectionType::Internal ? mInternalDisplayDensity : FALLBACK_DENSITY; } info->density /= ACONFIGURATION_DENSITY_MEDIUM; info->secure = display->isSecure(); info->installOrientation = display->getPhysicalOrientation(); return NO_ERROR; } void SurfaceFlinger::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo*& info, const sp& display, const display::DisplaySnapshot& snapshot) { const auto& displayModes = snapshot.displayModes(); info->supportedDisplayModes.clear(); info->supportedDisplayModes.reserve(displayModes.size()); for (const auto& [id, mode] : displayModes) { ui::DisplayMode outMode; outMode.id = static_cast(id.value()); auto [width, height] = mode->getResolution(); auto [xDpi, yDpi] = mode->getDpi(); if (const auto physicalOrientation = display->getPhysicalOrientation(); physicalOrientation == ui::ROTATION_90 || physicalOrientation == ui::ROTATION_270) { std::swap(width, height); std::swap(xDpi, yDpi); } outMode.resolution = ui::Size(width, height); outMode.xDpi = xDpi; outMode.yDpi = yDpi; const nsecs_t period = mode->getVsyncPeriod(); outMode.refreshRate = Fps::fromPeriodNsecs(period).getValue(); const auto vsyncConfigSet = mVsyncConfiguration->getConfigsForRefreshRate(Fps::fromValue(outMode.refreshRate)); outMode.appVsyncOffset = vsyncConfigSet.late.appOffset; outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset; outMode.group = mode->getGroup(); // This is how far in advance a buffer must be queued for // presentation at a given time. If you want a buffer to appear // on the screen at time N, you must submit the buffer before // (N - presentationDeadline). // // Normally it's one full refresh period (to give SF a chance to // latch the buffer), but this can be reduced by configuring a // VsyncController offset. Any additional delays introduced by the hardware // composer or panel must be accounted for here. // // We add an additional 1ms to allow for processing time and // differences between the ideal and actual refresh rate. outMode.presentationDeadline = period - outMode.sfVsyncOffset + 1000000; excludeDolbyVisionIf4k30Present(display->getHdrCapabilities().getSupportedHdrTypes(), outMode); info->supportedDisplayModes.push_back(outMode); } info->supportedColorModes = snapshot.filterColorModes(mSupportsWideColor); const PhysicalDisplayId displayId = snapshot.displayId(); const auto mode = display->refreshRateSelector().getActiveMode(); info->activeDisplayModeId = mode.modePtr->getId().value(); info->renderFrameRate = mode.fps.getValue(); info->activeColorMode = display->getCompositionDisplay()->getState().colorMode; info->hdrCapabilities = filterOut4k30(display->getHdrCapabilities()); info->autoLowLatencyModeSupported = getHwComposer().hasDisplayCapability(displayId, DisplayCapability::AUTO_LOW_LATENCY_MODE); info->gameContentTypeSupported = getHwComposer().supportsContentType(displayId, hal::ContentType::GAME); info->preferredBootDisplayMode = static_cast(-1); if (getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG)) { if (const auto hwcId = getHwComposer().getPreferredBootDisplayMode(displayId)) { if (const auto modeId = snapshot.translateModeId(*hwcId)) { info->preferredBootDisplayMode = modeId->value(); } } } } status_t SurfaceFlinger::getDynamicDisplayInfoFromId(int64_t physicalDisplayId, ui::DynamicDisplayInfo* info) { if (!info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto id_ = DisplayId::fromValue(static_cast(physicalDisplayId)); const auto displayOpt = mPhysicalDisplays.get(*id_).and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; getDynamicDisplayInfoInternal(info, display, snapshotRef.get()); return NO_ERROR; } status_t SurfaceFlinger::getDynamicDisplayInfoFromToken(const sp& displayToken, ui::DynamicDisplayInfo* info) { if (!displayToken || !info) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; getDynamicDisplayInfoInternal(info, display, snapshotRef.get()); return NO_ERROR; } status_t SurfaceFlinger::getDisplayStats(const sp& displayToken, DisplayStatInfo* outStats) { if (!outStats) { return BAD_VALUE; } std::optional displayIdOpt; { Mutex::Autolock lock(mStateLock); if (displayToken) { displayIdOpt = getPhysicalDisplayIdLocked(displayToken); if (!displayIdOpt) { ALOGW("%s: Invalid physical display token %p", __func__, displayToken.get()); return NAME_NOT_FOUND; } } else { // TODO (b/277364366): Clients should be updated to pass in the display they // want, rather than us picking an arbitrary one (the active display, in this // case). displayIdOpt = mActiveDisplayId; } } const auto schedule = mScheduler->getVsyncSchedule(displayIdOpt); if (!schedule) { ALOGE("%s: Missing VSYNC schedule for display %s!", __func__, to_string(*displayIdOpt).c_str()); return NAME_NOT_FOUND; } outStats->vsyncTime = schedule->vsyncDeadlineAfter(TimePoint::now()).ns(); outStats->vsyncPeriod = schedule->period().ns(); return NO_ERROR; } void SurfaceFlinger::setDesiredActiveMode(display::DisplayModeRequest&& request, bool force) { ATRACE_CALL(); const auto displayId = request.mode.modePtr->getPhysicalDisplayId(); const auto display = getDisplayDeviceLocked(displayId); if (!display) { ALOGW("%s: display is no longer valid", __func__); return; } const auto mode = request.mode; const bool emitEvent = request.emitEvent; switch (display->setDesiredActiveMode(DisplayDevice::ActiveModeInfo(std::move(request)), force)) { case DisplayDevice::DesiredActiveModeAction::InitiateDisplayModeSwitch: // Set the render rate as setDesiredActiveMode updated it. mScheduler->setRenderRate(displayId, display->refreshRateSelector().getActiveMode().fps); // Schedule a new frame to initiate the display mode switch. scheduleComposite(FrameHint::kNone); // Start receiving vsync samples now, so that we can detect a period // switch. mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */, mode.modePtr->getFps()); // As we called to set period, we will call to onRefreshRateChangeCompleted once // VsyncController model is locked. mScheduler->modulateVsync(displayId, &VsyncModulator::onRefreshRateChangeInitiated); updatePhaseConfiguration(mode.fps); mScheduler->setModeChangePending(true); break; case DisplayDevice::DesiredActiveModeAction::InitiateRenderRateSwitch: mScheduler->setRenderRate(displayId, mode.fps); updatePhaseConfiguration(mode.fps); mRefreshRateStats->setRefreshRate(mode.fps); if (display->getPhysicalId() == mActiveDisplayId && emitEvent) { mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, mode); } break; case DisplayDevice::DesiredActiveModeAction::None: break; } } status_t SurfaceFlinger::setActiveModeFromBackdoor(const sp& displayToken, DisplayModeId modeId) { ATRACE_CALL(); if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t { const auto displayOpt = FTL_FAKE_GUARD(mStateLock, ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot())); if (!displayOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); const auto fpsOpt = snapshot.displayModes().get(modeId).transform( [](const DisplayModePtr& mode) { return mode->getFps(); }); if (!fpsOpt) { ALOGE("%s: Invalid mode %d for display %s", whence, modeId.value(), to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } const Fps fps = *fpsOpt; // Keep the old switching type. const bool allowGroupSwitching = display->refreshRateSelector().getCurrentPolicy().allowGroupSwitching; const scheduler::RefreshRateSelector::DisplayManagerPolicy policy{modeId, {fps, fps}, allowGroupSwitching}; return setDesiredDisplayModeSpecsInternal(display, policy); }); return future.get(); } void SurfaceFlinger::updateInternalStateWithChangedMode() { ATRACE_CALL(); const auto display = getDefaultDisplayDeviceLocked(); if (!display) { return; } const auto upcomingModeInfo = display->getUpcomingActiveMode(); if (!upcomingModeInfo.modeOpt) { // There is no pending mode change. This can happen if the active // display changed and the mode change happened on a different display. return; } if (display->getActiveMode().modePtr->getResolution() != upcomingModeInfo.modeOpt->modePtr->getResolution()) { auto& state = mCurrentState.displays.editValueFor(display->getDisplayToken()); // We need to generate new sequenceId in order to recreate the display (and this // way the framebuffer). state.sequenceId = DisplayDeviceState{}.sequenceId; state.physical->activeMode = upcomingModeInfo.modeOpt->modePtr.get(); processDisplayChangesLocked(); // processDisplayChangesLocked will update all necessary components so we're done here. return; } mPhysicalDisplays.get(display->getPhysicalId()) .transform(&PhysicalDisplay::snapshotRef) .transform(ftl::unit_fn([&](const display::DisplaySnapshot& snapshot) { FTL_FAKE_GUARD(kMainThreadContext, display->setActiveMode(upcomingModeInfo.modeOpt->modePtr->getId(), upcomingModeInfo.modeOpt->modePtr->getFps(), upcomingModeInfo.modeOpt->fps)); })); const Fps refreshRate = upcomingModeInfo.modeOpt->fps; mRefreshRateStats->setRefreshRate(refreshRate); updatePhaseConfiguration(refreshRate); if (upcomingModeInfo.event != scheduler::DisplayModeEvent::None) { mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, *upcomingModeInfo.modeOpt); } } void SurfaceFlinger::clearDesiredActiveModeState(const sp& display) { display->clearDesiredActiveModeState(); if (display->getPhysicalId() == mActiveDisplayId) { mScheduler->setModeChangePending(false); } } void SurfaceFlinger::desiredActiveModeChangeDone(const sp& display) { const auto desiredActiveMode = display->getDesiredActiveMode(); const auto& modeOpt = desiredActiveMode->modeOpt; const auto displayId = modeOpt->modePtr->getPhysicalDisplayId(); const auto displayFps = modeOpt->modePtr->getFps(); const auto renderFps = modeOpt->fps; clearDesiredActiveModeState(display); mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */, displayFps); mScheduler->setRenderRate(displayId, renderFps); updatePhaseConfiguration(renderFps); } void SurfaceFlinger::setActiveModeInHwcIfNeeded() { ATRACE_CALL(); std::optional displayToUpdateImmediately; for (const auto& [id, physical] : mPhysicalDisplays) { const auto& snapshot = physical.snapshot(); if (snapshot.connectionType() != ui::DisplayConnectionType::Internal) { continue; } const auto display = getDisplayDeviceLocked(id); if (!display) continue; // Store the local variable to release the lock. const auto desiredActiveMode = display->getDesiredActiveMode(); if (!desiredActiveMode) { // No desired active mode pending to be applied. continue; } if (id != mActiveDisplayId) { // Display is no longer the active display, so abort the mode change. clearDesiredActiveModeState(display); continue; } const auto desiredModeId = desiredActiveMode->modeOpt->modePtr->getId(); const auto displayModePtrOpt = snapshot.displayModes().get(desiredModeId); if (!displayModePtrOpt) { ALOGW("Desired display mode is no longer supported. Mode ID = %d", desiredModeId.value()); clearDesiredActiveModeState(display); continue; } ALOGV("%s changing active mode to %d(%s) for display %s", __func__, desiredModeId.value(), to_string(displayModePtrOpt->get()->getFps()).c_str(), to_string(display->getId()).c_str()); if (display->getActiveMode() == desiredActiveMode->modeOpt) { // we are already in the requested mode, there is nothing left to do desiredActiveModeChangeDone(display); continue; } // Desired active mode was set, it is different than the mode currently in use, however // allowed modes might have changed by the time we process the refresh. // Make sure the desired mode is still allowed const auto displayModeAllowed = display->refreshRateSelector().isModeAllowed(*desiredActiveMode->modeOpt); if (!displayModeAllowed) { clearDesiredActiveModeState(display); continue; } // TODO(b/142753666) use constrains hal::VsyncPeriodChangeConstraints constraints; constraints.desiredTimeNanos = systemTime(); constraints.seamlessRequired = false; hal::VsyncPeriodChangeTimeline outTimeline; const auto status = display->initiateModeChange(*desiredActiveMode, constraints, &outTimeline); if (status != NO_ERROR) { // initiateModeChange may fail if a hotplug event is just about // to be sent. We just log the error in this case. ALOGW("initiateModeChange failed: %d", status); continue; } display->refreshRateSelector().onModeChangeInitiated(); mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline); if (outTimeline.refreshRequired) { scheduleComposite(FrameHint::kNone); mSetActiveModePending = true; } else { // Updating the internal state should be done outside the loop, // because it can recreate a DisplayDevice and modify mDisplays // which will invalidate the iterator. displayToUpdateImmediately = display->getPhysicalId(); } } if (displayToUpdateImmediately) { updateInternalStateWithChangedMode(); const auto display = getDisplayDeviceLocked(*displayToUpdateImmediately); const auto desiredActiveMode = display->getDesiredActiveMode(); if (desiredActiveMode && display->getActiveMode() == desiredActiveMode->modeOpt) { desiredActiveModeChangeDone(display); } } } void SurfaceFlinger::disableExpensiveRendering() { const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { ATRACE_NAME(whence); if (mPowerAdvisor->isUsingExpensiveRendering()) { for (const auto& [_, display] : mDisplays) { constexpr bool kDisable = false; mPowerAdvisor->setExpensiveRenderingExpected(display->getId(), kDisable); } } }); future.wait(); } status_t SurfaceFlinger::getDisplayNativePrimaries(const sp& displayToken, ui::DisplayPrimaries& primaries) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref); if (!display) { return NAME_NOT_FOUND; } if (!display.transform(&PhysicalDisplay::isInternal).value()) { return INVALID_OPERATION; } // TODO(b/229846990): For now, assume that all internal displays have the same primaries. primaries = mInternalDisplayPrimaries; return NO_ERROR; } status_t SurfaceFlinger::setActiveColorMode(const sp& displayToken, ui::ColorMode mode) { if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t { const auto displayOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .and_then(getDisplayDeviceAndSnapshot()); if (!displayOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& [display, snapshotRef] = *displayOpt; const auto& snapshot = snapshotRef.get(); const auto modes = snapshot.filterColorModes(mSupportsWideColor); const bool exists = std::find(modes.begin(), modes.end(), mode) != modes.end(); if (mode < ui::ColorMode::NATIVE || !exists) { ALOGE("%s: Invalid color mode %s (%d) for display %s", whence, decodeColorMode(mode).c_str(), mode, to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } display->getCompositionDisplay()->setColorProfile( {mode, Dataspace::UNKNOWN, RenderIntent::COLORIMETRIC, Dataspace::UNKNOWN}); return NO_ERROR; }); // TODO(b/195698395): Propagate error. future.wait(); return NO_ERROR; } status_t SurfaceFlinger::getBootDisplayModeSupport(bool* outSupport) const { auto future = mScheduler->schedule( [this] { return getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG); }); *outSupport = future.get(); return NO_ERROR; } status_t SurfaceFlinger::getOverlaySupport(gui::OverlayProperties* outProperties) const { const auto& aidlProperties = getHwComposer().getOverlaySupport(); // convert aidl OverlayProperties to gui::OverlayProperties outProperties->combinations.reserve(aidlProperties.combinations.size()); for (const auto& combination : aidlProperties.combinations) { std::vector pixelFormats; pixelFormats.reserve(combination.pixelFormats.size()); std::transform(combination.pixelFormats.cbegin(), combination.pixelFormats.cend(), std::back_inserter(pixelFormats), [](const auto& val) { return static_cast(val); }); std::vector standards; standards.reserve(combination.standards.size()); std::transform(combination.standards.cbegin(), combination.standards.cend(), std::back_inserter(standards), [](const auto& val) { return static_cast(val); }); std::vector transfers; transfers.reserve(combination.transfers.size()); std::transform(combination.transfers.cbegin(), combination.transfers.cend(), std::back_inserter(transfers), [](const auto& val) { return static_cast(val); }); std::vector ranges; ranges.reserve(combination.ranges.size()); std::transform(combination.ranges.cbegin(), combination.ranges.cend(), std::back_inserter(ranges), [](const auto& val) { return static_cast(val); }); gui::OverlayProperties::SupportedBufferCombinations outCombination; outCombination.pixelFormats = std::move(pixelFormats); outCombination.standards = std::move(standards); outCombination.transfers = std::move(transfers); outCombination.ranges = std::move(ranges); outProperties->combinations.emplace_back(outCombination); } outProperties->supportMixedColorSpaces = aidlProperties.supportMixedColorSpaces; return NO_ERROR; } status_t SurfaceFlinger::setBootDisplayMode(const sp& displayToken, DisplayModeId modeId) { const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t { const auto snapshotOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken)) .transform(&ftl::to_mapped_ref) .transform(&PhysicalDisplay::snapshotRef); if (!snapshotOpt) { ALOGE("%s: Invalid physical display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } const auto& snapshot = snapshotOpt->get(); const auto hwcIdOpt = snapshot.displayModes().get(modeId).transform( [](const DisplayModePtr& mode) { return mode->getHwcId(); }); if (!hwcIdOpt) { ALOGE("%s: Invalid mode %d for display %s", whence, modeId.value(), to_string(snapshot.displayId()).c_str()); return BAD_VALUE; } return getHwComposer().setBootDisplayMode(snapshot.displayId(), *hwcIdOpt); }); return future.get(); } status_t SurfaceFlinger::clearBootDisplayMode(const sp& displayToken) { const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { return getHwComposer().clearBootDisplayMode(*displayId); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return BAD_VALUE; } }); return future.get(); } status_t SurfaceFlinger::getHdrConversionCapabilities( std::vector* hdrConversionCapabilities) const { bool hdrOutputConversionSupport; getHdrOutputConversionSupport(&hdrOutputConversionSupport); if (hdrOutputConversionSupport == false) { ALOGE("hdrOutputConversion is not supported by this device."); return INVALID_OPERATION; } const auto aidlConversionCapability = getHwComposer().getHdrConversionCapabilities(); for (auto capability : aidlConversionCapability) { gui::HdrConversionCapability tempCapability; tempCapability.sourceType = static_cast(capability.sourceType); tempCapability.outputType = static_cast(capability.outputType); tempCapability.addsLatency = capability.addsLatency; hdrConversionCapabilities->push_back(tempCapability); } return NO_ERROR; } status_t SurfaceFlinger::setHdrConversionStrategy( const gui::HdrConversionStrategy& hdrConversionStrategy, int32_t* outPreferredHdrOutputType) { bool hdrOutputConversionSupport; getHdrOutputConversionSupport(&hdrOutputConversionSupport); if (hdrOutputConversionSupport == false) { ALOGE("hdrOutputConversion is not supported by this device."); return INVALID_OPERATION; } auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) mutable -> status_t { using AidlHdrConversionStrategy = aidl::android::hardware::graphics::common::HdrConversionStrategy; using GuiHdrConversionStrategyTag = gui::HdrConversionStrategy::Tag; AidlHdrConversionStrategy aidlConversionStrategy; status_t status; aidl::android::hardware::graphics::common::Hdr aidlPreferredHdrOutputType; switch (hdrConversionStrategy.getTag()) { case GuiHdrConversionStrategyTag::passthrough: { aidlConversionStrategy.set( hdrConversionStrategy.get()); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } case GuiHdrConversionStrategyTag::autoAllowedHdrTypes: { auto autoHdrTypes = hdrConversionStrategy .get(); std::vector aidlAutoHdrTypes; for (auto type : autoHdrTypes) { aidlAutoHdrTypes.push_back( static_cast(type)); } aidlConversionStrategy.set( aidlAutoHdrTypes); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } case GuiHdrConversionStrategyTag::forceHdrConversion: { auto forceHdrConversion = hdrConversionStrategy .get(); aidlConversionStrategy.set( static_cast( forceHdrConversion)); status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy, &aidlPreferredHdrOutputType); *outPreferredHdrOutputType = static_cast(aidlPreferredHdrOutputType); return status; } } }); return future.get(); } status_t SurfaceFlinger::getHdrOutputConversionSupport(bool* outSupport) const { auto future = mScheduler->schedule([this] { return getHwComposer().hasCapability(Capability::HDR_OUTPUT_CONVERSION_CONFIG); }); *outSupport = future.get(); return NO_ERROR; } void SurfaceFlinger::setAutoLowLatencyMode(const sp& displayToken, bool on) { const char* const whence = __func__; static_cast(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { getHwComposer().setAutoLowLatencyMode(*displayId, on); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); } })); } void SurfaceFlinger::setGameContentType(const sp& displayToken, bool on) { const char* const whence = __func__; static_cast(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE; getHwComposer().setContentType(*displayId, type); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); } })); } status_t SurfaceFlinger::overrideHdrTypes(const sp& displayToken, const std::vector& hdrTypes) { Mutex::Autolock lock(mStateLock); auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("%s: Invalid display token %p", __func__, displayToken.get()); return NAME_NOT_FOUND; } display->overrideHdrTypes(hdrTypes); dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */); return NO_ERROR; } status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::vector* pulledData, bool* success) { *success = mTimeStats->onPullAtom(atomId, pulledData); return NO_ERROR; } status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp& displayToken, ui::PixelFormat* outFormat, ui::Dataspace* outDataspace, uint8_t* outComponentMask) const { if (!outFormat || !outDataspace || !outComponentMask) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat, outDataspace, outComponentMask); } status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp& displayToken, bool enable, uint8_t componentMask, uint64_t maxFrames) { const char* const whence = __func__; auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t { if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) { return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable, componentMask, maxFrames); } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return NAME_NOT_FOUND; } }); return future.get(); } status_t SurfaceFlinger::getDisplayedContentSample(const sp& displayToken, uint64_t maxFrames, uint64_t timestamp, DisplayedFrameStats* outStats) const { Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats); } status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const { if (!outSupported) { return BAD_VALUE; } *outSupported = getRenderEngine().supportsProtectedContent(); return NO_ERROR; } status_t SurfaceFlinger::isWideColorDisplay(const sp& displayToken, bool* outIsWideColorDisplay) const { if (!displayToken || !outIsWideColorDisplay) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } *outIsWideColorDisplay = display->isPrimary() ? mSupportsWideColor : display->hasWideColorGamut(); return NO_ERROR; } status_t SurfaceFlinger::getLayerDebugInfo(std::vector* outLayers) { outLayers->clear(); auto future = mScheduler->schedule([=] { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); mDrawingState.traverseInZOrder([&](Layer* layer) { outLayers->push_back(layer->getLayerDebugInfo(display.get())); }); }); future.wait(); return NO_ERROR; } status_t SurfaceFlinger::getCompositionPreference( Dataspace* outDataspace, ui::PixelFormat* outPixelFormat, Dataspace* outWideColorGamutDataspace, ui::PixelFormat* outWideColorGamutPixelFormat) const { *outDataspace = mDefaultCompositionDataspace; *outPixelFormat = defaultCompositionPixelFormat; *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace; *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat; return NO_ERROR; } status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea, const sp& stopLayerHandle, const sp& listener) { if (!listener || samplingArea == Rect::INVALID_RECT || samplingArea.isEmpty()) { return BAD_VALUE; } // LayerHandle::getLayer promotes the layer object in a binder thread but we will not destroy // the layer here since the caller has a strong ref to the layer's handle. const sp stopLayer = LayerHandle::getLayer(stopLayerHandle); mRegionSamplingThread->addListener(samplingArea, stopLayer ? stopLayer->getSequence() : UNASSIGNED_LAYER_ID, listener); return NO_ERROR; } status_t SurfaceFlinger::removeRegionSamplingListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mRegionSamplingThread->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->addListener(listener, taskId); return NO_ERROR; } status_t SurfaceFlinger::removeFpsListener(const sp& listener) { if (!listener) { return BAD_VALUE; } mFpsReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::addTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->addListener(listener); return NO_ERROR; } status_t SurfaceFlinger::removeTunnelModeEnabledListener( const sp& listener) { if (!listener) { return BAD_VALUE; } mTunnelModeEnabledReporter->removeListener(listener); return NO_ERROR; } status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp& displayToken, bool* outSupport) const { if (!displayToken || !outSupport) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } *outSupport = getHwComposer().hasDisplayCapability(*displayId, DisplayCapability::BRIGHTNESS); return NO_ERROR; } status_t SurfaceFlinger::setDisplayBrightness(const sp& displayToken, const gui::DisplayBrightness& brightness) { if (!displayToken) { return BAD_VALUE; } const char* const whence = __func__; return ftl::Future(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { if (const auto display = getDisplayDeviceLocked(displayToken)) { const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand); // If we support applying display brightness as a command, then we also support // dimming SDR layers. if (supportsDisplayBrightnessCommand) { auto compositionDisplay = display->getCompositionDisplay(); float currentDimmingRatio = compositionDisplay->editState().sdrWhitePointNits / compositionDisplay->editState().displayBrightnessNits; compositionDisplay->setDisplayBrightness(brightness.sdrWhitePointNits, brightness.displayBrightnessNits); FTL_FAKE_GUARD(kMainThreadContext, display->stageBrightness(brightness.displayBrightness)); if (brightness.sdrWhitePointNits / brightness.displayBrightnessNits != currentDimmingRatio) { scheduleComposite(FrameHint::kNone); } else { scheduleCommit(FrameHint::kNone); } return ftl::yield(OK); } else { return getHwComposer() .setDisplayBrightness(display->getPhysicalId(), brightness.displayBrightness, brightness.displayBrightnessNits, Hwc2::Composer::DisplayBrightnessOptions{ .applyImmediately = true}); } } else { ALOGE("%s: Invalid display token %p", whence, displayToken.get()); return ftl::yield(NAME_NOT_FOUND); } })) .then([](ftl::Future task) { return task; }) .get(); } status_t SurfaceFlinger::addHdrLayerInfoListener(const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (!hdrInfoReporter) { hdrInfoReporter = sp::make(); } hdrInfoReporter->addListener(listener); mAddingHDRLayerInfoListener = true; return OK; } status_t SurfaceFlinger::removeHdrLayerInfoListener( const sp& displayToken, const sp& listener) { if (!displayToken) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } const auto displayId = display->getId(); sp& hdrInfoReporter = mHdrLayerInfoListeners[displayId]; if (hdrInfoReporter) { hdrInfoReporter->removeListener(listener); } return OK; } status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) { using hardware::power::Boost; Boost powerBoost = static_cast(boostId); if (powerBoost == Boost::INTERACTION) { mScheduler->onTouchHint(); } return NO_ERROR; } status_t SurfaceFlinger::getDisplayDecorationSupport( const sp& displayToken, std::optional* outSupport) const { if (!displayToken || !outSupport) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto displayId = getPhysicalDisplayIdLocked(displayToken); if (!displayId) { return NAME_NOT_FOUND; } getHwComposer().getDisplayDecorationSupport(*displayId, outSupport); return NO_ERROR; } // ---------------------------------------------------------------------------- sp SurfaceFlinger::createDisplayEventConnection( gui::ISurfaceComposer::VsyncSource vsyncSource, EventRegistrationFlags eventRegistration, const sp& layerHandle) { const auto& handle = vsyncSource == gui::ISurfaceComposer::VsyncSource::eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle; return mScheduler->createDisplayEventConnection(handle, eventRegistration, layerHandle); } void SurfaceFlinger::scheduleCommit(FrameHint hint) { if (hint == FrameHint::kActive) { mScheduler->resetIdleTimer(); } mPowerAdvisor->notifyDisplayUpdateImminentAndCpuReset(); mScheduler->scheduleFrame(); } void SurfaceFlinger::scheduleComposite(FrameHint hint) { mMustComposite = true; scheduleCommit(hint); } void SurfaceFlinger::scheduleRepaint() { mGeometryDirty = true; scheduleComposite(FrameHint::kActive); } void SurfaceFlinger::scheduleSample() { static_cast(mScheduler->schedule([this] { sample(); })); } nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const { if (const auto display = getDefaultDisplayDeviceLocked()) { return display->getVsyncPeriodFromHWC(); } return 0; } void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp, std::optional vsyncPeriod) { ATRACE_NAME(vsyncPeriod ? ftl::Concat(__func__, ' ', hwcDisplayId, ' ', *vsyncPeriod, "ns").c_str() : ftl::Concat(__func__, ' ', hwcDisplayId).c_str()); Mutex::Autolock lock(mStateLock); if (const auto displayIdOpt = getHwComposer().onVsync(hwcDisplayId, timestamp)) { if (mScheduler->addResyncSample(*displayIdOpt, timestamp, vsyncPeriod)) { // period flushed mScheduler->modulateVsync(displayIdOpt, &VsyncModulator::onRefreshRateChangeCompleted); } } } void SurfaceFlinger::onComposerHalHotplug(hal::HWDisplayId hwcDisplayId, hal::Connection connection) { { std::lock_guard lock(mHotplugMutex); mPendingHotplugEvents.push_back(HotplugEvent{hwcDisplayId, connection}); } if (mScheduler) { mScheduler->scheduleConfigure(); } } void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged( hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) { Mutex::Autolock lock(mStateLock); mScheduler->onNewVsyncPeriodChangeTimeline(timeline); if (timeline.refreshRequired) { scheduleComposite(FrameHint::kNone); } } void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) { // TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and // use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE. } void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) { Mutex::Autolock lock(mStateLock); scheduleComposite(FrameHint::kNone); } void SurfaceFlinger::onComposerHalVsyncIdle(hal::HWDisplayId) { ATRACE_CALL(); mScheduler->forceNextResync(); } void SurfaceFlinger::onRefreshRateChangedDebug(const RefreshRateChangedDebugData& data) { ATRACE_CALL(); if (const auto displayId = getHwComposer().toPhysicalDisplayId(data.display); displayId) { const Fps fps = Fps::fromPeriodNsecs(data.vsyncPeriodNanos); ATRACE_FORMAT("%s Fps %d", __func__, fps.getIntValue()); static_cast(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { { { const auto display = getDisplayDeviceLocked(*displayId); FTL_FAKE_GUARD(kMainThreadContext, display->updateRefreshRateOverlayRate(fps, display->getActiveMode() .fps, /* setByHwc */ true)); } } })); } } void SurfaceFlinger::setVsyncEnabled(PhysicalDisplayId id, bool enabled) { const char* const whence = __func__; ATRACE_FORMAT("%s (%d) for %" PRIu64, whence, enabled, id.value); // On main thread to avoid race conditions with display power state. static_cast(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) { { ftl::FakeGuard guard(kMainThreadContext); if (auto schedule = mScheduler->getVsyncSchedule(id)) { schedule->setPendingHardwareVsyncState(enabled); } } ATRACE_FORMAT("%s (%d) for %" PRIu64 " (main thread)", whence, enabled, id.value); if (const auto display = getDisplayDeviceLocked(id); display && display->isPoweredOn()) { setHWCVsyncEnabled(id, enabled); } })); } bool SurfaceFlinger::wouldPresentEarly(TimePoint frameTime, Period vsyncPeriod) const { const bool isThreeVsyncsAhead = mExpectedPresentTime - frameTime > 2 * vsyncPeriod; return isThreeVsyncsAhead || getPreviousPresentFence(frameTime, vsyncPeriod)->getSignalTime() != Fence::SIGNAL_TIME_PENDING; } auto SurfaceFlinger::getPreviousPresentFence(TimePoint frameTime, Period vsyncPeriod) const -> const FenceTimePtr& { const bool isTwoVsyncsAhead = mExpectedPresentTime - frameTime > vsyncPeriod; const size_t i = static_cast(isTwoVsyncsAhead); return mPreviousPresentFences[i].fenceTime; } bool SurfaceFlinger::isFencePending(const FenceTimePtr& fence, int graceTimeMs) { ATRACE_CALL(); if (fence == FenceTime::NO_FENCE) { return false; } const status_t status = fence->wait(graceTimeMs); // This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call, // which calls wait(0) again internally return status == -ETIME; } TimePoint SurfaceFlinger::calculateExpectedPresentTime(TimePoint frameTime) const { const auto& schedule = mScheduler->getVsyncSchedule(); const TimePoint vsyncDeadline = schedule->vsyncDeadlineAfter(frameTime); if (mScheduler->vsyncModulator().getVsyncConfig().sfOffset > 0) { return vsyncDeadline; } // Inflate the expected present time if we're targeting the next vsync. return vsyncDeadline + schedule->period(); } void SurfaceFlinger::configure() FTL_FAKE_GUARD(kMainThreadContext) { Mutex::Autolock lock(mStateLock); if (configureLocked()) { setTransactionFlags(eDisplayTransactionNeeded); } } bool SurfaceFlinger::updateLayerSnapshotsLegacy(VsyncId vsyncId, frontend::Update& update, bool transactionsFlushed, bool& outTransactionsAreEmpty) { bool needsTraversal = false; if (transactionsFlushed) { needsTraversal |= commitMirrorDisplays(vsyncId); needsTraversal |= commitCreatedLayers(vsyncId, update.layerCreatedStates); needsTraversal |= applyTransactions(update.transactions, vsyncId); } outTransactionsAreEmpty = !needsTraversal; const bool shouldCommit = (getTransactionFlags() & ~eTransactionFlushNeeded) || needsTraversal; if (shouldCommit) { commitTransactions(); } bool mustComposite = latchBuffers() || shouldCommit; updateLayerGeometry(); return mustComposite; } void SurfaceFlinger::updateLayerHistory(const frontend::LayerSnapshot& snapshot) { using Changes = frontend::RequestedLayerState::Changes; if (snapshot.path.isClone() || !snapshot.changes.any(Changes::FrameRate | Changes::Buffer | Changes::Animation)) { return; } const auto layerProps = scheduler::LayerProps{ .visible = snapshot.isVisible, .bounds = snapshot.geomLayerBounds, .transform = snapshot.geomLayerTransform, .setFrameRateVote = snapshot.frameRate, .frameRateSelectionPriority = snapshot.frameRateSelectionPriority, }; auto it = mLegacyLayers.find(snapshot.sequence); LOG_ALWAYS_FATAL_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot.getDebugString().c_str()); if (snapshot.changes.test(Changes::Animation)) { it->second->recordLayerHistoryAnimationTx(layerProps); } if (snapshot.changes.test(Changes::FrameRate)) { it->second->setFrameRateForLayerTree(snapshot.frameRate, layerProps); } if (snapshot.changes.test(Changes::Buffer)) { it->second->recordLayerHistoryBufferUpdate(layerProps); } } bool SurfaceFlinger::updateLayerSnapshots(VsyncId vsyncId, frontend::Update& update, bool transactionsFlushed, bool& outTransactionsAreEmpty) { using Changes = frontend::RequestedLayerState::Changes; ATRACE_NAME("updateLayerSnapshots"); { mLayerLifecycleManager.addLayers(std::move(update.newLayers)); mLayerLifecycleManager.applyTransactions(update.transactions); mLayerLifecycleManager.onHandlesDestroyed(update.destroyedHandles); for (auto& legacyLayer : update.layerCreatedStates) { sp layer = legacyLayer.layer.promote(); if (layer) { mLegacyLayers[layer->sequence] = layer; } } } if (mLayerLifecycleManager.getGlobalChanges().test(Changes::Hierarchy)) { ATRACE_NAME("LayerHierarchyBuilder:update"); mLayerHierarchyBuilder.update(mLayerLifecycleManager.getLayers(), mLayerLifecycleManager.getDestroyedLayers()); } bool mustComposite = false; mustComposite |= applyAndCommitDisplayTransactionStates(update.transactions); { ATRACE_NAME("LayerSnapshotBuilder:update"); frontend::LayerSnapshotBuilder::Args args{.root = mLayerHierarchyBuilder.getHierarchy(), .layerLifecycleManager = mLayerLifecycleManager, .displays = mFrontEndDisplayInfos, .displayChanges = mFrontEndDisplayInfosChanged, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap()}; mLayerSnapshotBuilder.update(args); } if (mLayerLifecycleManager.getGlobalChanges().any(Changes::Geometry | Changes::Input | Changes::Hierarchy | Changes::Visibility)) { mUpdateInputInfo = true; } if (mLayerLifecycleManager.getGlobalChanges().any(Changes::VisibleRegion | Changes::Hierarchy | Changes::Visibility)) { mVisibleRegionsDirty = true; } outTransactionsAreEmpty = mLayerLifecycleManager.getGlobalChanges().get() == 0; mustComposite |= mLayerLifecycleManager.getGlobalChanges().get() != 0; bool newDataLatched = false; if (!mLegacyFrontEndEnabled) { ATRACE_NAME("DisplayCallbackAndStatsUpdates"); applyTransactions(update.transactions, vsyncId); const nsecs_t latchTime = systemTime(); bool unused = false; for (auto& layer : mLayerLifecycleManager.getLayers()) { if (layer->changes.test(frontend::RequestedLayerState::Changes::Created) && layer->bgColorLayer) { sp bgColorLayer = getFactory().createEffectLayer( LayerCreationArgs(this, nullptr, layer->name, ISurfaceComposerClient::eFXSurfaceEffect, LayerMetadata(), std::make_optional(layer->id), true)); mLegacyLayers[bgColorLayer->sequence] = bgColorLayer; } const bool willReleaseBufferOnLatch = layer->willReleaseBufferOnLatch(); if (!layer->hasReadyFrame() && !willReleaseBufferOnLatch) continue; auto it = mLegacyLayers.find(layer->id); LOG_ALWAYS_FATAL_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", layer->getDebugString().c_str()); const bool bgColorOnly = !layer->externalTexture && (layer->bgColorLayerId != UNASSIGNED_LAYER_ID); if (willReleaseBufferOnLatch) { mLayersWithBuffersRemoved.emplace(it->second); } it->second->latchBufferImpl(unused, latchTime, bgColorOnly); mLayersWithQueuedFrames.emplace(it->second); } for (auto& snapshot : mLayerSnapshotBuilder.getSnapshots()) { updateLayerHistory(*snapshot); if (!snapshot->hasReadyFrame) continue; newDataLatched = true; if (!snapshot->isVisible) break; Region visibleReg; visibleReg.set(snapshot->transformedBoundsWithoutTransparentRegion); invalidateLayerStack(snapshot->outputFilter, visibleReg); } for (auto& destroyedLayer : mLayerLifecycleManager.getDestroyedLayers()) { mLegacyLayers.erase(destroyedLayer->id); } { ATRACE_NAME("LLM:commitChanges"); mLayerLifecycleManager.commitChanges(); } commitTransactions(); // enter boot animation on first buffer latch if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { ALOGI("Enter boot animation"); mBootStage = BootStage::BOOTANIMATION; } } mustComposite |= (getTransactionFlags() & ~eTransactionFlushNeeded) || newDataLatched; return mustComposite; } bool SurfaceFlinger::commit(TimePoint frameTime, VsyncId vsyncId, TimePoint expectedVsyncTime) FTL_FAKE_GUARD(kMainThreadContext) { // The expectedVsyncTime, which was predicted when this frame was scheduled, is normally in the // future relative to frameTime, but may not be for delayed frames. Adjust mExpectedPresentTime // accordingly, but not mScheduledPresentTime. const TimePoint lastScheduledPresentTime = mScheduledPresentTime; mScheduledPresentTime = expectedVsyncTime; // Calculate the expected present time once and use the cached value throughout this frame to // make sure all layers are seeing this same value. mExpectedPresentTime = expectedVsyncTime >= frameTime ? expectedVsyncTime : calculateExpectedPresentTime(frameTime); ATRACE_FORMAT("%s %" PRId64 " vsyncIn %.2fms%s", __func__, vsyncId.value, ticks(mExpectedPresentTime - TimePoint::now()), mExpectedPresentTime == expectedVsyncTime ? "" : " (adjusted)"); const Period vsyncPeriod = mScheduler->getVsyncSchedule()->period(); const FenceTimePtr& previousPresentFence = getPreviousPresentFence(frameTime, vsyncPeriod); // When backpressure propagation is enabled, we want to give a small grace period of 1ms // for the present fence to fire instead of just giving up on this frame to handle cases // where present fence is just about to get signaled. const int graceTimeForPresentFenceMs = static_cast( mBackpressureGpuComposition || !mCompositionCoverage.test(CompositionCoverage::Gpu)); // Pending frames may trigger backpressure propagation. const TracedOrdinal framePending = {"PrevFramePending", isFencePending(previousPresentFence, graceTimeForPresentFenceMs)}; // Frame missed counts for metrics tracking. // A frame is missed if the prior frame is still pending. If no longer pending, // then we still count the frame as missed if the predicted present time // was further in the past than when the fence actually fired. // Add some slop to correct for drift. This should generally be // smaller than a typical frame duration, but should not be so small // that it reports reasonable drift as a missed frame. const nsecs_t frameMissedSlop = vsyncPeriod.ns() / 2; const nsecs_t previousPresentTime = previousPresentFence->getSignalTime(); const TracedOrdinal frameMissed = {"PrevFrameMissed", framePending || (previousPresentTime >= 0 && (lastScheduledPresentTime.ns() < previousPresentTime - frameMissedSlop))}; const TracedOrdinal hwcFrameMissed = {"PrevHwcFrameMissed", frameMissed && mCompositionCoverage.test( CompositionCoverage::Hwc)}; const TracedOrdinal gpuFrameMissed = {"PrevGpuFrameMissed", frameMissed && mCompositionCoverage.test( CompositionCoverage::Gpu)}; if (frameMissed) { mFrameMissedCount++; mTimeStats->incrementMissedFrames(); } if (hwcFrameMissed) { mHwcFrameMissedCount++; } if (gpuFrameMissed) { mGpuFrameMissedCount++; } if (mTracingEnabledChanged) { mLayerTracingEnabled = mLayerTracing.isEnabled(); mTracingEnabledChanged = false; } // If we are in the middle of a mode change and the fence hasn't // fired yet just wait for the next commit. if (mSetActiveModePending) { if (framePending) { mScheduler->scheduleFrame(); return false; } // We received the present fence from the HWC, so we assume it successfully updated // the mode, hence we update SF. mSetActiveModePending = false; { Mutex::Autolock lock(mStateLock); updateInternalStateWithChangedMode(); } } if (framePending) { if (mBackpressureGpuComposition || (hwcFrameMissed && !gpuFrameMissed)) { scheduleCommit(FrameHint::kNone); return false; } } // Save this once per commit + composite to ensure consistency // TODO (b/240619471): consider removing active display check once AOD is fixed const auto activeDisplay = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(mActiveDisplayId)); mPowerHintSessionEnabled = mPowerAdvisor->usePowerHintSession() && activeDisplay && activeDisplay->getPowerMode() == hal::PowerMode::ON; if (mPowerHintSessionEnabled) { mPowerAdvisor->setCommitStart(frameTime); mPowerAdvisor->setExpectedPresentTime(mExpectedPresentTime); // Frame delay is how long we should have minus how long we actually have. const Duration idealSfWorkDuration = mScheduler->vsyncModulator().getVsyncConfig().sfWorkDuration; const Duration frameDelay = idealSfWorkDuration - (mExpectedPresentTime - frameTime); mPowerAdvisor->setFrameDelay(frameDelay); mPowerAdvisor->setTotalFrameTargetWorkDuration(idealSfWorkDuration); const auto& display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get(); const Period idealVsyncPeriod = display->getActiveMode().fps.getPeriod(); mPowerAdvisor->updateTargetWorkDuration(idealVsyncPeriod); } if (mRefreshRateOverlaySpinner) { Mutex::Autolock lock(mStateLock); if (const auto display = getDefaultDisplayDeviceLocked()) { display->animateRefreshRateOverlay(); } } // Composite if transactions were committed, or if requested by HWC. bool mustComposite = mMustComposite.exchange(false); { mFrameTimeline->setSfWakeUp(vsyncId.value, frameTime.ns(), Fps::fromPeriodNsecs(vsyncPeriod.ns())); const bool flushTransactions = clearTransactionFlags(eTransactionFlushNeeded); frontend::Update updates; if (flushTransactions) { updates = flushLifecycleUpdates(); if (mTransactionTracing) { mTransactionTracing->addCommittedTransactions(vsyncId.value, frameTime.ns(), updates, mFrontEndDisplayInfos, mFrontEndDisplayInfosChanged); } } bool transactionsAreEmpty; if (mLegacyFrontEndEnabled) { mustComposite |= updateLayerSnapshotsLegacy(vsyncId, updates, flushTransactions, transactionsAreEmpty); } if (mLayerLifecycleManagerEnabled) { mustComposite |= updateLayerSnapshots(vsyncId, updates, flushTransactions, transactionsAreEmpty); } if (transactionFlushNeeded()) { setTransactionFlags(eTransactionFlushNeeded); } // This has to be called after latchBuffers because we want to include the layers that have // been latched in the commit callback if (transactionsAreEmpty) { // Invoke empty transaction callbacks early. mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */); } else { // Invoke OnCommit callbacks. mTransactionCallbackInvoker.sendCallbacks(true /* onCommitOnly */); } } // Layers need to get updated (in the previous line) before we can use them for // choosing the refresh rate. // Hold mStateLock as chooseRefreshRateForContent promotes wp to sp // and may eventually call to ~Layer() if it holds the last reference { Mutex::Autolock lock(mStateLock); mScheduler->chooseRefreshRateForContent(); setActiveModeInHwcIfNeeded(); } updateCursorAsync(); updateInputFlinger(vsyncId, frameTime); if (mLayerTracingEnabled && !mLayerTracing.flagIsSet(LayerTracing::TRACE_COMPOSITION)) { // This will block and tracing should only be enabled for debugging. addToLayerTracing(mVisibleRegionsDirty, frameTime.ns(), vsyncId.value); } mLastCommittedVsyncId = vsyncId; persistDisplayBrightness(mustComposite); return mustComposite && CC_LIKELY(mBootStage != BootStage::BOOTLOADER); } void SurfaceFlinger::composite(TimePoint frameTime, VsyncId vsyncId) FTL_FAKE_GUARD(kMainThreadContext) { ATRACE_FORMAT("%s %" PRId64, __func__, vsyncId.value); compositionengine::CompositionRefreshArgs refreshArgs; const auto& displays = FTL_FAKE_GUARD(mStateLock, mDisplays); refreshArgs.outputs.reserve(displays.size()); std::vector displayIds; for (const auto& [_, display] : displays) { bool dropFrame = false; if (display->isVirtual()) { Fps refreshRate = display->getAdjustedRefreshRate(); using fps_approx_ops::operator>; dropFrame = (refreshRate > 0_Hz) && !mScheduler->isVsyncInPhase(frameTime, refreshRate); } if (!dropFrame) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } display->tracePowerMode(); displayIds.push_back(display->getId()); } mPowerAdvisor->setDisplays(displayIds); const bool updateTaskMetadata = mCompositionEngine->getFeatureFlags().test( compositionengine::Feature::kSnapshotLayerMetadata); if (updateTaskMetadata && (mVisibleRegionsDirty || mLayerMetadataSnapshotNeeded)) { updateLayerMetadataSnapshot(); mLayerMetadataSnapshotNeeded = false; } if (DOES_CONTAIN_BORDER) { refreshArgs.borderInfoList.clear(); mDrawingState.traverse([&refreshArgs](Layer* layer) { if (layer->isBorderEnabled()) { compositionengine::BorderRenderInfo info; info.width = layer->getBorderWidth(); info.color = layer->getBorderColor(); layer->traverse(LayerVector::StateSet::Drawing, [&info](Layer* ilayer) { info.layerIds.push_back(ilayer->getSequence()); }); refreshArgs.borderInfoList.emplace_back(std::move(info)); } }); } refreshArgs.bufferIdsToUncache = std::move(mBufferIdsToUncache); refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size()); for (auto layer : mLayersWithQueuedFrames) { if (auto layerFE = layer->getCompositionEngineLayerFE()) refreshArgs.layersWithQueuedFrames.push_back(layerFE); } refreshArgs.outputColorSetting = useColorManagement ? mDisplayColorSetting : compositionengine::OutputColorSetting::kUnmanaged; refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace; refreshArgs.forceOutputColorMode = mForceColorMode; refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty; refreshArgs.updatingGeometryThisFrame = mGeometryDirty.exchange(false) || mVisibleRegionsDirty; refreshArgs.internalDisplayRotationFlags = getActiveDisplayRotationFlags(); if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) { refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix; mDrawingState.colorMatrixChanged = false; } refreshArgs.devOptForceClientComposition = mDebugDisableHWC; if (mDebugFlashDelay != 0) { refreshArgs.devOptForceClientComposition = true; refreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::milliseconds(mDebugFlashDelay); } const Period vsyncPeriod = mScheduler->getVsyncSchedule()->period(); if (!getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::ExpectedPresentTime) && wouldPresentEarly(frameTime, vsyncPeriod)) { const auto prevVsyncTime = mExpectedPresentTime - vsyncPeriod; const auto hwcMinWorkDuration = mVsyncConfiguration->getCurrentConfigs().hwcMinWorkDuration; refreshArgs.earliestPresentTime = prevVsyncTime - hwcMinWorkDuration; } refreshArgs.scheduledFrameTime = mScheduler->getScheduledFrameTime(); refreshArgs.expectedPresentTime = mExpectedPresentTime.ns(); refreshArgs.hasTrustedPresentationListener = mNumTrustedPresentationListeners > 0; // Store the present time just before calling to the composition engine so we could notify // the scheduler. const auto presentTime = systemTime(); std::vector> layers = moveSnapshotsToCompositionArgs(refreshArgs, /*cursorOnly=*/false, vsyncId.value); mCompositionEngine->present(refreshArgs); moveSnapshotsFromCompositionArgs(refreshArgs, layers); for (auto [layer, layerFE] : layers) { CompositionResult compositionResult{layerFE->stealCompositionResult()}; layer->onPreComposition(compositionResult.refreshStartTime); for (auto& [releaseFence, layerStack] : compositionResult.releaseFences) { Layer* clonedFrom = layer->getClonedFrom().get(); auto owningLayer = clonedFrom ? clonedFrom : layer; owningLayer->onLayerDisplayed(std::move(releaseFence), layerStack); } if (compositionResult.lastClientCompositionFence) { layer->setWasClientComposed(compositionResult.lastClientCompositionFence); } } mTimeStats->recordFrameDuration(frameTime.ns(), systemTime()); // Send a power hint after presentation is finished. if (mPowerHintSessionEnabled) { // Now that the current frame has been presented above, PowerAdvisor needs the present time // of the previous frame (whose fence is signaled by now) to determine how long the HWC had // waited on that fence to retire before presenting. const auto& previousPresentFence = mPreviousPresentFences[0].fenceTime; mPowerAdvisor->setSfPresentTiming(TimePoint::fromNs(previousPresentFence->getSignalTime()), TimePoint::now()); mPowerAdvisor->reportActualWorkDuration(); } if (mScheduler->onPostComposition(presentTime)) { scheduleComposite(FrameHint::kNone); } postComposition(presentTime); const bool hadGpuComposited = mCompositionCoverage.test(CompositionCoverage::Gpu); mCompositionCoverage.clear(); TimeStats::ClientCompositionRecord clientCompositionRecord; for (const auto& [_, display] : displays) { const auto& state = display->getCompositionDisplay()->getState(); if (state.usesDeviceComposition) { mCompositionCoverage |= CompositionCoverage::Hwc; } if (state.reusedClientComposition) { mCompositionCoverage |= CompositionCoverage::GpuReuse; } else if (state.usesClientComposition) { mCompositionCoverage |= CompositionCoverage::Gpu; } clientCompositionRecord.predicted |= (state.strategyPrediction != CompositionStrategyPredictionState::DISABLED); clientCompositionRecord.predictionSucceeded |= (state.strategyPrediction == CompositionStrategyPredictionState::SUCCESS); } const bool hasGpuComposited = mCompositionCoverage.test(CompositionCoverage::Gpu); clientCompositionRecord.hadClientComposition = hasGpuComposited; clientCompositionRecord.reused = mCompositionCoverage.test(CompositionCoverage::GpuReuse); clientCompositionRecord.changed = hadGpuComposited != hasGpuComposited; mTimeStats->pushCompositionStrategyState(clientCompositionRecord); using namespace ftl::flag_operators; // TODO(b/160583065): Enable skip validation when SF caches all client composition layers. const bool hasGpuUseOrReuse = mCompositionCoverage.any(CompositionCoverage::Gpu | CompositionCoverage::GpuReuse); mScheduler->modulateVsync({}, &VsyncModulator::onDisplayRefresh, hasGpuUseOrReuse); mLayersWithQueuedFrames.clear(); if (mLayerTracingEnabled && mLayerTracing.flagIsSet(LayerTracing::TRACE_COMPOSITION)) { // This will block and should only be used for debugging. addToLayerTracing(mVisibleRegionsDirty, frameTime.ns(), vsyncId.value); } if (mVisibleRegionsDirty) mHdrLayerInfoChanged = true; mVisibleRegionsDirty = false; if (mCompositionEngine->needsAnotherUpdate()) { scheduleCommit(FrameHint::kNone); } if (mPowerHintSessionEnabled) { mPowerAdvisor->setCompositeEnd(TimePoint::now()); } } void SurfaceFlinger::updateLayerGeometry() { ATRACE_CALL(); if (mVisibleRegionsDirty) { computeLayerBounds(); } for (auto& layer : mLayersPendingRefresh) { Region visibleReg; visibleReg.set(layer->getScreenBounds()); invalidateLayerStack(layer->getOutputFilter(), visibleReg); } mLayersPendingRefresh.clear(); } bool SurfaceFlinger::isHdrLayer(const frontend::LayerSnapshot& snapshot) const { // Even though the camera layer may be using an HDR transfer function or otherwise be "HDR" // the device may need to avoid boosting the brightness as a result of these layers to // reduce power consumption during camera recording if (mIgnoreHdrCameraLayers) { if (snapshot.externalTexture && (snapshot.externalTexture->getUsage() & GRALLOC_USAGE_HW_CAMERA_WRITE) != 0) { return false; } } if (isHdrDataspace(snapshot.dataspace)) { return true; } // If the layer is not allowed to be dimmed, treat it as HDR. WindowManager may disable // dimming in order to keep animations invoking SDR screenshots of HDR layers seamless. // Treat such tagged layers as HDR so that DisplayManagerService does not try to change // the screen brightness if (!snapshot.dimmingEnabled) { return true; } // RANGE_EXTENDED layers may identify themselves as being "HDR" via a desired sdr/hdr ratio if ((snapshot.dataspace & (int32_t)Dataspace::RANGE_MASK) == (int32_t)Dataspace::RANGE_EXTENDED && snapshot.desiredHdrSdrRatio > 1.01f) { return true; } return false; } ui::Rotation SurfaceFlinger::getPhysicalDisplayOrientation(DisplayId displayId, bool isPrimary) const { const auto id = PhysicalDisplayId::tryCast(displayId); if (!id) { return ui::ROTATION_0; } if (!mIgnoreHwcPhysicalDisplayOrientation && getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::PhysicalDisplayOrientation)) { switch (getHwComposer().getPhysicalDisplayOrientation(*id)) { case Hwc2::AidlTransform::ROT_90: return ui::ROTATION_90; case Hwc2::AidlTransform::ROT_180: return ui::ROTATION_180; case Hwc2::AidlTransform::ROT_270: return ui::ROTATION_270; default: return ui::ROTATION_0; } } if (isPrimary) { using Values = SurfaceFlingerProperties::primary_display_orientation_values; switch (primary_display_orientation(Values::ORIENTATION_0)) { case Values::ORIENTATION_90: return ui::ROTATION_90; case Values::ORIENTATION_180: return ui::ROTATION_180; case Values::ORIENTATION_270: return ui::ROTATION_270; default: break; } } return ui::ROTATION_0; } void SurfaceFlinger::postComposition(nsecs_t callTime) { ATRACE_CALL(); ALOGV(__func__); const auto* defaultDisplay = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get(); std::shared_ptr glCompositionDoneFenceTime; if (defaultDisplay && defaultDisplay->getCompositionDisplay()->getState().usesClientComposition) { glCompositionDoneFenceTime = std::make_shared(defaultDisplay->getCompositionDisplay() ->getRenderSurface() ->getClientTargetAcquireFence()); } else { glCompositionDoneFenceTime = FenceTime::NO_FENCE; } mPreviousPresentFences[1] = mPreviousPresentFences[0]; auto presentFence = defaultDisplay ? getHwComposer().getPresentFence(defaultDisplay->getPhysicalId()) : Fence::NO_FENCE; auto presentFenceTime = std::make_shared(presentFence); mPreviousPresentFences[0] = {presentFence, presentFenceTime}; const TimePoint presentTime = TimePoint::now(); // Set presentation information before calling Layer::releasePendingBuffer, such that jank // information from previous' frame classification is already available when sending jank info // to clients, so they get jank classification as early as possible. mFrameTimeline->setSfPresent(presentTime.ns(), presentFenceTime, glCompositionDoneFenceTime); // We use the CompositionEngine::getLastFrameRefreshTimestamp() which might // be sampled a little later than when we started doing work for this frame, // but that should be okay since CompositorTiming has snapping logic. const TimePoint compositeTime = TimePoint::fromNs(mCompositionEngine->getLastFrameRefreshTimestamp()); const Duration presentLatency = !getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE) ? mPresentLatencyTracker.trackPendingFrame(compositeTime, presentFenceTime) : Duration::zero(); const auto schedule = mScheduler->getVsyncSchedule(); const TimePoint vsyncDeadline = schedule->vsyncDeadlineAfter(presentTime); const Period vsyncPeriod = schedule->period(); const nsecs_t vsyncPhase = mVsyncConfiguration->getCurrentConfigs().late.sfOffset; const CompositorTiming compositorTiming(vsyncDeadline.ns(), vsyncPeriod.ns(), vsyncPhase, presentLatency.ns()); display::DisplayMap layerStackToDisplay; { if (!mLayersWithBuffersRemoved.empty() || mNumTrustedPresentationListeners > 0) { Mutex::Autolock lock(mStateLock); for (const auto& [token, display] : mDisplays) { layerStackToDisplay.emplace_or_replace(display->getLayerStack(), display.get()); } } } for (auto layer : mLayersWithBuffersRemoved) { std::vector previouslyPresentedLayerStacks = std::move(layer->mPreviouslyPresentedLayerStacks); layer->mPreviouslyPresentedLayerStacks.clear(); for (auto layerStack : previouslyPresentedLayerStacks) { auto optDisplay = layerStackToDisplay.get(layerStack); if (optDisplay && !optDisplay->get()->isVirtual()) { auto fence = getHwComposer().getPresentFence(optDisplay->get()->getPhysicalId()); layer->onLayerDisplayed(ftl::yield(fence).share(), ui::INVALID_LAYER_STACK); } } layer->releasePendingBuffer(presentTime.ns()); } mLayersWithBuffersRemoved.clear(); for (const auto& layer: mLayersWithQueuedFrames) { layer->onPostComposition(defaultDisplay, glCompositionDoneFenceTime, presentFenceTime, compositorTiming); layer->releasePendingBuffer(presentTime.ns()); } std::vector, sp>> hdrInfoListeners; bool haveNewListeners = false; { Mutex::Autolock lock(mStateLock); if (mFpsReporter) { mFpsReporter->dispatchLayerFps(); } if (mTunnelModeEnabledReporter) { mTunnelModeEnabledReporter->updateTunnelModeStatus(); } hdrInfoListeners.reserve(mHdrLayerInfoListeners.size()); for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) { if (reporter && reporter->hasListeners()) { if (const auto display = getDisplayDeviceLocked(displayId)) { hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter); } } } haveNewListeners = mAddingHDRLayerInfoListener; // grab this with state lock mAddingHDRLayerInfoListener = false; } if (haveNewListeners || mHdrLayerInfoChanged) { for (auto& [compositionDisplay, listener] : hdrInfoListeners) { HdrLayerInfoReporter::HdrLayerInfo info; int32_t maxArea = 0; mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) { const auto layerFe = layer->getCompositionEngineLayerFE(); const frontend::LayerSnapshot& snapshot = *layer->getLayerSnapshot(); if (snapshot.isVisible && compositionDisplay->includesLayer(snapshot.outputFilter)) { if (isHdrLayer(snapshot)) { const auto* outputLayer = compositionDisplay->getOutputLayerForLayer(layerFe); if (outputLayer) { const float desiredHdrSdrRatio = snapshot.desiredHdrSdrRatio <= 1.f ? std::numeric_limits::infinity() : snapshot.desiredHdrSdrRatio; info.mergeDesiredRatio(desiredHdrSdrRatio); info.numberOfHdrLayers++; const auto displayFrame = outputLayer->getState().displayFrame; const int32_t area = displayFrame.width() * displayFrame.height(); if (area > maxArea) { maxArea = area; info.maxW = displayFrame.width(); info.maxH = displayFrame.height(); } } } } }); listener->dispatchHdrLayerInfo(info); } } mHdrLayerInfoChanged = false; mTransactionCallbackInvoker.addPresentFence(std::move(presentFence)); mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */); mTransactionCallbackInvoker.clearCompletedTransactions(); mTimeStats->incrementTotalFrames(); mTimeStats->setPresentFenceGlobal(presentFenceTime); { ftl::FakeGuard guard(mStateLock); for (const auto& [id, physicalDisplay] : mPhysicalDisplays) { if (auto displayDevice = getDisplayDeviceLocked(id); displayDevice && displayDevice->isPoweredOn() && physicalDisplay.isInternal()) { auto presentFenceTimeI = defaultDisplay && defaultDisplay->getPhysicalId() == id ? std::move(presentFenceTime) : std::make_shared(getHwComposer().getPresentFence(id)); if (presentFenceTimeI->isValid()) { mScheduler->addPresentFence(id, std::move(presentFenceTimeI)); } } } } const bool isDisplayConnected = defaultDisplay && getHwComposer().isConnected(defaultDisplay->getPhysicalId()); if (!hasSyncFramework) { if (isDisplayConnected && defaultDisplay->isPoweredOn()) { mScheduler->enableHardwareVsync(defaultDisplay->getPhysicalId()); } } const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle); const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle); mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections); if (isDisplayConnected && !defaultDisplay->isPoweredOn()) { getRenderEngine().cleanupPostRender(); return; } // Cleanup any outstanding resources due to rendering a prior frame. getRenderEngine().cleanupPostRender(); { std::lock_guard lock(mTexturePoolMutex); if (mTexturePool.size() < mTexturePoolSize) { const size_t refillCount = mTexturePoolSize - mTexturePool.size(); const size_t offset = mTexturePool.size(); mTexturePool.resize(mTexturePoolSize); getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } else if (mTexturePool.size() > mTexturePoolSize) { const size_t deleteCount = mTexturePool.size() - mTexturePoolSize; const size_t offset = mTexturePoolSize; getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset); mTexturePool.resize(mTexturePoolSize); ATRACE_INT("TexturePoolSize", mTexturePool.size()); } } if (mNumTrustedPresentationListeners > 0) { // We avoid any reverse traversal upwards so this shouldn't be too expensive traverseLegacyLayers([&](Layer* layer) { if (!layer->hasTrustedPresentationListener()) { return; } const frontend::LayerSnapshot* snapshot = (mLayerLifecycleManagerEnabled) ? mLayerSnapshotBuilder.getSnapshot(layer->sequence) : layer->getLayerSnapshot(); std::optional displayOpt = std::nullopt; if (snapshot) { displayOpt = layerStackToDisplay.get(snapshot->outputFilter.layerStack); } const DisplayDevice* display = displayOpt.value_or(nullptr); layer->updateTrustedPresentationState(display, snapshot, nanoseconds_to_milliseconds(callTime), false); }); } // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the // side-effect of getTotalSize(), so we check that again here if (ATRACE_ENABLED()) { // getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize()); } logFrameStats(presentTime); } FloatRect SurfaceFlinger::getMaxDisplayBounds() { const ui::Size maxSize = [this] { ftl::FakeGuard guard(mStateLock); // The LayerTraceGenerator tool runs without displays. if (mDisplays.empty()) return ui::Size{5000, 5000}; return std::accumulate(mDisplays.begin(), mDisplays.end(), ui::kEmptySize, [](ui::Size size, const auto& pair) -> ui::Size { const auto& display = pair.second; return {std::max(size.getWidth(), display->getWidth()), std::max(size.getHeight(), display->getHeight())}; }); }(); // Ignore display bounds for now since they will be computed later. Use a large Rect bound // to ensure it's bigger than an actual display will be. const float xMax = maxSize.getWidth() * 10.f; const float yMax = maxSize.getHeight() * 10.f; return {-xMax, -yMax, xMax, yMax}; } void SurfaceFlinger::computeLayerBounds() { const FloatRect maxBounds = getMaxDisplayBounds(); for (const auto& layer : mDrawingState.layersSortedByZ) { layer->computeBounds(maxBounds, ui::Transform(), 0.f /* shadowRadius */); } } void SurfaceFlinger::commitTransactions() { ATRACE_CALL(); // Keep a copy of the drawing state (that is going to be overwritten // by commitTransactionsLocked) outside of mStateLock so that the side // effects of the State assignment don't happen with mStateLock held, // which can cause deadlocks. State drawingState(mDrawingState); Mutex::Autolock lock(mStateLock); mDebugInTransaction = systemTime(); // Here we're guaranteed that some transaction flags are set // so we can call commitTransactionsLocked unconditionally. // We clear the flags with mStateLock held to guarantee that // mCurrentState won't change until the transaction is committed. mScheduler->modulateVsync({}, &VsyncModulator::onTransactionCommit); commitTransactionsLocked(clearTransactionFlags(eTransactionMask)); mDebugInTransaction = 0; } std::pair SurfaceFlinger::loadDisplayModes( PhysicalDisplayId displayId) const { std::vector hwcModes; std::optional activeModeHwcId; int attempt = 0; constexpr int kMaxAttempts = 3; do { hwcModes = getHwComposer().getModes(displayId); activeModeHwcId = getHwComposer().getActiveMode(displayId); const auto isActiveMode = [activeModeHwcId](const HWComposer::HWCDisplayMode& mode) { return mode.hwcId == activeModeHwcId; }; if (std::any_of(hwcModes.begin(), hwcModes.end(), isActiveMode)) { break; } } while (++attempt < kMaxAttempts); if (attempt == kMaxAttempts) { const std::string activeMode = activeModeHwcId ? std::to_string(*activeModeHwcId) : "unknown"s; ALOGE("HWC failed to report an active mode that is supported: activeModeHwcId=%s, " "hwcModes={%s}", activeMode.c_str(), base::Join(hwcModes, ", ").c_str()); return {}; } const DisplayModes oldModes = mPhysicalDisplays.get(displayId) .transform([](const PhysicalDisplay& display) { return display.snapshot().displayModes(); }) .value_or(DisplayModes{}); ui::DisplayModeId nextModeId = 1 + std::accumulate(oldModes.begin(), oldModes.end(), static_cast(-1), [](ui::DisplayModeId max, const auto& pair) { return std::max(max, pair.first.value()); }); DisplayModes newModes; for (const auto& hwcMode : hwcModes) { const DisplayModeId id{nextModeId++}; newModes.try_emplace(id, DisplayMode::Builder(hwcMode.hwcId) .setId(id) .setPhysicalDisplayId(displayId) .setResolution({hwcMode.width, hwcMode.height}) .setVsyncPeriod(hwcMode.vsyncPeriod) .setDpiX(hwcMode.dpiX) .setDpiY(hwcMode.dpiY) .setGroup(hwcMode.configGroup) .build()); } const bool sameModes = std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(), [](const auto& lhs, const auto& rhs) { return equalsExceptDisplayModeId(*lhs.second, *rhs.second); }); // Keep IDs if modes have not changed. const auto& modes = sameModes ? oldModes : newModes; const DisplayModePtr activeMode = std::find_if(modes.begin(), modes.end(), [activeModeHwcId](const auto& pair) { return pair.second->getHwcId() == activeModeHwcId; })->second; return {modes, activeMode}; } bool SurfaceFlinger::configureLocked() { std::vector events; { std::lock_guard lock(mHotplugMutex); events = std::move(mPendingHotplugEvents); } for (const auto [hwcDisplayId, connection] : events) { if (auto info = getHwComposer().onHotplug(hwcDisplayId, connection)) { const auto displayId = info->id; const bool connected = connection == hal::Connection::CONNECTED; if (const char* const log = processHotplug(displayId, hwcDisplayId, connected, std::move(*info))) { ALOGI("%s display %s (HAL ID %" PRIu64 ")", log, to_string(displayId).c_str(), hwcDisplayId); } } } return !events.empty(); } const char* SurfaceFlinger::processHotplug(PhysicalDisplayId displayId, hal::HWDisplayId hwcDisplayId, bool connected, DisplayIdentificationInfo&& info) { const auto displayOpt = mPhysicalDisplays.get(displayId); if (!connected) { LOG_ALWAYS_FATAL_IF(!displayOpt); const auto& display = displayOpt->get(); if (const ssize_t index = mCurrentState.displays.indexOfKey(display.token()); index >= 0) { mCurrentState.displays.removeItemsAt(index); } mPhysicalDisplays.erase(displayId); return "Disconnecting"; } auto [displayModes, activeMode] = loadDisplayModes(displayId); if (!activeMode) { // TODO(b/241286153): Report hotplug failure to the framework. ALOGE("Failed to hotplug display %s", to_string(displayId).c_str()); getHwComposer().disconnectDisplay(displayId); return nullptr; } ui::ColorModes colorModes = getHwComposer().getColorModes(displayId); if (displayOpt) { const auto& display = displayOpt->get(); const auto& snapshot = display.snapshot(); std::optional deviceProductInfo; if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) { deviceProductInfo = std::move(info.deviceProductInfo); } else { deviceProductInfo = snapshot.deviceProductInfo(); } const auto it = mPhysicalDisplays.try_replace(displayId, display.token(), displayId, snapshot.connectionType(), std::move(displayModes), std::move(colorModes), std::move(deviceProductInfo)); auto& state = mCurrentState.displays.editValueFor(it->second.token()); state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId. state.physical->activeMode = std::move(activeMode); return "Reconnecting"; } const sp token = sp::make(); mPhysicalDisplays.try_emplace(displayId, token, displayId, getHwComposer().getDisplayConnectionType(displayId), std::move(displayModes), std::move(colorModes), std::move(info.deviceProductInfo)); DisplayDeviceState state; state.physical = {.id = displayId, .hwcDisplayId = hwcDisplayId, .activeMode = std::move(activeMode)}; state.isSecure = true; // All physical displays are currently considered secure. state.displayName = std::move(info.name); mCurrentState.displays.add(token, state); return "Connecting"; } void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) { mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected); mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected); } sp SurfaceFlinger::setupNewDisplayDeviceInternal( const wp& displayToken, std::shared_ptr compositionDisplay, const DisplayDeviceState& state, const sp& displaySurface, const sp& producer) { DisplayDeviceCreationArgs creationArgs(sp::fromExisting(this), getHwComposer(), displayToken, compositionDisplay); creationArgs.sequenceId = state.sequenceId; creationArgs.isSecure = state.isSecure; creationArgs.displaySurface = displaySurface; creationArgs.hasWideColorGamut = false; creationArgs.supportedPerFrameMetadata = 0; if (const auto& physical = state.physical) { creationArgs.activeModeId = physical->activeMode->getId(); const auto [kernelIdleTimerController, idleTimerTimeoutMs] = getKernelIdleTimerProperties(compositionDisplay->getId()); using Config = scheduler::RefreshRateSelector::Config; const auto enableFrameRateOverride = sysprop::enable_frame_rate_override(true) ? Config::FrameRateOverride::Enabled : Config::FrameRateOverride::Disabled; Config config = {.enableFrameRateOverride = enableFrameRateOverride, .frameRateMultipleThreshold = base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0), .idleTimerTimeout = idleTimerTimeoutMs, .kernelIdleTimerController = kernelIdleTimerController}; creationArgs.refreshRateSelector = mPhysicalDisplays.get(physical->id) .transform(&PhysicalDisplay::snapshotRef) .transform([&](const display::DisplaySnapshot& snapshot) { return std::make_shared< scheduler::RefreshRateSelector>(snapshot.displayModes(), creationArgs.activeModeId, config); }) .value_or(nullptr); creationArgs.isPrimary = physical->id == getPrimaryDisplayIdLocked(); if (useColorManagement) { mPhysicalDisplays.get(physical->id) .transform(&PhysicalDisplay::snapshotRef) .transform(ftl::unit_fn([&](const display::DisplaySnapshot& snapshot) { for (const auto mode : snapshot.colorModes()) { creationArgs.hasWideColorGamut |= ui::isWideColorMode(mode); creationArgs.hwcColorModes .emplace(mode, getHwComposer().getRenderIntents(physical->id, mode)); } })); } } if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) { getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities); creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id); } auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer); auto nativeWindow = nativeWindowSurface->getNativeWindow(); creationArgs.nativeWindow = nativeWindow; // Make sure that composition can never be stalled by a virtual display // consumer that isn't processing buffers fast enough. We have to do this // here, in case the display is composed entirely by HWC. if (state.isVirtual()) { nativeWindow->setSwapInterval(nativeWindow.get(), 0); } creationArgs.physicalOrientation = getPhysicalDisplayOrientation(compositionDisplay->getId(), creationArgs.isPrimary); ALOGV("Display Orientation: %s", toCString(creationArgs.physicalOrientation)); // virtual displays are always considered enabled creationArgs.initialPowerMode = state.isVirtual() ? std::make_optional(hal::PowerMode::ON) : std::nullopt; creationArgs.requestedRefreshRate = state.requestedRefreshRate; sp display = getFactory().createDisplayDevice(creationArgs); nativeWindowSurface->preallocateBuffers(); ui::ColorMode defaultColorMode = ui::ColorMode::NATIVE; Dataspace defaultDataSpace = Dataspace::UNKNOWN; if (display->hasWideColorGamut()) { defaultColorMode = ui::ColorMode::SRGB; defaultDataSpace = Dataspace::V0_SRGB; } display->getCompositionDisplay()->setColorProfile( compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace, RenderIntent::COLORIMETRIC, Dataspace::UNKNOWN}); if (const auto& physical = state.physical) { mPhysicalDisplays.get(physical->id) .transform(&PhysicalDisplay::snapshotRef) .transform(ftl::unit_fn([&](const display::DisplaySnapshot& snapshot) { FTL_FAKE_GUARD(kMainThreadContext, display->setActiveMode(physical->activeMode->getId(), physical->activeMode->getFps(), physical->activeMode->getFps())); })); } display->setLayerFilter(makeLayerFilterForDisplay(display->getId(), state.layerStack)); display->setProjection(state.orientation, state.layerStackSpaceRect, state.orientedDisplaySpaceRect); display->setDisplayName(state.displayName); display->setFlags(state.flags); return display; } void SurfaceFlinger::processDisplayAdded(const wp& displayToken, const DisplayDeviceState& state) { ui::Size resolution(0, 0); ui::PixelFormat pixelFormat = static_cast(PIXEL_FORMAT_UNKNOWN); if (state.physical) { resolution = state.physical->activeMode->getResolution(); pixelFormat = static_cast(PIXEL_FORMAT_RGBA_8888); } else if (state.surface != nullptr) { int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width); ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height); ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); int format; status = state.surface->query(NATIVE_WINDOW_FORMAT, &format); ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); pixelFormat = static_cast(format); } else { // Virtual displays without a surface are dormant: // they have external state (layer stack, projection, // etc.) but no internal state (i.e. a DisplayDevice). return; } compositionengine::DisplayCreationArgsBuilder builder; if (const auto& physical = state.physical) { builder.setId(physical->id); } else { builder.setId(acquireVirtualDisplay(resolution, pixelFormat)); } builder.setPixels(resolution); builder.setIsSecure(state.isSecure); builder.setPowerAdvisor(mPowerAdvisor.get()); builder.setName(state.displayName); auto compositionDisplay = getCompositionEngine().createDisplay(builder.build()); compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled); sp displaySurface; sp producer; sp bqProducer; sp bqConsumer; getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false); if (state.isVirtual()) { const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); auto surface = sp::make(getHwComposer(), *displayId, state.surface, bqProducer, bqConsumer, state.displayName); displaySurface = surface; producer = std::move(surface); } else { ALOGE_IF(state.surface != nullptr, "adding a supported display, but rendering " "surface is provided (%p), ignoring it", state.surface.get()); const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId()); LOG_FATAL_IF(!displayId); displaySurface = sp::make(getHwComposer(), *displayId, bqConsumer, state.physical->activeMode->getResolution(), ui::Size(maxGraphicsWidth, maxGraphicsHeight)); producer = bqProducer; } LOG_FATAL_IF(!displaySurface); auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay), state, displaySurface, producer); if (mScheduler && !display->isVirtual()) { const auto displayId = display->getPhysicalId(); { // TODO(b/241285876): Annotate `processDisplayAdded` instead. ftl::FakeGuard guard(kMainThreadContext); // For hotplug reconnect, renew the registration since display modes have been reloaded. mScheduler->registerDisplay(displayId, display->holdRefreshRateSelector()); } dispatchDisplayHotplugEvent(displayId, true); } if (display->isVirtual()) { display->adjustRefreshRate(mScheduler->getPacesetterRefreshRate()); } mDisplays.try_emplace(displayToken, std::move(display)); } void SurfaceFlinger::processDisplayRemoved(const wp& displayToken) { auto display = getDisplayDeviceLocked(displayToken); if (display) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } else { dispatchDisplayHotplugEvent(display->getPhysicalId(), false); mScheduler->unregisterDisplay(display->getPhysicalId()); } } mDisplays.erase(displayToken); if (display && display->isVirtual()) { static_cast(mScheduler->schedule([display = std::move(display)] { // Destroy the display without holding the mStateLock. // This is a temporary solution until we can manage transaction queues without // holding the mStateLock. // With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the // client. When the IGBP is disconnected, its buffer cache in SF will be cleared // via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client // ends up running on the main thread causing a deadlock since setTransactionstate // will try to acquire the mStateLock. Instead we extend the lifetime of // DisplayDevice and destroy it in the main thread without holding the mStateLock. // The display will be disconnected and removed from the mDisplays list so it will // not be accessible. })); } } void SurfaceFlinger::processDisplayChanged(const wp& displayToken, const DisplayDeviceState& currentState, const DisplayDeviceState& drawingState) { const sp currentBinder = IInterface::asBinder(currentState.surface); const sp drawingBinder = IInterface::asBinder(drawingState.surface); // Recreate the DisplayDevice if the surface or sequence ID changed. if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) { getRenderEngine().cleanFramebufferCache(); if (const auto display = getDisplayDeviceLocked(displayToken)) { display->disconnect(); if (display->isVirtual()) { releaseVirtualDisplay(display->getVirtualId()); } } mDisplays.erase(displayToken); if (const auto& physical = currentState.physical) { getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id); } processDisplayAdded(displayToken, currentState); if (currentState.physical) { const auto display = getDisplayDeviceLocked(displayToken); setPowerModeInternal(display, hal::PowerMode::ON); // TODO(b/175678251) Call a listener instead. if (currentState.physical->hwcDisplayId == getHwComposer().getPrimaryHwcDisplayId()) { resetPhaseConfiguration(display->getActiveMode().fps); } } return; } if (const auto display = getDisplayDeviceLocked(displayToken)) { if (currentState.layerStack != drawingState.layerStack) { display->setLayerFilter( makeLayerFilterForDisplay(display->getId(), currentState.layerStack)); } if (currentState.flags != drawingState.flags) { display->setFlags(currentState.flags); } if ((currentState.orientation != drawingState.orientation) || (currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) || (currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) { display->setProjection(currentState.orientation, currentState.layerStackSpaceRect, currentState.orientedDisplaySpaceRect); if (display->getId() == mActiveDisplayId) { mActiveDisplayTransformHint = display->getTransformHint(); sActiveDisplayRotationFlags = ui::Transform::toRotationFlags(display->getOrientation()); } } if (currentState.width != drawingState.width || currentState.height != drawingState.height) { display->setDisplaySize(currentState.width, currentState.height); if (display->getId() == mActiveDisplayId) { onActiveDisplaySizeChanged(*display); } } } } void SurfaceFlinger::resetPhaseConfiguration(Fps refreshRate) { // Cancel the pending refresh rate change, if any, before updating the phase configuration. mScheduler->vsyncModulator().cancelRefreshRateChange(); mVsyncConfiguration->reset(); updatePhaseConfiguration(refreshRate); mRefreshRateStats->setRefreshRate(refreshRate); } void SurfaceFlinger::processDisplayChangesLocked() { // here we take advantage of Vector's copy-on-write semantics to // improve performance by skipping the transaction entirely when // know that the lists are identical const KeyedVector, DisplayDeviceState>& curr(mCurrentState.displays); const KeyedVector, DisplayDeviceState>& draw(mDrawingState.displays); if (!curr.isIdenticalTo(draw)) { mVisibleRegionsDirty = true; mUpdateInputInfo = true; // find the displays that were removed // (ie: in drawing state but not in current state) // also handle displays that changed // (ie: displays that are in both lists) for (size_t i = 0; i < draw.size(); i++) { const wp& displayToken = draw.keyAt(i); const ssize_t j = curr.indexOfKey(displayToken); if (j < 0) { // in drawing state but not in current state processDisplayRemoved(displayToken); } else { // this display is in both lists. see if something changed. const DisplayDeviceState& currentState = curr[j]; const DisplayDeviceState& drawingState = draw[i]; processDisplayChanged(displayToken, currentState, drawingState); } } // find displays that were added // (ie: in current state but not in drawing state) for (size_t i = 0; i < curr.size(); i++) { const wp& displayToken = curr.keyAt(i); if (draw.indexOfKey(displayToken) < 0) { processDisplayAdded(displayToken, curr[i]); } } } mDrawingState.displays = mCurrentState.displays; } void SurfaceFlinger::commitTransactionsLocked(uint32_t transactionFlags) { // Commit display transactions. const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded; mFrontEndDisplayInfosChanged = displayTransactionNeeded; if (displayTransactionNeeded && !mLayerLifecycleManagerEnabled) { processDisplayChangesLocked(); mFrontEndDisplayInfos.clear(); for (const auto& [_, display] : mDisplays) { mFrontEndDisplayInfos.try_emplace(display->getLayerStack(), display->getFrontEndInfo()); } } mForceTransactionDisplayChange = displayTransactionNeeded; if (mSomeChildrenChanged) { mVisibleRegionsDirty = true; mSomeChildrenChanged = false; mUpdateInputInfo = true; } // Update transform hint. if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) { // Layers and/or displays have changed, so update the transform hint for each layer. // // NOTE: we do this here, rather than when presenting the display so that // the hint is set before we acquire a buffer from the surface texture. // // NOTE: layer transactions have taken place already, so we use their // drawing state. However, SurfaceFlinger's own transaction has not // happened yet, so we must use the current state layer list // (soon to become the drawing state list). // sp hintDisplay; ui::LayerStack layerStack; mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) { // NOTE: we rely on the fact that layers are sorted by // layerStack first (so we don't have to traverse the list // of displays for every layer). if (const auto filter = layer->getOutputFilter(); layerStack != filter.layerStack) { layerStack = filter.layerStack; hintDisplay = nullptr; // Find the display that includes the layer. for (const auto& [token, display] : mDisplays) { if (!display->getCompositionDisplay()->includesLayer(filter)) { continue; } // Pick the primary display if another display mirrors the layer. if (hintDisplay) { hintDisplay = nullptr; break; } hintDisplay = display; } } if (!hintDisplay) { // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to // redraw after transform hint changes. See bug 8508397. // could be null when this layer is using a layerStack // that is not visible on any display. Also can occur at // screen off/on times. // U Update: Don't provide stale hints to the clients. For // special cases where we want the app to draw its // first frame before the display is available, we rely // on WMS and DMS to provide the right information // so the client can calculate the hint. ALOGV("Skipping reporting transform hint update for %s", layer->getDebugName()); layer->skipReportingTransformHint(); } else { layer->updateTransformHint(hintDisplay->getTransformHint()); } }); } if (mLayersAdded) { mLayersAdded = false; // Layers have been added. mVisibleRegionsDirty = true; mUpdateInputInfo = true; } // some layers might have been removed, so // we need to update the regions they're exposing. if (mLayersRemoved) { mLayersRemoved = false; mVisibleRegionsDirty = true; mUpdateInputInfo = true; mDrawingState.traverseInZOrder([&](Layer* layer) { if (mLayersPendingRemoval.indexOf(sp::fromExisting(layer)) >= 0) { // this layer is not visible anymore Region visibleReg; visibleReg.set(layer->getScreenBounds()); invalidateLayerStack(layer->getOutputFilter(), visibleReg); } }); } if (transactionFlags & eInputInfoUpdateNeeded) { mUpdateInputInfo = true; } doCommitTransactions(); } void SurfaceFlinger::updateInputFlinger(VsyncId vsyncId, TimePoint frameTime) { if (!mInputFlinger || (!mUpdateInputInfo && mInputWindowCommands.empty())) { return; } ATRACE_CALL(); std::vector windowInfos; std::vector displayInfos; bool updateWindowInfo = false; if (mUpdateInputInfo) { mUpdateInputInfo = false; updateWindowInfo = true; buildWindowInfos(windowInfos, displayInfos); } std::unordered_set visibleWindowIds; for (WindowInfo& windowInfo : windowInfos) { if (!windowInfo.inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) { visibleWindowIds.insert(windowInfo.id); } } bool visibleWindowsChanged = false; if (visibleWindowIds != mVisibleWindowIds) { visibleWindowsChanged = true; mVisibleWindowIds = std::move(visibleWindowIds); } BackgroundExecutor::getInstance().sendCallbacks({[updateWindowInfo, windowInfos = std::move(windowInfos), displayInfos = std::move(displayInfos), inputWindowCommands = std::move(mInputWindowCommands), inputFlinger = mInputFlinger, this, visibleWindowsChanged, vsyncId, frameTime]() { ATRACE_NAME("BackgroundExecutor::updateInputFlinger"); if (updateWindowInfo) { mWindowInfosListenerInvoker ->windowInfosChanged(gui::WindowInfosUpdate{std::move(windowInfos), std::move(displayInfos), vsyncId.value, frameTime.ns()}, std::move( inputWindowCommands.windowInfosReportedListeners), /* forceImmediateCall= */ visibleWindowsChanged || !inputWindowCommands.focusRequests.empty()); } else { // If there are listeners but no changes to input windows, call the listeners // immediately. for (const auto& listener : inputWindowCommands.windowInfosReportedListeners) { if (IInterface::asBinder(listener)->isBinderAlive()) { listener->onWindowInfosReported(); } } } for (const auto& focusRequest : inputWindowCommands.focusRequests) { inputFlinger->setFocusedWindow(focusRequest); } }}); mInputWindowCommands.clear(); } void SurfaceFlinger::persistDisplayBrightness(bool needsComposite) { const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported( Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand); if (!supportsDisplayBrightnessCommand) { return; } for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (const auto brightness = display->getStagedBrightness(); brightness) { if (!needsComposite) { const status_t error = getHwComposer() .setDisplayBrightness(display->getPhysicalId(), *brightness, display->getCompositionDisplay() ->getState() .displayBrightnessNits, Hwc2::Composer::DisplayBrightnessOptions{ .applyImmediately = true}) .get(); ALOGE_IF(error != NO_ERROR, "Error setting display brightness for display %s: %d (%s)", to_string(display->getId()).c_str(), error, strerror(error)); } display->persistBrightness(needsComposite); } } } void SurfaceFlinger::buildWindowInfos(std::vector& outWindowInfos, std::vector& outDisplayInfos) { static size_t sNumWindowInfos = 0; outWindowInfos.reserve(sNumWindowInfos); sNumWindowInfos = 0; if (mLayerLifecycleManagerEnabled) { mLayerSnapshotBuilder.forEachInputSnapshot( [&outWindowInfos](const frontend::LayerSnapshot& snapshot) { outWindowInfos.push_back(snapshot.inputInfo); }); } else { mDrawingState.traverseInReverseZOrder([&](Layer* layer) { if (!layer->needsInputInfo()) return; const auto opt = mFrontEndDisplayInfos.get(layer->getLayerStack()) .transform([](const frontend::DisplayInfo& info) { return Layer::InputDisplayArgs{&info.transform, info.isSecure}; }); outWindowInfos.push_back(layer->fillInputInfo(opt.value_or(Layer::InputDisplayArgs{}))); }); } sNumWindowInfos = outWindowInfos.size(); outDisplayInfos.reserve(mFrontEndDisplayInfos.size()); for (const auto& [_, info] : mFrontEndDisplayInfos) { outDisplayInfos.push_back(info.info); } } void SurfaceFlinger::updateCursorAsync() { compositionengine::CompositionRefreshArgs refreshArgs; for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (HalDisplayId::tryCast(display->getId())) { refreshArgs.outputs.push_back(display->getCompositionDisplay()); } } auto layers = moveSnapshotsToCompositionArgs(refreshArgs, /*cursorOnly=*/true, 0); mCompositionEngine->updateCursorAsync(refreshArgs); moveSnapshotsFromCompositionArgs(refreshArgs, layers); } void SurfaceFlinger::requestDisplayModes(std::vector modeRequests) { if (mBootStage != BootStage::FINISHED) { ALOGV("Currently in the boot stage, skipping display mode changes"); return; } ATRACE_CALL(); // If this is called from the main thread mStateLock must be locked before // Currently the only way to call this function from the main thread is from // Scheduler::chooseRefreshRateForContent ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); for (auto& request : modeRequests) { const auto& modePtr = request.mode.modePtr; const auto displayId = modePtr->getPhysicalDisplayId(); const auto display = getDisplayDeviceLocked(displayId); if (!display) continue; const bool isInternalDisplay = mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::isInternal) .value_or(false); if (isInternalDisplay && displayId != mActiveDisplayId) { ALOGV("%s(%s): Inactive display", __func__, to_string(displayId).c_str()); continue; } if (display->refreshRateSelector().isModeAllowed(request.mode)) { setDesiredActiveMode(std::move(request)); } else { ALOGV("%s: Mode %d is disallowed for display %s", __func__, modePtr->getId().value(), to_string(display->getId()).c_str()); } } } void SurfaceFlinger::triggerOnFrameRateOverridesChanged() { PhysicalDisplayId displayId = [&]() { ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); return getDefaultDisplayDeviceLocked()->getPhysicalId(); }(); mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId); } void SurfaceFlinger::initScheduler(const sp& display) { using namespace scheduler; LOG_ALWAYS_FATAL_IF(mScheduler); const auto activeMode = display->refreshRateSelector().getActiveMode(); const Fps activeRefreshRate = activeMode.fps; mRefreshRateStats = std::make_unique(*mTimeStats, activeRefreshRate, hal::PowerMode::OFF); mVsyncConfiguration = getFactory().createVsyncConfiguration(activeRefreshRate); FeatureFlags features; if (sysprop::use_content_detection_for_refresh_rate(false)) { features |= Feature::kContentDetection; } if (base::GetBoolProperty("debug.sf.show_predicted_vsync"s, false)) { features |= Feature::kTracePredictedVsync; } if (!base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false) && !getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) { features |= Feature::kPresentFences; } if (display->refreshRateSelector().kernelIdleTimerController()) { features |= Feature::kKernelIdleTimer; } auto modulatorPtr = sp::make(mVsyncConfiguration->getCurrentConfigs()); mScheduler = std::make_unique(static_cast(*this), static_cast(*this), features, std::move(modulatorPtr)); mScheduler->registerDisplay(display->getPhysicalId(), display->holdRefreshRateSelector()); setVsyncEnabled(display->getPhysicalId(), false); mScheduler->startTimers(); const auto configs = mVsyncConfiguration->getCurrentConfigs(); mAppConnectionHandle = mScheduler->createEventThread(Scheduler::Cycle::Render, mFrameTimeline->getTokenManager(), /* workDuration */ configs.late.appWorkDuration, /* readyDuration */ configs.late.sfWorkDuration); mSfConnectionHandle = mScheduler->createEventThread(Scheduler::Cycle::LastComposite, mFrameTimeline->getTokenManager(), /* workDuration */ activeRefreshRate.getPeriod(), /* readyDuration */ configs.late.sfWorkDuration); mScheduler->initVsync(mScheduler->getVsyncSchedule()->getDispatch(), *mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration); mRegionSamplingThread = sp::make(*this, RegionSamplingThread::EnvironmentTimingTunables()); mFpsReporter = sp::make(*mFrameTimeline, *this); } void SurfaceFlinger::updatePhaseConfiguration(Fps refreshRate) { mVsyncConfiguration->setRefreshRateFps(refreshRate); mScheduler->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs(), refreshRate.getPeriod()); } void SurfaceFlinger::doCommitTransactions() { ATRACE_CALL(); if (!mLayersPendingRemoval.isEmpty()) { // Notify removed layers now that they can't be drawn from for (const auto& l : mLayersPendingRemoval) { // Ensure any buffers set to display on any children are released. if (l->isRemovedFromCurrentState()) { l->latchAndReleaseBuffer(); } // If a layer has a parent, we allow it to out-live it's handle // with the idea that the parent holds a reference and will eventually // be cleaned up. However no one cleans up the top-level so we do so // here. if (l->isAtRoot()) { l->setIsAtRoot(false); mCurrentState.layersSortedByZ.remove(l); } // If the layer has been removed and has no parent, then it will not be reachable // when traversing layers on screen. Add the layer to the offscreenLayers set to // ensure we can copy its current to drawing state. if (!l->getParent()) { mOffscreenLayers.emplace(l.get()); } } mLayersPendingRemoval.clear(); } mDrawingState = mCurrentState; // clear the "changed" flags in current state mCurrentState.colorMatrixChanged = false; if (mVisibleRegionsDirty) { for (const auto& rootLayer : mDrawingState.layersSortedByZ) { rootLayer->commitChildList(); } } commitOffscreenLayers(); if (mLayerMirrorRoots.size() > 0) { std::deque pendingUpdates; pendingUpdates.insert(pendingUpdates.end(), mLayerMirrorRoots.begin(), mLayerMirrorRoots.end()); std::vector needsUpdating; for (Layer* cloneRoot : mLayerMirrorRoots) { pendingUpdates.pop_front(); if (cloneRoot->isRemovedFromCurrentState()) { continue; } if (cloneRoot->updateMirrorInfo(pendingUpdates)) { } else { needsUpdating.push_back(cloneRoot); } } for (Layer* cloneRoot : needsUpdating) { cloneRoot->updateMirrorInfo({}); } } } void SurfaceFlinger::commitOffscreenLayers() { for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) { if (layer->clearTransactionFlags(eTransactionNeeded)) { layer->doTransaction(0); layer->commitChildList(); } }); } } void SurfaceFlinger::invalidateLayerStack(const ui::LayerFilter& layerFilter, const Region& dirty) { for (const auto& [token, displayDevice] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { auto display = displayDevice->getCompositionDisplay(); if (display->includesLayer(layerFilter)) { display->editState().dirtyRegion.orSelf(dirty); } } } bool SurfaceFlinger::latchBuffers() { ATRACE_CALL(); const nsecs_t latchTime = systemTime(); bool visibleRegions = false; bool frameQueued = false; bool newDataLatched = false; // Store the set of layers that need updates. This set must not change as // buffers are being latched, as this could result in a deadlock. // Example: Two producers share the same command stream and: // 1.) Layer 0 is latched // 2.) Layer 0 gets a new frame // 2.) Layer 1 gets a new frame // 3.) Layer 1 is latched. // Display is now waiting on Layer 1's frame, which is behind layer 0's // second frame. But layer 0's second frame could be waiting on display. mDrawingState.traverse([&](Layer* layer) { if (layer->clearTransactionFlags(eTransactionNeeded) || mForceTransactionDisplayChange) { const uint32_t flags = layer->doTransaction(0); if (flags & Layer::eVisibleRegion) { mVisibleRegionsDirty = true; } } if (layer->hasReadyFrame() || layer->willReleaseBufferOnLatch()) { frameQueued = true; mLayersWithQueuedFrames.emplace(sp::fromExisting(layer)); } else { layer->useEmptyDamage(); if (!layer->hasBuffer()) { // The last latch time is used to classify a missed frame as buffer stuffing // instead of a missed frame. This is used to identify scenarios where we // could not latch a buffer or apply a transaction due to backpressure. // We only update the latch time for buffer less layers here, the latch time // is updated for buffer layers when the buffer is latched. layer->updateLastLatchTime(latchTime); } } }); mForceTransactionDisplayChange = false; // The client can continue submitting buffers for offscreen layers, but they will not // be shown on screen. Therefore, we need to latch and release buffers of offscreen // layers to ensure dequeueBuffer doesn't block indefinitely. for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [&](Layer* l) { l->latchAndReleaseBuffer(); }); } if (!mLayersWithQueuedFrames.empty()) { // mStateLock is needed for latchBuffer as LayerRejecter::reject() // writes to Layer current state. See also b/119481871 Mutex::Autolock lock(mStateLock); for (const auto& layer : mLayersWithQueuedFrames) { if (layer->willReleaseBufferOnLatch()) { mLayersWithBuffersRemoved.emplace(layer); } if (layer->latchBuffer(visibleRegions, latchTime)) { mLayersPendingRefresh.push_back(layer); newDataLatched = true; } layer->useSurfaceDamage(); } } mVisibleRegionsDirty |= visibleRegions; // If we will need to wake up at some time in the future to deal with a // queued frame that shouldn't be displayed during this vsync period, wake // up during the next vsync period to check again. if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { scheduleCommit(FrameHint::kNone); } // enter boot animation on first buffer latch if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { ALOGI("Enter boot animation"); mBootStage = BootStage::BOOTANIMATION; } if (mLayerMirrorRoots.size() > 0) { mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); }); } // Only continue with the refresh if there is actually new work to do return !mLayersWithQueuedFrames.empty() && newDataLatched; } status_t SurfaceFlinger::addClientLayer(LayerCreationArgs& args, const sp& handle, const sp& layer, const wp& parent, uint32_t* outTransformHint) { if (mNumLayers >= MAX_LAYERS) { ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(), MAX_LAYERS); static_cast(mScheduler->schedule([=] { ALOGE("Dumping layer keeping > 20 children alive:"); bool leakingParentLayerFound = false; mDrawingState.traverse([&](Layer* layer) { if (leakingParentLayerFound) { return; } if (layer->getChildrenCount() > 20) { leakingParentLayerFound = true; sp parent = sp::fromExisting(layer); while (parent) { ALOGE("Parent Layer: %s%s", parent->getName().c_str(), (parent->isHandleAlive() ? "handleAlive" : "")); parent = parent->getParent(); } // Sample up to 100 layers ALOGE("Dumping random sampling of child layers total(%zu): ", layer->getChildrenCount()); int sampleSize = (layer->getChildrenCount() / 100) + 1; layer->traverseChildren([&](Layer* layer) { if (rand() % sampleSize == 0) { ALOGE("Child Layer: %s", layer->getName().c_str()); } }); } }); int numLayers = 0; mDrawingState.traverse([&](Layer* layer) { numLayers++; }); ALOGE("Dumping random sampling of on-screen layers total(%u):", numLayers); mDrawingState.traverse([&](Layer* layer) { // Aim to dump about 200 layers to avoid totally trashing // logcat. On the other hand, if there really are 4096 layers // something has gone totally wrong its probably the most // useful information in logcat. if (rand() % 20 == 13) { ALOGE("Layer: %s%s", layer->getName().c_str(), (layer->isHandleAlive() ? "handleAlive" : "")); std::this_thread::sleep_for(std::chrono::milliseconds(5)); } }); ALOGE("Dumping random sampling of off-screen layers total(%zu): ", mOffscreenLayers.size()); for (Layer* offscreenLayer : mOffscreenLayers) { if (rand() % 20 == 13) { ALOGE("Offscreen-layer: %s%s", offscreenLayer->getName().c_str(), (offscreenLayer->isHandleAlive() ? "handleAlive" : "")); std::this_thread::sleep_for(std::chrono::milliseconds(5)); } } })); return NO_MEMORY; } layer->updateTransformHint(mActiveDisplayTransformHint); if (outTransformHint) { *outTransformHint = mActiveDisplayTransformHint; } args.parentId = LayerHandle::getLayerId(args.parentHandle.promote()); args.layerIdToMirror = LayerHandle::getLayerId(args.mirrorLayerHandle.promote()); { std::scoped_lock lock(mCreatedLayersLock); mCreatedLayers.emplace_back(layer, parent, args.addToRoot); mNewLayers.emplace_back(std::make_unique(args)); args.mirrorLayerHandle.clear(); args.parentHandle.clear(); mNewLayerArgs.emplace_back(std::move(args)); } setTransactionFlags(eTransactionNeeded); return NO_ERROR; } uint32_t SurfaceFlinger::getTransactionFlags() const { return mTransactionFlags; } uint32_t SurfaceFlinger::clearTransactionFlags(uint32_t mask) { uint32_t transactionFlags = mTransactionFlags.fetch_and(~mask); ATRACE_INT("mTransactionFlags", transactionFlags); return transactionFlags & mask; } void SurfaceFlinger::setTransactionFlags(uint32_t mask, TransactionSchedule schedule, const sp& applyToken, FrameHint frameHint) { mScheduler->modulateVsync({}, &VsyncModulator::setTransactionSchedule, schedule, applyToken); uint32_t transactionFlags = mTransactionFlags.fetch_or(mask); ATRACE_INT("mTransactionFlags", transactionFlags); if (const bool scheduled = transactionFlags & mask; !scheduled) { scheduleCommit(frameHint); } else if (frameHint == FrameHint::kActive) { // Even if the next frame is already scheduled, we should reset the idle timer // as a new activity just happened. mScheduler->resetIdleTimer(); } } TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyTimelineCheck( const TransactionHandler::TransactionFlushState& flushState) { using TransactionReadiness = TransactionHandler::TransactionReadiness; const auto& transaction = *flushState.transaction; TimePoint desiredPresentTime = TimePoint::fromNs(transaction.desiredPresentTime); // Do not present if the desiredPresentTime has not passed unless it is more than // one second in the future. We ignore timestamps more than 1 second in the future // for stability reasons. if (!transaction.isAutoTimestamp && desiredPresentTime >= mExpectedPresentTime && desiredPresentTime < mExpectedPresentTime + 1s) { ATRACE_FORMAT("not current desiredPresentTime: %" PRId64 " expectedPresentTime: %" PRId64, desiredPresentTime, mExpectedPresentTime); return TransactionReadiness::NotReady; } if (!mScheduler->isVsyncValid(mExpectedPresentTime, transaction.originUid)) { ATRACE_FORMAT("!isVsyncValid expectedPresentTime: %" PRId64 " uid: %d", mExpectedPresentTime, transaction.originUid); return TransactionReadiness::NotReady; } // If the client didn't specify desiredPresentTime, use the vsyncId to determine the // expected present time of this transaction. if (transaction.isAutoTimestamp && frameIsEarly(mExpectedPresentTime, VsyncId{transaction.frameTimelineInfo.vsyncId})) { ATRACE_FORMAT("frameIsEarly vsyncId: %" PRId64 " expectedPresentTime: %" PRId64, transaction.frameTimelineInfo.vsyncId, mExpectedPresentTime); return TransactionReadiness::NotReady; } return TransactionReadiness::Ready; } TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyBufferCheck( const TransactionHandler::TransactionFlushState& flushState) { using TransactionReadiness = TransactionHandler::TransactionReadiness; auto ready = TransactionReadiness::Ready; flushState.transaction->traverseStatesWithBuffersWhileTrue([&](const layer_state_t& s, const std::shared_ptr< renderengine:: ExternalTexture>& externalTexture) -> bool { sp layer = LayerHandle::getLayer(s.surface); const auto& transaction = *flushState.transaction; // check for barrier frames if (s.bufferData->hasBarrier) { // The current producerId is already a newer producer than the buffer that has a // barrier. This means the incoming buffer is older and we can release it here. We // don't wait on the barrier since we know that's stale information. if (layer->getDrawingState().barrierProducerId > s.bufferData->producerId) { layer->callReleaseBufferCallback(s.bufferData->releaseBufferListener, externalTexture->getBuffer(), s.bufferData->frameNumber, s.bufferData->acquireFence); // Delete the entire state at this point and not just release the buffer because // everything associated with the Layer in this Transaction is now out of date. ATRACE_FORMAT("DeleteStaleBuffer %s barrierProducerId:%d > %d", layer->getDebugName(), layer->getDrawingState().barrierProducerId, s.bufferData->producerId); return TraverseBuffersReturnValues::DELETE_AND_CONTINUE_TRAVERSAL; } if (layer->getDrawingState().barrierFrameNumber < s.bufferData->barrierFrameNumber) { const bool willApplyBarrierFrame = flushState.bufferLayersReadyToPresent.contains(s.surface.get()) && ((flushState.bufferLayersReadyToPresent.get(s.surface.get()) >= s.bufferData->barrierFrameNumber)); if (!willApplyBarrierFrame) { ATRACE_FORMAT("NotReadyBarrier %s barrierFrameNumber:%" PRId64 " > %" PRId64, layer->getDebugName(), layer->getDrawingState().barrierFrameNumber, s.bufferData->barrierFrameNumber); ready = TransactionReadiness::NotReadyBarrier; return TraverseBuffersReturnValues::STOP_TRAVERSAL; } } } // If backpressure is enabled and we already have a buffer to commit, keep // the transaction in the queue. const bool hasPendingBuffer = flushState.bufferLayersReadyToPresent.contains(s.surface.get()); if (layer->backpressureEnabled() && hasPendingBuffer && transaction.isAutoTimestamp) { ATRACE_FORMAT("hasPendingBuffer %s", layer->getDebugName()); ready = TransactionReadiness::NotReady; return TraverseBuffersReturnValues::STOP_TRAVERSAL; } // ignore the acquire fence if LatchUnsignaledConfig::Always is set. const bool checkAcquireFence = enableLatchUnsignaledConfig != LatchUnsignaledConfig::Always; const bool acquireFenceAvailable = s.bufferData && s.bufferData->flags.test(BufferData::BufferDataChange::fenceChanged) && s.bufferData->acquireFence; const bool fenceSignaled = !checkAcquireFence || !acquireFenceAvailable || s.bufferData->acquireFence->getStatus() != Fence::Status::Unsignaled; if (!fenceSignaled) { // check fence status const bool allowLatchUnsignaled = shouldLatchUnsignaled(layer, s, transaction.states.size(), flushState.firstTransaction); if (allowLatchUnsignaled) { ATRACE_FORMAT("fence unsignaled try allowLatchUnsignaled %s", layer->getDebugName()); ready = TransactionReadiness::NotReadyUnsignaled; } else { ready = TransactionReadiness::NotReady; auto& listener = s.bufferData->releaseBufferListener; if (listener && (flushState.queueProcessTime - transaction.postTime) > std::chrono::nanoseconds(4s).count()) { mTransactionHandler .onTransactionQueueStalled(transaction.id, listener, "Buffer processing hung up due to stuck " "fence. Indicates GPU hang"); } ATRACE_FORMAT("fence unsignaled %s", layer->getDebugName()); return TraverseBuffersReturnValues::STOP_TRAVERSAL; } } return TraverseBuffersReturnValues::CONTINUE_TRAVERSAL; }); return ready; } void SurfaceFlinger::addTransactionReadyFilters() { mTransactionHandler.addTransactionReadyFilter( std::bind(&SurfaceFlinger::transactionReadyTimelineCheck, this, std::placeholders::_1)); mTransactionHandler.addTransactionReadyFilter( std::bind(&SurfaceFlinger::transactionReadyBufferCheck, this, std::placeholders::_1)); } // For tests only bool SurfaceFlinger::flushTransactionQueues(VsyncId vsyncId) { std::vector transactions = mTransactionHandler.flushTransactions(); return applyTransactions(transactions, vsyncId); } bool SurfaceFlinger::applyTransactions(std::vector& transactions, VsyncId vsyncId) { Mutex::Autolock lock(mStateLock); return applyTransactionsLocked(transactions, vsyncId); } bool SurfaceFlinger::applyTransactionsLocked(std::vector& transactions, VsyncId vsyncId) { bool needsTraversal = false; // Now apply all transactions. for (auto& transaction : transactions) { needsTraversal |= applyTransactionState(transaction.frameTimelineInfo, transaction.states, transaction.displays, transaction.flags, transaction.inputWindowCommands, transaction.desiredPresentTime, transaction.isAutoTimestamp, std::move(transaction.uncacheBufferIds), transaction.postTime, transaction.hasListenerCallbacks, transaction.listenerCallbacks, transaction.originPid, transaction.originUid, transaction.id); } return needsTraversal; } bool SurfaceFlinger::transactionFlushNeeded() { return mTransactionHandler.hasPendingTransactions(); } bool SurfaceFlinger::frameIsEarly(TimePoint expectedPresentTime, VsyncId vsyncId) const { const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(vsyncId.value); if (!prediction) { return false; } const auto predictedPresentTime = TimePoint::fromNs(prediction->presentTime); if (std::chrono::abs(predictedPresentTime - expectedPresentTime) >= scheduler::VsyncConfig::kEarlyLatchMaxThreshold) { return false; } const Duration earlyLatchVsyncThreshold = mScheduler->getVsyncSchedule()->period() / 2; return predictedPresentTime >= expectedPresentTime && predictedPresentTime - expectedPresentTime >= earlyLatchVsyncThreshold; } bool SurfaceFlinger::shouldLatchUnsignaled(const sp& layer, const layer_state_t& state, size_t numStates, bool firstTransaction) const { if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Disabled) { ALOGV("%s: false (LatchUnsignaledConfig::Disabled)", __func__); return false; } if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Always) { ALOGV("%s: true (LatchUnsignaledConfig::Always)", __func__); return true; } // We only want to latch unsignaled when a single layer is updated in this // transaction (i.e. not a blast sync transaction). if (numStates != 1) { ALOGV("%s: false (numStates=%zu)", __func__, numStates); return false; } if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::AutoSingleLayer) { if (!firstTransaction) { ALOGV("%s: false (LatchUnsignaledConfig::AutoSingleLayer; not first transaction)", __func__); return false; } // We don't want to latch unsignaled if are in early / client composition // as it leads to jank due to RenderEngine waiting for unsignaled buffer // or window animations being slow. if (mScheduler->vsyncModulator().isVsyncConfigEarly()) { ALOGV("%s: false (LatchUnsignaledConfig::AutoSingleLayer; isVsyncConfigEarly)", __func__); return false; } } if (!layer->simpleBufferUpdate(state)) { ALOGV("%s: false (!simpleBufferUpdate)", __func__); return false; } ALOGV("%s: true", __func__); return true; } status_t SurfaceFlinger::setTransactionState( const FrameTimelineInfo& frameTimelineInfo, Vector& states, const Vector& displays, uint32_t flags, const sp& applyToken, InputWindowCommands inputWindowCommands, int64_t desiredPresentTime, bool isAutoTimestamp, const std::vector& uncacheBuffers, bool hasListenerCallbacks, const std::vector& listenerCallbacks, uint64_t transactionId, const std::vector& mergedTransactionIds) { ATRACE_CALL(); IPCThreadState* ipc = IPCThreadState::self(); const int originPid = ipc->getCallingPid(); const int originUid = ipc->getCallingUid(); uint32_t permissions = LayerStatePermissions::getTransactionPermissions(originPid, originUid); for (auto composerState : states) { composerState.state.sanitize(permissions); } for (DisplayState display : displays) { display.sanitize(permissions); } if (!inputWindowCommands.empty() && (permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) == 0) { ALOGE("Only privileged callers are allowed to send input commands."); inputWindowCommands.clear(); } if (flags & (eEarlyWakeupStart | eEarlyWakeupEnd)) { const bool hasPermission = (permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) || callingThreadHasPermission(sWakeupSurfaceFlinger); if (!hasPermission) { ALOGE("Caller needs permission android.permission.WAKEUP_SURFACE_FLINGER to use " "eEarlyWakeup[Start|End] flags"); flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd); } } const int64_t postTime = systemTime(); std::vector uncacheBufferIds; uncacheBufferIds.reserve(uncacheBuffers.size()); for (const auto& uncacheBuffer : uncacheBuffers) { sp buffer = ClientCache::getInstance().erase(uncacheBuffer); if (buffer != nullptr) { uncacheBufferIds.push_back(buffer->getId()); } } std::vector resolvedStates; resolvedStates.reserve(states.size()); for (auto& state : states) { resolvedStates.emplace_back(std::move(state)); auto& resolvedState = resolvedStates.back(); if (resolvedState.state.hasBufferChanges() && resolvedState.state.hasValidBuffer() && resolvedState.state.surface) { sp layer = LayerHandle::getLayer(resolvedState.state.surface); std::string layerName = (layer) ? layer->getDebugName() : std::to_string(resolvedState.state.layerId); resolvedState.externalTexture = getExternalTextureFromBufferData(*resolvedState.state.bufferData, layerName.c_str(), transactionId); mBufferCountTracker.increment(resolvedState.state.surface->localBinder()); } resolvedState.layerId = LayerHandle::getLayerId(resolvedState.state.surface); if (resolvedState.state.what & layer_state_t::eReparent) { resolvedState.parentId = getLayerIdFromSurfaceControl(resolvedState.state.parentSurfaceControlForChild); } if (resolvedState.state.what & layer_state_t::eRelativeLayerChanged) { resolvedState.relativeParentId = getLayerIdFromSurfaceControl(resolvedState.state.relativeLayerSurfaceControl); } if (resolvedState.state.what & layer_state_t::eInputInfoChanged) { wp& touchableRegionCropHandle = resolvedState.state.windowInfoHandle->editInfo()->touchableRegionCropHandle; resolvedState.touchCropId = LayerHandle::getLayerId(touchableRegionCropHandle.promote()); } } TransactionState state{frameTimelineInfo, resolvedStates, displays, flags, applyToken, std::move(inputWindowCommands), desiredPresentTime, isAutoTimestamp, std::move(uncacheBufferIds), postTime, hasListenerCallbacks, listenerCallbacks, originPid, originUid, transactionId, mergedTransactionIds}; if (mTransactionTracing) { mTransactionTracing->addQueuedTransaction(state); } const auto schedule = [](uint32_t flags) { if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd; if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart; return TransactionSchedule::Late; }(state.flags); const auto frameHint = state.isFrameActive() ? FrameHint::kActive : FrameHint::kNone; mTransactionHandler.queueTransaction(std::move(state)); setTransactionFlags(eTransactionFlushNeeded, schedule, applyToken, frameHint); return NO_ERROR; } bool SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo, std::vector& states, Vector& displays, uint32_t flags, const InputWindowCommands& inputWindowCommands, const int64_t desiredPresentTime, bool isAutoTimestamp, const std::vector& uncacheBufferIds, const int64_t postTime, bool hasListenerCallbacks, const std::vector& listenerCallbacks, int originPid, int originUid, uint64_t transactionId) { uint32_t transactionFlags = 0; if (!mLayerLifecycleManagerEnabled) { for (DisplayState& display : displays) { transactionFlags |= setDisplayStateLocked(display); } } // start and end registration for listeners w/ no surface so they can get their callback. Note // that listeners with SurfaceControls will start registration during setClientStateLocked // below. for (const auto& listener : listenerCallbacks) { mTransactionCallbackInvoker.addEmptyTransaction(listener); } uint32_t clientStateFlags = 0; for (auto& resolvedState : states) { if (mLegacyFrontEndEnabled) { clientStateFlags |= setClientStateLocked(frameTimelineInfo, resolvedState, desiredPresentTime, isAutoTimestamp, postTime, transactionId); } else /*mLayerLifecycleManagerEnabled*/ { clientStateFlags |= updateLayerCallbacksAndStats(frameTimelineInfo, resolvedState, desiredPresentTime, isAutoTimestamp, postTime, transactionId); } if ((flags & eAnimation) && resolvedState.state.surface) { if (const auto layer = LayerHandle::getLayer(resolvedState.state.surface)) { const auto layerProps = scheduler::LayerProps{ .visible = layer->isVisible(), .bounds = layer->getBounds(), .transform = layer->getTransform(), .setFrameRateVote = layer->getFrameRateForLayerTree(), .frameRateSelectionPriority = layer->getFrameRateSelectionPriority(), }; layer->recordLayerHistoryAnimationTx(layerProps); } } } transactionFlags |= clientStateFlags; transactionFlags |= addInputWindowCommands(inputWindowCommands); for (uint64_t uncacheBufferId : uncacheBufferIds) { mBufferIdsToUncache.push_back(uncacheBufferId); } // If a synchronous transaction is explicitly requested without any changes, force a transaction // anyway. This can be used as a flush mechanism for previous async transactions. // Empty animation transaction can be used to simulate back-pressure, so also force a // transaction for empty animation transactions. if (transactionFlags == 0 && (flags & eAnimation)) { transactionFlags = eTransactionNeeded; } bool needsTraversal = false; if (transactionFlags) { // We are on the main thread, we are about to perform a traversal. Clear the traversal bit // so we don't have to wake up again next frame to perform an unnecessary traversal. if (transactionFlags & eTraversalNeeded) { transactionFlags = transactionFlags & (~eTraversalNeeded); needsTraversal = true; } if (transactionFlags) { setTransactionFlags(transactionFlags); } } return needsTraversal; } bool SurfaceFlinger::applyAndCommitDisplayTransactionStates( std::vector& transactions) { Mutex::Autolock lock(mStateLock); bool needsTraversal = false; uint32_t transactionFlags = 0; for (auto& transaction : transactions) { for (DisplayState& display : transaction.displays) { transactionFlags |= setDisplayStateLocked(display); } } if (transactionFlags) { // We are on the main thread, we are about to perform a traversal. Clear the traversal bit // so we don't have to wake up again next frame to perform an unnecessary traversal. if (transactionFlags & eTraversalNeeded) { transactionFlags = transactionFlags & (~eTraversalNeeded); needsTraversal = true; } if (transactionFlags) { setTransactionFlags(transactionFlags); } } mFrontEndDisplayInfosChanged = mTransactionFlags & eDisplayTransactionNeeded; if (mFrontEndDisplayInfosChanged && !mLegacyFrontEndEnabled) { processDisplayChangesLocked(); mFrontEndDisplayInfos.clear(); for (const auto& [_, display] : mDisplays) { mFrontEndDisplayInfos.try_emplace(display->getLayerStack(), display->getFrontEndInfo()); } needsTraversal = true; } return needsTraversal; } uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) { const ssize_t index = mCurrentState.displays.indexOfKey(s.token); if (index < 0) return 0; uint32_t flags = 0; DisplayDeviceState& state = mCurrentState.displays.editValueAt(index); const uint32_t what = s.what; if (what & DisplayState::eSurfaceChanged) { if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) { state.surface = s.surface; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eLayerStackChanged) { if (state.layerStack != s.layerStack) { state.layerStack = s.layerStack; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eFlagsChanged) { if (state.flags != s.flags) { state.flags = s.flags; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplayProjectionChanged) { if (state.orientation != s.orientation) { state.orientation = s.orientation; flags |= eDisplayTransactionNeeded; } if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) { state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect; flags |= eDisplayTransactionNeeded; } if (state.layerStackSpaceRect != s.layerStackSpaceRect) { state.layerStackSpaceRect = s.layerStackSpaceRect; flags |= eDisplayTransactionNeeded; } } if (what & DisplayState::eDisplaySizeChanged) { if (state.width != s.width) { state.width = s.width; flags |= eDisplayTransactionNeeded; } if (state.height != s.height) { state.height = s.height; flags |= eDisplayTransactionNeeded; } } return flags; } bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && (usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid) : !checkPermission(sAccessSurfaceFlinger, pid, uid))) { return false; } return true; } uint32_t SurfaceFlinger::setClientStateLocked(const FrameTimelineInfo& frameTimelineInfo, ResolvedComposerState& composerState, int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint64_t transactionId) { layer_state_t& s = composerState.state; std::vector filteredListeners; for (auto& listener : s.listeners) { // Starts a registration but separates the callback ids according to callback type. This // allows the callback invoker to send on latch callbacks earlier. // note that startRegistration will not re-register if the listener has // already be registered for a prior surface control ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT); if (!onCommitCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCommitCallbacks); } ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE); if (!onCompleteCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCompleteCallbacks); } } const uint64_t what = s.what; uint32_t flags = 0; sp layer = nullptr; if (s.surface) { layer = LayerHandle::getLayer(s.surface); } else { // The client may provide us a null handle. Treat it as if the layer was removed. ALOGW("Attempt to set client state with a null layer handle"); } if (layer == nullptr) { for (auto& [listener, callbackIds] : s.listeners) { mTransactionCallbackInvoker.addCallbackHandle(sp::make(listener, callbackIds, s.surface), std::vector()); } return 0; } MUTEX_ALIAS(mStateLock, layer->mFlinger->mStateLock); ui::LayerStack oldLayerStack = layer->getLayerStack(LayerVector::StateSet::Current); // Only set by BLAST adapter layers if (what & layer_state_t::eProducerDisconnect) { layer->onDisconnect(); } if (what & layer_state_t::ePositionChanged) { if (layer->setPosition(s.x, s.y)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eLayerChanged) { // NOTE: index needs to be calculated before we update the state const auto& p = layer->getParent(); if (p == nullptr) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); if (layer->setLayer(s.z) && idx >= 0) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded|eTraversalNeeded; } } else { if (p->setChildLayer(layer, s.z)) { flags |= eTransactionNeeded|eTraversalNeeded; } } } if (what & layer_state_t::eRelativeLayerChanged) { // NOTE: index needs to be calculated before we update the state const auto& p = layer->getParent(); const auto& relativeHandle = s.relativeLayerSurfaceControl ? s.relativeLayerSurfaceControl->getHandle() : nullptr; if (p == nullptr) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); if (layer->setRelativeLayer(relativeHandle, s.z) && idx >= 0) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded|eTraversalNeeded; } } else { if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) { flags |= eTransactionNeeded|eTraversalNeeded; } } } if (what & layer_state_t::eAlphaChanged) { if (layer->setAlpha(s.color.a)) flags |= eTraversalNeeded; } if (what & layer_state_t::eColorChanged) { if (layer->setColor(s.color.rgb)) flags |= eTraversalNeeded; } if (what & layer_state_t::eColorTransformChanged) { if (layer->setColorTransform(s.colorTransform)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBackgroundColorChanged) { if (layer->setBackgroundColor(s.bgColor.rgb, s.bgColor.a, s.bgColorDataspace)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eMatrixChanged) { if (layer->setMatrix(s.matrix)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTransparentRegionChanged) { if (layer->setTransparentRegionHint(s.transparentRegion)) flags |= eTraversalNeeded; } if (what & layer_state_t::eFlagsChanged) { if (layer->setFlags(s.flags, s.mask)) flags |= eTraversalNeeded; } if (what & layer_state_t::eCornerRadiusChanged) { if (layer->setCornerRadius(s.cornerRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eBackgroundBlurRadiusChanged && mSupportsBlur) { if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eBlurRegionsChanged) { if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded; } if (what & layer_state_t::eRenderBorderChanged) { if (layer->enableBorder(s.borderEnabled, s.borderWidth, s.borderColor)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eLayerStackChanged) { ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); // We only allow setting layer stacks for top level layers, // everything else inherits layer stack from its parent. if (layer->hasParent()) { ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid", layer->getDebugName()); } else if (idx < 0) { ALOGE("Attempt to set layer stack on layer without parent (%s) that " "that also does not appear in the top level layer list. Something" " has gone wrong.", layer->getDebugName()); } else if (layer->setLayerStack(s.layerStack)) { mCurrentState.layersSortedByZ.removeAt(idx); mCurrentState.layersSortedByZ.add(layer); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded; } } if (what & layer_state_t::eBufferTransformChanged) { if (layer->setTransform(s.bufferTransform)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTransformToDisplayInverseChanged) { if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse)) flags |= eTraversalNeeded; } if (what & layer_state_t::eCropChanged) { if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; } if (what & layer_state_t::eDataspaceChanged) { if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSurfaceDamageRegionChanged) { if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded; } if (what & layer_state_t::eApiChanged) { if (layer->setApi(s.api)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSidebandStreamChanged) { if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded; } if (what & layer_state_t::eInputInfoChanged) { layer->setInputInfo(*s.windowInfoHandle->getInfo()); flags |= eTraversalNeeded; } std::optional dequeueBufferTimestamp; if (what & layer_state_t::eMetadataChanged) { dequeueBufferTimestamp = s.metadata.getInt64(gui::METADATA_DEQUEUE_TIME); if (const int32_t gameMode = s.metadata.getInt32(gui::METADATA_GAME_MODE, -1); gameMode != -1) { // The transaction will be received on the Task layer and needs to be applied to all // child layers. Child layers that are added at a later point will obtain the game mode // info through addChild(). layer->setGameModeForTree(static_cast(gameMode)); } if (layer->setMetadata(s.metadata)) { flags |= eTraversalNeeded; mLayerMetadataSnapshotNeeded = true; } } if (what & layer_state_t::eColorSpaceAgnosticChanged) { if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eShadowRadiusChanged) { if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded; } if (what & layer_state_t::eDefaultFrameRateCompatibilityChanged) { const auto compatibility = Layer::FrameRate::convertCompatibility(s.defaultFrameRateCompatibility); if (layer->setDefaultFrameRateCompatibility(compatibility)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eFrameRateSelectionPriority) { if (layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eFrameRateChanged) { const auto compatibility = Layer::FrameRate::convertCompatibility(s.frameRateCompatibility); const auto strategy = Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy); if (layer->setFrameRate( Layer::FrameRate(Fps::fromValue(s.frameRate), compatibility, strategy))) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eFixedTransformHintChanged) { if (layer->setFixedTransformHint(s.fixedTransformHint)) { flags |= eTraversalNeeded | eTransformHintUpdateNeeded; } } if (what & layer_state_t::eAutoRefreshChanged) { layer->setAutoRefresh(s.autoRefresh); } if (what & layer_state_t::eDimmingEnabledChanged) { if (layer->setDimmingEnabled(s.dimmingEnabled)) flags |= eTraversalNeeded; } if (what & layer_state_t::eExtendedRangeBrightnessChanged) { if (layer->setExtendedRangeBrightness(s.currentHdrSdrRatio, s.desiredHdrSdrRatio)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eCachingHintChanged) { if (layer->setCachingHint(s.cachingHint)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eHdrMetadataChanged) { if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded; } if (what & layer_state_t::eTrustedOverlayChanged) { if (layer->setTrustedOverlay(s.isTrustedOverlay)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eStretchChanged) { if (layer->setStretchEffect(s.stretchEffect)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eBufferCropChanged) { if (layer->setBufferCrop(s.bufferCrop)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eDestinationFrameChanged) { if (layer->setDestinationFrame(s.destinationFrame)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eDropInputModeChanged) { if (layer->setDropInputMode(s.dropInputMode)) { flags |= eTraversalNeeded; mUpdateInputInfo = true; } } // This has to happen after we reparent children because when we reparent to null we remove // child layers from current state and remove its relative z. If the children are reparented in // the same transaction, then we have to make sure we reparent the children first so we do not // lose its relative z order. if (what & layer_state_t::eReparent) { bool hadParent = layer->hasParent(); auto parentHandle = (s.parentSurfaceControlForChild) ? s.parentSurfaceControlForChild->getHandle() : nullptr; if (layer->reparent(parentHandle)) { if (!hadParent) { layer->setIsAtRoot(false); mCurrentState.layersSortedByZ.remove(layer); } flags |= eTransactionNeeded | eTraversalNeeded; } } std::vector> callbackHandles; if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) { for (auto& [listener, callbackIds] : filteredListeners) { callbackHandles.emplace_back( sp::make(listener, callbackIds, s.surface)); } } if (what & layer_state_t::eBufferChanged) { if (layer->setBuffer(composerState.externalTexture, *s.bufferData, postTime, desiredPresentTime, isAutoTimestamp, dequeueBufferTimestamp, frameTimelineInfo)) { flags |= eTraversalNeeded; } } else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) { layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime); } if ((what & layer_state_t::eBufferChanged) == 0) { layer->setDesiredPresentTime(desiredPresentTime, isAutoTimestamp); } if (what & layer_state_t::eTrustedPresentationInfoChanged) { if (layer->setTrustedPresentationInfo(s.trustedPresentationThresholds, s.trustedPresentationListener)) { flags |= eTraversalNeeded; } } if (what & layer_state_t::eFlushJankData) { // Do nothing. Processing the transaction completed listeners currently cause the flush. } if (layer->setTransactionCompletedListeners(callbackHandles, layer->willPresentCurrentTransaction() || layer->willReleaseBufferOnLatch())) { flags |= eTraversalNeeded; } // Do not put anything that updates layer state or modifies flags after // setTransactionCompletedListener // if the layer has been parented on to a new display, update its transform hint. if (((flags & eTransformHintUpdateNeeded) == 0) && oldLayerStack != layer->getLayerStack(LayerVector::StateSet::Current)) { flags |= eTransformHintUpdateNeeded; } return flags; } uint32_t SurfaceFlinger::updateLayerCallbacksAndStats(const FrameTimelineInfo& frameTimelineInfo, ResolvedComposerState& composerState, int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint64_t transactionId) { layer_state_t& s = composerState.state; std::vector filteredListeners; for (auto& listener : s.listeners) { // Starts a registration but separates the callback ids according to callback type. This // allows the callback invoker to send on latch callbacks earlier. // note that startRegistration will not re-register if the listener has // already be registered for a prior surface control ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT); if (!onCommitCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCommitCallbacks); } ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE); if (!onCompleteCallbacks.callbackIds.empty()) { filteredListeners.push_back(onCompleteCallbacks); } } const uint64_t what = s.what; uint32_t flags = 0; sp layer = nullptr; if (s.surface) { layer = LayerHandle::getLayer(s.surface); } else { // The client may provide us a null handle. Treat it as if the layer was removed. ALOGW("Attempt to set client state with a null layer handle"); } if (layer == nullptr) { for (auto& [listener, callbackIds] : s.listeners) { mTransactionCallbackInvoker.addCallbackHandle(sp::make(listener, callbackIds, s.surface), std::vector()); } return 0; } if (what & layer_state_t::eProducerDisconnect) { layer->onDisconnect(); } std::optional dequeueBufferTimestamp; if (what & layer_state_t::eMetadataChanged) { dequeueBufferTimestamp = s.metadata.getInt64(gui::METADATA_DEQUEUE_TIME); } std::vector> callbackHandles; if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) { for (auto& [listener, callbackIds] : filteredListeners) { callbackHandles.emplace_back( sp::make(listener, callbackIds, s.surface)); } } // TODO(b/238781169) remove after screenshot refactor, currently screenshots // requires to read drawing state from binder thread. So we need to fix that // before removing this. if (what & layer_state_t::eCropChanged) { if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; } if (what & layer_state_t::eSidebandStreamChanged) { if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded; } if (what & layer_state_t::eBufferChanged) { std::optional transformHint = std::nullopt; frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(layer->sequence); if (snapshot) { transformHint = snapshot->transformHint; } layer->setTransformHint(transformHint); if (layer->setBuffer(composerState.externalTexture, *s.bufferData, postTime, desiredPresentTime, isAutoTimestamp, dequeueBufferTimestamp, frameTimelineInfo)) { flags |= eTraversalNeeded; } mLayersWithQueuedFrames.emplace(layer); } else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) { layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime); } if ((what & layer_state_t::eBufferChanged) == 0) { layer->setDesiredPresentTime(desiredPresentTime, isAutoTimestamp); } if (what & layer_state_t::eTrustedPresentationInfoChanged) { if (layer->setTrustedPresentationInfo(s.trustedPresentationThresholds, s.trustedPresentationListener)) { flags |= eTraversalNeeded; } } const auto& requestedLayerState = mLayerLifecycleManager.getLayerFromId(layer->getSequence()); bool willPresentCurrentTransaction = requestedLayerState && (requestedLayerState->hasReadyFrame() || requestedLayerState->willReleaseBufferOnLatch()); if (layer->setTransactionCompletedListeners(callbackHandles, willPresentCurrentTransaction)) flags |= eTraversalNeeded; return flags; } uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) { bool hasChanges = mInputWindowCommands.merge(inputWindowCommands); return hasChanges ? eTraversalNeeded : 0; } status_t SurfaceFlinger::mirrorLayer(const LayerCreationArgs& args, const sp& mirrorFromHandle, gui::CreateSurfaceResult& outResult) { if (!mirrorFromHandle) { return NAME_NOT_FOUND; } sp mirrorLayer; sp mirrorFrom; LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args); { Mutex::Autolock _l(mStateLock); mirrorFrom = LayerHandle::getLayer(mirrorFromHandle); if (!mirrorFrom) { return NAME_NOT_FOUND; } mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill; mirrorArgs.mirrorLayerHandle = mirrorFromHandle; mirrorArgs.addToRoot = false; status_t result = createEffectLayer(mirrorArgs, &outResult.handle, &mirrorLayer); if (result != NO_ERROR) { return result; } mirrorLayer->setClonedChild(mirrorFrom->createClone(mirrorLayer->getSequence())); } outResult.layerId = mirrorLayer->sequence; outResult.layerName = String16(mirrorLayer->getDebugName()); return addClientLayer(mirrorArgs, outResult.handle, mirrorLayer /* layer */, nullptr /* parent */, nullptr /* outTransformHint */); } status_t SurfaceFlinger::mirrorDisplay(DisplayId displayId, const LayerCreationArgs& args, gui::CreateSurfaceResult& outResult) { IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (uid != AID_ROOT && uid != AID_GRAPHICS && uid != AID_SYSTEM && uid != AID_SHELL) { ALOGE("Permission denied when trying to mirror display"); return PERMISSION_DENIED; } ui::LayerStack layerStack; sp rootMirrorLayer; status_t result = 0; { Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayId); if (!display) { return NAME_NOT_FOUND; } layerStack = display->getLayerStack(); LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args); mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill; mirrorArgs.addToRoot = true; mirrorArgs.layerStackToMirror = layerStack; result = createEffectLayer(mirrorArgs, &outResult.handle, &rootMirrorLayer); outResult.layerId = rootMirrorLayer->sequence; outResult.layerName = String16(rootMirrorLayer->getDebugName()); result |= addClientLayer(mirrorArgs, outResult.handle, rootMirrorLayer /* layer */, nullptr /* parent */, nullptr /* outTransformHint */); } if (result != NO_ERROR) { return result; } if (mLegacyFrontEndEnabled) { std::scoped_lock lock(mMirrorDisplayLock); mMirrorDisplays.emplace_back(layerStack, outResult.handle, args.client); } setTransactionFlags(eTransactionFlushNeeded); return NO_ERROR; } status_t SurfaceFlinger::createLayer(LayerCreationArgs& args, gui::CreateSurfaceResult& outResult) { status_t result = NO_ERROR; sp layer; switch (args.flags & ISurfaceComposerClient::eFXSurfaceMask) { case ISurfaceComposerClient::eFXSurfaceBufferQueue: case ISurfaceComposerClient::eFXSurfaceContainer: case ISurfaceComposerClient::eFXSurfaceBufferState: args.flags |= ISurfaceComposerClient::eNoColorFill; FMT_FALLTHROUGH; case ISurfaceComposerClient::eFXSurfaceEffect: { result = createBufferStateLayer(args, &outResult.handle, &layer); std::atomic* pendingBufferCounter = layer->getPendingBufferCounter(); if (pendingBufferCounter) { std::string counterName = layer->getPendingBufferCounterName(); mBufferCountTracker.add(outResult.handle->localBinder(), counterName, pendingBufferCounter); } } break; default: result = BAD_VALUE; break; } if (result != NO_ERROR) { return result; } args.addToRoot = args.addToRoot && callingThreadHasUnscopedSurfaceFlingerAccess(); // We can safely promote the parent layer in binder thread because we have a strong reference // to the layer's handle inside this scope. sp parent = LayerHandle::getLayer(args.parentHandle.promote()); if (args.parentHandle != nullptr && parent == nullptr) { ALOGE("Invalid parent handle %p", args.parentHandle.promote().get()); args.addToRoot = false; } uint32_t outTransformHint; result = addClientLayer(args, outResult.handle, layer, parent, &outTransformHint); if (result != NO_ERROR) { return result; } outResult.transformHint = static_cast(outTransformHint); outResult.layerId = layer->sequence; outResult.layerName = String16(layer->getDebugName()); return result; } status_t SurfaceFlinger::createBufferStateLayer(LayerCreationArgs& args, sp* handle, sp* outLayer) { args.textureName = getNewTexture(); *outLayer = getFactory().createBufferStateLayer(args); *handle = (*outLayer)->getHandle(); return NO_ERROR; } status_t SurfaceFlinger::createEffectLayer(const LayerCreationArgs& args, sp* handle, sp* outLayer) { *outLayer = getFactory().createEffectLayer(args); *handle = (*outLayer)->getHandle(); return NO_ERROR; } void SurfaceFlinger::markLayerPendingRemovalLocked(const sp& layer) { mLayersPendingRemoval.add(layer); mLayersRemoved = true; setTransactionFlags(eTransactionNeeded); } void SurfaceFlinger::onHandleDestroyed(BBinder* handle, sp& layer, uint32_t layerId) { { std::scoped_lock lock(mCreatedLayersLock); mDestroyedHandles.emplace_back(layerId); } Mutex::Autolock lock(mStateLock); markLayerPendingRemovalLocked(layer); layer->onHandleDestroyed(); mBufferCountTracker.remove(handle); layer.clear(); setTransactionFlags(eTransactionFlushNeeded); } void SurfaceFlinger::initializeDisplays() { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); if (!display) return; const sp token = display->getDisplayToken().promote(); LOG_ALWAYS_FATAL_IF(token == nullptr); TransactionState state; state.inputWindowCommands = mInputWindowCommands; const nsecs_t now = systemTime(); state.desiredPresentTime = now; state.postTime = now; state.originPid = mPid; state.originUid = static_cast(getuid()); const uint64_t transactionId = (static_cast(mPid) << 32) | mUniqueTransactionId++; state.id = transactionId; // reset screen orientation and use primary layer stack Vector displays; DisplayState d; d.what = DisplayState::eDisplayProjectionChanged | DisplayState::eLayerStackChanged; d.token = token; d.layerStack = ui::DEFAULT_LAYER_STACK; d.orientation = ui::ROTATION_0; d.orientedDisplaySpaceRect.makeInvalid(); d.layerStackSpaceRect.makeInvalid(); d.width = 0; d.height = 0; state.displays.add(d); std::vector transactions; transactions.emplace_back(state); if (mLegacyFrontEndEnabled) { applyTransactions(transactions, VsyncId{0}); } else { applyAndCommitDisplayTransactionStates(transactions); } { ftl::FakeGuard guard(mStateLock); setPowerModeInternal(display, hal::PowerMode::ON); } } void SurfaceFlinger::setPowerModeInternal(const sp& display, hal::PowerMode mode) { if (display->isVirtual()) { ALOGE("%s: Invalid operation on virtual display", __func__); return; } const auto displayId = display->getPhysicalId(); ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str()); const auto currentModeOpt = display->getPowerMode(); if (currentModeOpt == mode) { return; } const bool isInternalDisplay = mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::isInternal) .value_or(false); const auto activeDisplay = getDisplayDeviceLocked(mActiveDisplayId); ALOGW_IF(display != activeDisplay && isInternalDisplay && activeDisplay && activeDisplay->isPoweredOn(), "Trying to change power mode on inactive display without powering off active display"); display->setPowerMode(mode); const auto refreshRate = display->refreshRateSelector().getActiveMode().modePtr->getFps(); if (!currentModeOpt || *currentModeOpt == hal::PowerMode::OFF) { // Turn on the display // Activate the display (which involves a modeset to the active mode) when the inner or // outer display of a foldable is powered on. This condition relies on the above // DisplayDevice::setPowerMode. If `display` and `activeDisplay` are the same display, // then the `activeDisplay->isPoweredOn()` below is true, such that the display is not // activated every time it is powered on. // // TODO(b/255635821): Remove the concept of active display. if (isInternalDisplay && (!activeDisplay || !activeDisplay->isPoweredOn())) { onActiveDisplayChangedLocked(activeDisplay.get(), *display); } if (displayId == mActiveDisplayId) { // TODO(b/281692563): Merge the syscalls. For now, keep uclamp in a separate syscall and // set it before SCHED_FIFO due to b/190237315. if (setSchedAttr(true) != NO_ERROR) { ALOGW("Failed to set uclamp.min after powering on active display: %s", strerror(errno)); } if (setSchedFifo(true) != NO_ERROR) { ALOGW("Failed to set SCHED_FIFO after powering on active display: %s", strerror(errno)); } } getHwComposer().setPowerMode(displayId, mode); if (displayId == mActiveDisplayId && mode != hal::PowerMode::DOZE_SUSPEND) { setHWCVsyncEnabled(displayId, mScheduler->getVsyncSchedule(displayId) ->getPendingHardwareVsyncState()); mScheduler->enableSyntheticVsync(false); mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */, refreshRate); } mVisibleRegionsDirty = true; scheduleComposite(FrameHint::kActive); } else if (mode == hal::PowerMode::OFF) { // Turn off the display if (displayId == mActiveDisplayId) { if (setSchedFifo(false) != NO_ERROR) { ALOGW("Failed to set SCHED_OTHER after powering off active display: %s", strerror(errno)); } if (setSchedAttr(false) != NO_ERROR) { ALOGW("Failed set uclamp.min after powering off active display: %s", strerror(errno)); } if (*currentModeOpt != hal::PowerMode::DOZE_SUSPEND) { mScheduler->disableHardwareVsync(displayId, true); mScheduler->enableSyntheticVsync(); } } // Make sure HWVsync is disabled before turning off the display setHWCVsyncEnabled(displayId, false); getHwComposer().setPowerMode(displayId, mode); mVisibleRegionsDirty = true; // from this point on, SF will stop drawing on this display } else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) { // Update display while dozing getHwComposer().setPowerMode(displayId, mode); if (displayId == mActiveDisplayId && *currentModeOpt == hal::PowerMode::DOZE_SUSPEND) { ALOGI("Force repainting for DOZE_SUSPEND -> DOZE or ON."); mVisibleRegionsDirty = true; scheduleRepaint(); mScheduler->enableSyntheticVsync(false); mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */, refreshRate); } } else if (mode == hal::PowerMode::DOZE_SUSPEND) { // Leave display going to doze if (displayId == mActiveDisplayId) { mScheduler->disableHardwareVsync(displayId, true); mScheduler->enableSyntheticVsync(); } getHwComposer().setPowerMode(displayId, mode); } else { ALOGE("Attempting to set unknown power mode: %d\n", mode); getHwComposer().setPowerMode(displayId, mode); } if (displayId == mActiveDisplayId) { mTimeStats->setPowerMode(mode); mRefreshRateStats->setPowerMode(mode); mScheduler->setDisplayPowerMode(displayId, mode); } ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str()); } void SurfaceFlinger::setPowerMode(const sp& displayToken, int mode) { auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD( kMainThreadContext) { const auto display = getDisplayDeviceLocked(displayToken); if (!display) { ALOGE("Attempt to set power mode %d for invalid display token %p", mode, displayToken.get()); } else if (display->isVirtual()) { ALOGW("Attempt to set power mode %d for virtual display", mode); } else { setPowerModeInternal(display, static_cast(mode)); } }); future.wait(); } status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) { std::string result; IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid); } else { static const std::unordered_map dumpers = { {"--comp-displays"s, dumper(&SurfaceFlinger::dumpCompositionDisplays)}, {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)}, {"--displays"s, dumper(&SurfaceFlinger::dumpDisplays)}, {"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)}, {"--events"s, dumper(&SurfaceFlinger::dumpEvents)}, {"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)}, {"--hwclayers"s, dumper(&SurfaceFlinger::dumpHwcLayersMinidumpLocked)}, {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)}, {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)}, {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)}, {"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)}, {"--scheduler"s, dumper(&SurfaceFlinger::dumpScheduler)}, {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)}, {"--vsync"s, dumper(&SurfaceFlinger::dumpVsync)}, {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)}, }; const auto flag = args.empty() ? ""s : std::string(String8(args[0])); // Traversal of drawing state must happen on the main thread. // Otherwise, SortedVector may have shared ownership during concurrent // traversals, which can result in use-after-frees. std::string compositionLayers; mScheduler ->schedule([&] { StringAppendF(&compositionLayers, "Composition layers\n"); mDrawingState.traverseInZOrder([&](Layer* layer) { auto* compositionState = layer->getCompositionState(); if (!compositionState || !compositionState->isVisible) return; android::base::StringAppendF(&compositionLayers, "* Layer %p (%s)\n", layer, layer->getDebugName() ? layer->getDebugName() : ""); compositionState->dump(compositionLayers); }); }) .get(); bool dumpLayers = true; { TimedLock lock(mStateLock, s2ns(1), __func__); if (!lock.locked()) { StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n", strerror(-lock.status), lock.status); } if (const auto it = dumpers.find(flag); it != dumpers.end()) { (it->second)(args, asProto, result); dumpLayers = false; } else if (!asProto) { dumpAllLocked(args, compositionLayers, result); } } if (dumpLayers) { LayersTraceFileProto traceFileProto = mLayerTracing.createTraceFileProto(); LayersTraceProto* layersTrace = traceFileProto.add_entry(); LayersProto layersProto = dumpProtoFromMainThread(); layersTrace->mutable_layers()->Swap(&layersProto); auto displayProtos = dumpDisplayProto(); layersTrace->mutable_displays()->Swap(&displayProtos); if (asProto) { result.append(traceFileProto.SerializeAsString()); } else { // Dump info that we need to access from the main thread const auto layerTree = LayerProtoParser::generateLayerTree(layersTrace->layers()); result.append(LayerProtoParser::layerTreeToString(layerTree)); result.append("\n"); dumpOffscreenLayers(result); } } } write(fd, result.c_str(), result.size()); return NO_ERROR; } status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) { return doDump(fd, DumpArgs(), asProto); } void SurfaceFlinger::listLayersLocked(std::string& result) const { mCurrentState.traverseInZOrder( [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); }); } void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const { StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC()); if (args.size() < 2) return; const auto name = String8(args[1]); mCurrentState.traverseInZOrder([&](Layer* layer) { if (layer->getName() == name.string()) { layer->dumpFrameStats(result); } }); } void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) { const bool clearAll = args.size() < 2; const auto name = clearAll ? String8() : String8(args[1]); mCurrentState.traverse([&](Layer* layer) { if (clearAll || layer->getName() == name.string()) { layer->clearFrameStats(); } }); } void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const { mTimeStats->parseArgs(asProto, args, result); } void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const { mFrameTimeline->parseArgs(args, result); } void SurfaceFlinger::logFrameStats(TimePoint now) { static TimePoint sTimestamp = now; if (now - sTimestamp < 30min) return; sTimestamp = now; ATRACE_CALL(); mDrawingState.traverse([&](Layer* layer) { layer->logFrameStats(); }); } void SurfaceFlinger::appendSfConfigString(std::string& result) const { result.append(" [sf"); StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset); StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu", getHwComposer().getMaxVirtualDisplayDimension()); StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, maxFrameBufferAcquiredBuffers); result.append("]"); } void SurfaceFlinger::dumpScheduler(std::string& result) const { utils::Dumper dumper{result}; mScheduler->dump(dumper); // TODO(b/241285876): Move to DisplayModeController. dumper.dump("debugDisplayModeSetByBackdoor"sv, mDebugDisplayModeSetByBackdoor); dumper.eol(); mRefreshRateStats->dump(result); dumper.eol(); mVsyncConfiguration->dump(result); StringAppendF(&result, " present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n", dispSyncPresentTimeOffset, getVsyncPeriodFromHWC()); } void SurfaceFlinger::dumpEvents(std::string& result) const { mScheduler->dump(mAppConnectionHandle, result); } void SurfaceFlinger::dumpVsync(std::string& result) const { mScheduler->dumpVsync(result); } void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto compositionDisplay = display->getCompositionDisplay(); compositionDisplay->dumpPlannerInfo(args, result); } } void SurfaceFlinger::dumpCompositionDisplays(std::string& result) const { for (const auto& [token, display] : mDisplays) { display->getCompositionDisplay()->dump(result); result += '\n'; } } void SurfaceFlinger::dumpDisplays(std::string& result) const { utils::Dumper dumper{result}; for (const auto& [id, display] : mPhysicalDisplays) { utils::Dumper::Section section(dumper, ftl::Concat("Display ", id.value).str()); display.snapshot().dump(dumper); if (const auto device = getDisplayDeviceLocked(id)) { device->dump(dumper); } } for (const auto& [token, display] : mDisplays) { if (display->isVirtual()) { const auto displayId = display->getId(); utils::Dumper::Section section(dumper, ftl::Concat("Virtual Display ", displayId.value).str()); display->dump(dumper); } } } void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto displayId = PhysicalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId); if (!hwcDisplayId) { continue; } StringAppendF(&result, "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(), *hwcDisplayId); uint8_t port; DisplayIdentificationData data; if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) { result.append("no identification data\n"); continue; } if (!isEdid(data)) { result.append("unknown identification data\n"); continue; } const auto edid = parseEdid(data); if (!edid) { result.append("invalid EDID\n"); continue; } StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data()); result.append(edid->displayName.data(), edid->displayName.length()); result.append("\"\n"); } } void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args, std::string& result) const { hal::HWDisplayId hwcDisplayId; uint8_t port; DisplayIdentificationData data; if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) && getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) { result.append(reinterpret_cast(data.data()), data.size()); } } void SurfaceFlinger::dumpWideColorInfo(std::string& result) const { StringAppendF(&result, "Device supports wide color: %d\n", mSupportsWideColor); StringAppendF(&result, "Device uses color management: %d\n", useColorManagement); StringAppendF(&result, "DisplayColorSetting: %s\n", decodeDisplayColorSetting(mDisplayColorSetting).c_str()); // TODO: print out if wide-color mode is active or not for (const auto& [id, display] : mPhysicalDisplays) { StringAppendF(&result, "Display %s color modes:\n", to_string(id).c_str()); for (const auto mode : display.snapshot().colorModes()) { StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode); } if (const auto display = getDisplayDeviceLocked(id)) { ui::ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode; StringAppendF(&result, " Current color mode: %s (%d)\n", decodeColorMode(currentMode).c_str(), currentMode); } } result.append("\n"); } LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const { std::unordered_set stackIdsToSkip; // Determine if virtual layers display should be skipped if ((traceFlags & LayerTracing::TRACE_VIRTUAL_DISPLAYS) == 0) { for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { if (display->isVirtual()) { stackIdsToSkip.insert(display->getLayerStack().id); } } } if (mLegacyFrontEndEnabled) { LayersProto layersProto; for (const sp& layer : mDrawingState.layersSortedByZ) { if (stackIdsToSkip.find(layer->getLayerStack().id) != stackIdsToSkip.end()) { continue; } layer->writeToProto(layersProto, traceFlags); } return layersProto; } return LayerProtoFromSnapshotGenerator(mLayerSnapshotBuilder, mFrontEndDisplayInfos, mLegacyLayers, traceFlags) .generate(mLayerHierarchyBuilder.getHierarchy()); } google::protobuf::RepeatedPtrField SurfaceFlinger::dumpDisplayProto() const { google::protobuf::RepeatedPtrField displays; for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) { DisplayProto* displayProto = displays.Add(); displayProto->set_id(display->getId().value); displayProto->set_name(display->getDisplayName()); displayProto->set_layer_stack(display->getLayerStack().id); LayerProtoHelper::writeSizeToProto(display->getWidth(), display->getHeight(), [&]() { return displayProto->mutable_size(); }); LayerProtoHelper::writeToProto(display->getLayerStackSpaceRect(), [&]() { return displayProto->mutable_layer_stack_space_rect(); }); LayerProtoHelper::writeTransformToProto(display->getTransform(), displayProto->mutable_transform()); displayProto->set_is_virtual(display->isVirtual()); } return displays; } void SurfaceFlinger::dumpHwc(std::string& result) const { getHwComposer().dump(result); } void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const { // Add a fake invisible root layer to the proto output and parent all the offscreen layers to // it. LayerProto* rootProto = layersProto.add_layers(); const int32_t offscreenRootLayerId = INT32_MAX - 2; rootProto->set_id(offscreenRootLayerId); rootProto->set_name("Offscreen Root"); rootProto->set_parent(-1); for (Layer* offscreenLayer : mOffscreenLayers) { // Add layer as child of the fake root rootProto->add_children(offscreenLayer->sequence); // Add layer LayerProto* layerProto = offscreenLayer->writeToProto(layersProto, traceFlags); layerProto->set_parent(offscreenRootLayerId); } } LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) { return mScheduler->schedule([=] { return dumpDrawingStateProto(traceFlags); }).get(); } void SurfaceFlinger::dumpOffscreenLayers(std::string& result) { auto future = mScheduler->schedule([this] { std::string result; for (Layer* offscreenLayer : mOffscreenLayers) { offscreenLayer->traverse(LayerVector::StateSet::Drawing, [&](Layer* layer) { layer->dumpOffscreenDebugInfo(result); }); } return result; }); result.append("Offscreen Layers:\n"); result.append(future.get()); } void SurfaceFlinger::dumpHwcLayersMinidumpLocked(std::string& result) const { for (const auto& [token, display] : mDisplays) { const auto displayId = HalDisplayId::tryCast(display->getId()); if (!displayId) { continue; } StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(), displayId == mActiveDisplayId ? "active" : "inactive"); Layer::miniDumpHeader(result); const DisplayDevice& ref = *display; mDrawingState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); }); result.append("\n"); } } void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, const std::string& compositionLayers, std::string& result) const { const bool colorize = !args.empty() && args[0] == String16("--color"); Colorizer colorizer(colorize); // figure out if we're stuck somewhere const nsecs_t now = systemTime(); const nsecs_t inTransaction(mDebugInTransaction); nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; /* * Dump library configuration. */ colorizer.bold(result); result.append("Build configuration:"); colorizer.reset(result); appendSfConfigString(result); result.append("\n"); result.append("\nDisplay identification data:\n"); dumpDisplayIdentificationData(result); result.append("\nWide-Color information:\n"); dumpWideColorInfo(result); colorizer.bold(result); result.append("Sync configuration: "); colorizer.reset(result); result.append(SyncFeatures::getInstance().toString()); result.append("\n\n"); colorizer.bold(result); result.append("Scheduler:\n"); colorizer.reset(result); dumpScheduler(result); dumpEvents(result); dumpVsync(result); result.append("\n"); StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load()); StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load()); StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load()); /* * Dump the visible layer list */ colorizer.bold(result); StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load()); colorizer.reset(result); result.append(compositionLayers); colorizer.bold(result); StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size()); colorizer.reset(result); dumpDisplays(result); dumpCompositionDisplays(result); result.push_back('\n'); mCompositionEngine->dump(result); /* * Dump SurfaceFlinger global state */ colorizer.bold(result); result.append("SurfaceFlinger global state:\n"); colorizer.reset(result); getRenderEngine().dump(result); result.append("ClientCache state:\n"); ClientCache::getInstance().dump(result); DebugEGLImageTracker::getInstance()->dump(result); if (const auto display = getDefaultDisplayDeviceLocked()) { display->getCompositionDisplay()->getState().undefinedRegion.dump(result, "undefinedRegion"); StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n", toCString(display->getOrientation()), display->isPoweredOn()); } StringAppendF(&result, " transaction-flags : %08x\n", mTransactionFlags.load()); if (const auto display = getDefaultDisplayDeviceLocked()) { std::string fps, xDpi, yDpi; if (const auto activeModePtr = display->refreshRateSelector().getActiveMode().modePtr.get()) { fps = to_string(activeModePtr->getFps()); const auto dpi = activeModePtr->getDpi(); xDpi = base::StringPrintf("%.2f", dpi.x); yDpi = base::StringPrintf("%.2f", dpi.y); } else { fps = "unknown"; xDpi = "unknown"; yDpi = "unknown"; } StringAppendF(&result, " refresh-rate : %s\n" " x-dpi : %s\n" " y-dpi : %s\n", fps.c_str(), xDpi.c_str(), yDpi.c_str()); } StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0); /* * Tracing state */ mLayerTracing.dump(result); result.append("\nTransaction tracing: "); if (mTransactionTracing) { result.append("enabled\n"); mTransactionTracing->dump(result); } else { result.append("disabled\n"); } result.push_back('\n'); dumpHwcLayersMinidumpLocked(result); { DumpArgs plannerArgs; plannerArgs.add(); // first argument is ignored plannerArgs.add(String16("--layers")); dumpPlannerInfo(plannerArgs, result); } /* * Dump HWComposer state */ colorizer.bold(result); result.append("h/w composer state:\n"); colorizer.reset(result); const bool hwcDisabled = mDebugDisableHWC || mDebugFlashDelay; StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled"); dumpHwc(result); /* * Dump gralloc state */ const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); alloc.dump(result); /* * Dump flag/property manager state */ mFlagManager.dump(result); result.append(mTimeStats->miniDump()); result.append("\n"); result.append("Window Infos:\n"); auto windowInfosDebug = mWindowInfosListenerInvoker->getDebugInfo(); StringAppendF(&result, " max send vsync id: %" PRId64 "\n", windowInfosDebug.maxSendDelayVsyncId.value); StringAppendF(&result, " max send delay (ns): %" PRId64 " ns\n", windowInfosDebug.maxSendDelayDuration); StringAppendF(&result, " unsent messages: %" PRIu32 "\n", windowInfosDebug.pendingMessageCount); result.append("\n"); } mat4 SurfaceFlinger::calculateColorMatrix(float saturation) { if (saturation == 1) { return mat4(); } float3 luminance{0.213f, 0.715f, 0.072f}; luminance *= 1.0f - saturation; mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f}, vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f}, vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f}, vec4{0.0f, 0.0f, 0.0f, 1.0f}); return saturationMatrix; } void SurfaceFlinger::updateColorMatrixLocked() { mat4 colorMatrix = mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer(); if (mCurrentState.colorMatrix != colorMatrix) { mCurrentState.colorMatrix = colorMatrix; mCurrentState.colorMatrixChanged = true; setTransactionFlags(eTransactionNeeded); } } status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { #pragma clang diagnostic push #pragma clang diagnostic error "-Wswitch-enum" switch (static_cast(code)) { // These methods should at minimum make sure that the client requested // access to SF. case GET_HDR_CAPABILITIES: case GET_AUTO_LOW_LATENCY_MODE_SUPPORT: case GET_GAME_CONTENT_TYPE_SUPPORT: case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: { // OVERRIDE_HDR_TYPES is used by CTS tests, which acquire the necessary // permission dynamically. Don't use the permission cache for this check. bool usePermissionCache = code != OVERRIDE_HDR_TYPES; if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) { IPCThreadState* ipc = IPCThreadState::self(); ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(), ipc->getCallingUid()); return PERMISSION_DENIED; } return OK; } // The following calls are currently used by clients that do not // request necessary permissions. However, they do not expose any secret // information, so it is OK to pass them. case GET_ACTIVE_COLOR_MODE: case GET_ACTIVE_DISPLAY_MODE: case GET_DISPLAY_COLOR_MODES: case GET_DISPLAY_MODES: // Calling setTransactionState is safe, because you need to have been // granted a reference to Client* and Handle* to do anything with it. case SET_TRANSACTION_STATE: { // This is not sensitive information, so should not require permission control. return OK; } case BOOT_FINISHED: // Used by apps to hook Choreographer to SurfaceFlinger. case CREATE_DISPLAY_EVENT_CONNECTION: case CREATE_CONNECTION: case CREATE_DISPLAY: case DESTROY_DISPLAY: case GET_PRIMARY_PHYSICAL_DISPLAY_ID: case GET_PHYSICAL_DISPLAY_IDS: case GET_PHYSICAL_DISPLAY_TOKEN: case AUTHENTICATE_SURFACE: case SET_POWER_MODE: case GET_SUPPORTED_FRAME_TIMESTAMPS: case GET_DISPLAY_STATE: case GET_DISPLAY_STATS: case GET_STATIC_DISPLAY_INFO: case GET_DYNAMIC_DISPLAY_INFO: case GET_DISPLAY_NATIVE_PRIMARIES: case SET_ACTIVE_COLOR_MODE: case SET_BOOT_DISPLAY_MODE: case CLEAR_BOOT_DISPLAY_MODE: case GET_BOOT_DISPLAY_MODE_SUPPORT: case SET_AUTO_LOW_LATENCY_MODE: case SET_GAME_CONTENT_TYPE: case CAPTURE_LAYERS: case CAPTURE_DISPLAY: case CAPTURE_DISPLAY_BY_ID: case CLEAR_ANIMATION_FRAME_STATS: case GET_ANIMATION_FRAME_STATS: case OVERRIDE_HDR_TYPES: case ON_PULL_ATOM: case ENABLE_VSYNC_INJECTIONS: case INJECT_VSYNC: case GET_LAYER_DEBUG_INFO: case GET_COLOR_MANAGEMENT: case GET_COMPOSITION_PREFERENCE: case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES: case SET_DISPLAY_CONTENT_SAMPLING_ENABLED: case GET_DISPLAYED_CONTENT_SAMPLE: case GET_PROTECTED_CONTENT_SUPPORT: case IS_WIDE_COLOR_DISPLAY: case ADD_REGION_SAMPLING_LISTENER: case REMOVE_REGION_SAMPLING_LISTENER: case ADD_FPS_LISTENER: case REMOVE_FPS_LISTENER: case ADD_TUNNEL_MODE_ENABLED_LISTENER: case REMOVE_TUNNEL_MODE_ENABLED_LISTENER: case ADD_WINDOW_INFOS_LISTENER: case REMOVE_WINDOW_INFOS_LISTENER: case SET_DESIRED_DISPLAY_MODE_SPECS: case GET_DESIRED_DISPLAY_MODE_SPECS: case GET_DISPLAY_BRIGHTNESS_SUPPORT: case SET_DISPLAY_BRIGHTNESS: case ADD_HDR_LAYER_INFO_LISTENER: case REMOVE_HDR_LAYER_INFO_LISTENER: case NOTIFY_POWER_BOOST: case SET_GLOBAL_SHADOW_SETTINGS: case GET_DISPLAY_DECORATION_SUPPORT: case SET_FRAME_RATE: case SET_OVERRIDE_FRAME_RATE: case SET_FRAME_TIMELINE_INFO: case ADD_TRANSACTION_TRACE_LISTENER: case GET_GPU_CONTEXT_PRIORITY: case GET_MAX_ACQUIRED_BUFFER_COUNT: LOG_FATAL("Deprecated opcode: %d, migrated to AIDL", code); return PERMISSION_DENIED; } // These codes are used for the IBinder protocol to either interrogate the recipient // side of the transaction for its canonical interface descriptor or to dump its state. // We let them pass by default. if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION || code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION || code == IBinder::SYSPROPS_TRANSACTION) { return OK; } // Numbers from 1000 to 1042 are currently used for backdoors. The code // in onTransact verifies that the user is root, and has access to use SF. if (code >= 1000 && code <= 1042) { ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code); return OK; } ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code); return PERMISSION_DENIED; #pragma clang diagnostic pop } status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { if (const status_t error = CheckTransactCodeCredentials(code); error != OK) { return error; } status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { CHECK_INTERFACE(ISurfaceComposer, data, reply); IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (CC_UNLIKELY(uid != AID_SYSTEM && !PermissionCache::checkCallingPermission(sHardwareTest))) { const int pid = ipc->getCallingPid(); ALOGE("Permission Denial: " "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } int n; switch (code) { case 1000: // Unused. case 1001: return NAME_NOT_FOUND; case 1002: // Toggle flashing on surface damage. if (const int delay = data.readInt32(); delay > 0) { mDebugFlashDelay = delay; } else { mDebugFlashDelay = mDebugFlashDelay ? 0 : 1; } scheduleRepaint(); return NO_ERROR; case 1004: // Force composite ahead of next VSYNC. case 1006: scheduleComposite(FrameHint::kActive); return NO_ERROR; case 1005: { // Force commit ahead of next VSYNC. Mutex::Autolock lock(mStateLock); setTransactionFlags(eTransactionNeeded | eDisplayTransactionNeeded | eTraversalNeeded); return NO_ERROR; } case 1007: // Unused. return NAME_NOT_FOUND; case 1008: // Toggle forced GPU composition. mDebugDisableHWC = data.readInt32() != 0; scheduleRepaint(); return NO_ERROR; case 1009: // Toggle use of transform hint. mDebugDisableTransformHint = data.readInt32() != 0; scheduleRepaint(); return NO_ERROR; case 1010: // Interrogate. reply->writeInt32(0); reply->writeInt32(0); reply->writeInt32(mDebugFlashDelay); reply->writeInt32(0); reply->writeInt32(mDebugDisableHWC); return NO_ERROR; case 1013: // Unused. return NAME_NOT_FOUND; case 1014: { Mutex::Autolock _l(mStateLock); // daltonize n = data.readInt32(); switch (n % 10) { case 1: mDaltonizer.setType(ColorBlindnessType::Protanomaly); break; case 2: mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); break; case 3: mDaltonizer.setType(ColorBlindnessType::Tritanomaly); break; default: mDaltonizer.setType(ColorBlindnessType::None); break; } if (n >= 10) { mDaltonizer.setMode(ColorBlindnessMode::Correction); } else { mDaltonizer.setMode(ColorBlindnessMode::Simulation); } updateColorMatrixLocked(); return NO_ERROR; } case 1015: { Mutex::Autolock _l(mStateLock); // apply a color matrix n = data.readInt32(); if (n) { // color matrix is sent as a column-major mat4 matrix for (size_t i = 0 ; i < 4; i++) { for (size_t j = 0; j < 4; j++) { mClientColorMatrix[i][j] = data.readFloat(); } } } else { mClientColorMatrix = mat4(); } // Check that supplied matrix's last row is {0,0,0,1} so we can avoid // the division by w in the fragment shader float4 lastRow(transpose(mClientColorMatrix)[3]); if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { ALOGE("The color transform's last row must be (0, 0, 0, 1)"); } updateColorMatrixLocked(); return NO_ERROR; } case 1016: { // Unused. return NAME_NOT_FOUND; } case 1017: { n = data.readInt32(); mForceFullDamage = n != 0; return NO_ERROR; } case 1018: { // Modify Choreographer's duration n = data.readInt32(); mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1019: { // Modify SurfaceFlinger's duration n = data.readInt32(); mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns); return NO_ERROR; } case 1020: { // Unused return NAME_NOT_FOUND; } case 1021: { // Disable HWC virtual displays const bool enable = data.readInt32() != 0; static_cast( mScheduler->schedule([this, enable] { enableHalVirtualDisplays(enable); })); return NO_ERROR; } case 1022: { // Set saturation boost Mutex::Autolock _l(mStateLock); mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f)); updateColorMatrixLocked(); return NO_ERROR; } case 1023: { // Set color mode. mDisplayColorSetting = static_cast(data.readInt32()); if (int32_t colorMode; data.readInt32(&colorMode) == NO_ERROR) { mForceColorMode = static_cast(colorMode); } scheduleRepaint(); return NO_ERROR; } // Deprecate, use 1030 to check whether the device is color managed. case 1024: { return NAME_NOT_FOUND; } case 1025: { // Set layer tracing n = data.readInt32(); bool tracingEnabledChanged; if (n == 1) { int64_t fixedStartingTime = data.readInt64(); ALOGD("LayerTracing enabled"); tracingEnabledChanged = mLayerTracing.enable(); if (tracingEnabledChanged) { int64_t startingTime = (fixedStartingTime) ? fixedStartingTime : systemTime(); mScheduler ->schedule([&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD( kMainThreadContext) { addToLayerTracing(true /* visibleRegionDirty */, startingTime, mLastCommittedVsyncId.value); }) .wait(); } } else if (n == 2) { std::string filename = std::string(data.readCString()); ALOGD("LayerTracing disabled. Trace wrote to %s", filename.c_str()); tracingEnabledChanged = mLayerTracing.disable(filename.c_str()); } else { ALOGD("LayerTracing disabled"); tracingEnabledChanged = mLayerTracing.disable(); } mTracingEnabledChanged = tracingEnabledChanged; reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1026: { // Get layer tracing status reply->writeBool(mLayerTracing.isEnabled()); return NO_ERROR; } // Is a DisplayColorSetting supported? case 1027: { const auto display = getDefaultDisplayDevice(); if (!display) { return NAME_NOT_FOUND; } DisplayColorSetting setting = static_cast(data.readInt32()); switch (setting) { case DisplayColorSetting::kManaged: reply->writeBool(useColorManagement); break; case DisplayColorSetting::kUnmanaged: reply->writeBool(true); break; case DisplayColorSetting::kEnhanced: reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE)); break; default: // vendor display color setting reply->writeBool( display->hasRenderIntent(static_cast(setting))); break; } return NO_ERROR; } case 1028: { // Unused. return NAME_NOT_FOUND; } // Set buffer size for SF tracing (value in KB) case 1029: { n = data.readInt32(); if (n <= 0 || n > MAX_TRACING_MEMORY) { ALOGW("Invalid buffer size: %d KB", n); reply->writeInt32(BAD_VALUE); return BAD_VALUE; } ALOGD("Updating trace buffer to %d KB", n); mLayerTracing.setBufferSize(n * 1024); reply->writeInt32(NO_ERROR); return NO_ERROR; } // Is device color managed? case 1030: { reply->writeBool(useColorManagement); return NO_ERROR; } // Override default composition data space // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \ // && adb shell stop zygote && adb shell start zygote // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \ // adb shell stop zygote && adb shell start zygote case 1031: { Mutex::Autolock _l(mStateLock); n = data.readInt32(); if (n) { n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mDefaultCompositionDataspace = dataspace; } n = data.readInt32(); if (n) { Dataspace dataspace = static_cast(n); if (!validateCompositionDataspace(dataspace)) { return BAD_VALUE; } mWideColorGamutCompositionDataspace = dataspace; } } else { // restore composition data space. mDefaultCompositionDataspace = defaultCompositionDataspace; mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace; } return NO_ERROR; } // Set trace flags case 1033: { n = data.readUint32(); ALOGD("Updating trace flags to 0x%x", n); mLayerTracing.setTraceFlags(n); reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1034: { auto future = mScheduler->schedule( [&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) { switch (n = data.readInt32()) { case 0: case 1: enableRefreshRateOverlay(static_cast(n)); break; default: reply->writeBool(isRefreshRateOverlayEnabled()); } }); future.wait(); return NO_ERROR; } case 1035: { const int modeId = data.readInt32(); const auto display = [&]() -> sp { uint64_t value; if (data.readUint64(&value) != NO_ERROR) { return getDefaultDisplayDevice()->getDisplayToken().promote(); } if (const auto id = DisplayId::fromValue(value)) { return getPhysicalDisplayToken(*id); } ALOGE("Invalid physical display ID"); return nullptr; }(); mDebugDisplayModeSetByBackdoor = false; const status_t result = setActiveModeFromBackdoor(display, DisplayModeId{modeId}); mDebugDisplayModeSetByBackdoor = result == NO_ERROR; return result; } // Turn on/off frame rate flexibility mode. When turned on it overrides the display // manager frame rate policy a new policy which allows switching between all refresh // rates. case 1036: { if (data.readInt32() > 0) { // turn on return mScheduler ->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); // This is a little racy, but not in a way that hurts anything. As // we grab the defaultMode from the display manager policy, we could // be setting a new display manager policy, leaving us using a stale // defaultMode. The defaultMode doesn't matter for the override // policy though, since we set allowGroupSwitching to true, so it's // not a problem. scheduler::RefreshRateSelector::OverridePolicy overridePolicy; overridePolicy.defaultMode = display->refreshRateSelector() .getDisplayManagerPolicy() .defaultMode; overridePolicy.allowGroupSwitching = true; return setDesiredDisplayModeSpecsInternal(display, overridePolicy); }) .get(); } else { // turn off return mScheduler ->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); return setDesiredDisplayModeSpecsInternal( display, scheduler::RefreshRateSelector::NoOverridePolicy{}); }) .get(); } } // Inject a hotplug connected event for the primary display. This will deallocate and // reallocate the display state including framebuffers. case 1037: { const hal::HWDisplayId hwcId = (Mutex::Autolock(mStateLock), getHwComposer().getPrimaryHwcDisplayId()); onComposerHalHotplug(hwcId, hal::Connection::CONNECTED); return NO_ERROR; } // Modify the max number of display frames stored within FrameTimeline case 1038: { n = data.readInt32(); if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) { ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES); return BAD_VALUE; } if (n == 0) { // restore to default mFrameTimeline->reset(); return NO_ERROR; } mFrameTimeline->setMaxDisplayFrames(n); return NO_ERROR; } case 1039: { PhysicalDisplayId displayId = [&]() { Mutex::Autolock lock(mStateLock); return getDefaultDisplayDeviceLocked()->getPhysicalId(); }(); auto inUid = static_cast(data.readInt32()); const auto refreshRate = data.readFloat(); mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate}); mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId); return NO_ERROR; } // Toggle caching feature // First argument is an int32 - nonzero enables caching and zero disables caching // Second argument is an optional uint64 - if present, then limits enabling/disabling // caching to a particular physical display case 1040: { auto future = mScheduler->schedule([&] { n = data.readInt32(); std::optional inputId = std::nullopt; if (uint64_t inputDisplayId; data.readUint64(&inputDisplayId) == NO_ERROR) { inputId = DisplayId::fromValue(inputDisplayId); if (!inputId || getPhysicalDisplayToken(*inputId)) { ALOGE("No display with id: %" PRIu64, inputDisplayId); return NAME_NOT_FOUND; } } { Mutex::Autolock lock(mStateLock); mLayerCachingEnabled = n != 0; for (const auto& [_, display] : mDisplays) { if (!inputId || *inputId == display->getPhysicalId()) { display->enableLayerCaching(mLayerCachingEnabled); } } } return OK; }); if (const status_t error = future.get(); error != OK) { return error; } scheduleRepaint(); return NO_ERROR; } case 1041: { // Transaction tracing if (mTransactionTracing) { if (data.readInt32()) { // Transaction tracing is always running but allow the user to temporarily // increase the buffer when actively debugging. mTransactionTracing->setBufferSize( TransactionTracing::ACTIVE_TRACING_BUFFER_SIZE); } else { mTransactionTracing->writeToFile(); mTransactionTracing->setBufferSize( TransactionTracing::CONTINUOUS_TRACING_BUFFER_SIZE); } } reply->writeInt32(NO_ERROR); return NO_ERROR; } case 1042: { // Write layers trace or transaction trace to file if (mTransactionTracing) { mTransactionTracing->writeToFile(); } if (mLayerTracingEnabled) { mLayerTracing.writeToFile(); } reply->writeInt32(NO_ERROR); return NO_ERROR; } } } return err; } void SurfaceFlinger::kernelTimerChanged(bool expired) { static bool updateOverlay = property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true); if (!updateOverlay) return; // Update the overlay on the main thread to avoid race conditions with // RefreshRateSelector::getActiveMode static_cast(mScheduler->schedule([=] { const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()); if (!display) { ALOGW("%s: default display is null", __func__); return; } if (!display->isRefreshRateOverlayEnabled()) return; const auto desiredActiveMode = display->getDesiredActiveMode(); const std::optional desiredModeId = desiredActiveMode ? std::make_optional(desiredActiveMode->modeOpt->modePtr->getId()) : std::nullopt; const bool timerExpired = mKernelIdleTimerEnabled && expired; if (display->onKernelTimerChanged(desiredModeId, timerExpired)) { mScheduler->scheduleFrame(); } })); } std::pair, std::chrono::milliseconds> SurfaceFlinger::getKernelIdleTimerProperties(DisplayId displayId) { const bool isKernelIdleTimerHwcSupported = getHwComposer().getComposer()->isSupported( android::Hwc2::Composer::OptionalFeature::KernelIdleTimer); const auto timeout = getIdleTimerTimeout(displayId); if (isKernelIdleTimerHwcSupported) { if (const auto id = PhysicalDisplayId::tryCast(displayId); getHwComposer().hasDisplayIdleTimerCapability(*id)) { // In order to decide if we can use the HWC api for idle timer // we query DisplayCapability::DISPLAY_IDLE_TIMER directly on the composer // without relying on hasDisplayCapability. // hasDisplayCapability relies on DisplayCapabilities // which are updated after we set the PowerMode::ON. // DISPLAY_IDLE_TIMER is a display driver property // and is available before the PowerMode::ON return {KernelIdleTimerController::HwcApi, timeout}; } return {std::nullopt, timeout}; } if (getKernelIdleTimerSyspropConfig(displayId)) { return {KernelIdleTimerController::Sysprop, timeout}; } return {std::nullopt, timeout}; } void SurfaceFlinger::updateKernelIdleTimer(std::chrono::milliseconds timeout, KernelIdleTimerController controller, PhysicalDisplayId displayId) { switch (controller) { case KernelIdleTimerController::HwcApi: { getHwComposer().setIdleTimerEnabled(displayId, timeout); break; } case KernelIdleTimerController::Sysprop: { base::SetProperty(KERNEL_IDLE_TIMER_PROP, timeout > 0ms ? "true" : "false"); break; } } } void SurfaceFlinger::toggleKernelIdleTimer() { using KernelIdleTimerAction = scheduler::RefreshRateSelector::KernelIdleTimerAction; const auto display = getDefaultDisplayDeviceLocked(); if (!display) { ALOGW("%s: default display is null", __func__); return; } // If the support for kernel idle timer is disabled for the active display, // don't do anything. const std::optional kernelIdleTimerController = display->refreshRateSelector().kernelIdleTimerController(); if (!kernelIdleTimerController.has_value()) { return; } const KernelIdleTimerAction action = display->refreshRateSelector().getIdleTimerAction(); switch (action) { case KernelIdleTimerAction::TurnOff: if (mKernelIdleTimerEnabled) { ATRACE_INT("KernelIdleTimer", 0); std::chrono::milliseconds constexpr kTimerDisabledTimeout = 0ms; updateKernelIdleTimer(kTimerDisabledTimeout, kernelIdleTimerController.value(), display->getPhysicalId()); mKernelIdleTimerEnabled = false; } break; case KernelIdleTimerAction::TurnOn: if (!mKernelIdleTimerEnabled) { ATRACE_INT("KernelIdleTimer", 1); const std::chrono::milliseconds timeout = display->refreshRateSelector().getIdleTimerTimeout(); updateKernelIdleTimer(timeout, kernelIdleTimerController.value(), display->getPhysicalId()); mKernelIdleTimerEnabled = true; } break; } } // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope class WindowDisconnector { public: WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} ~WindowDisconnector() { native_window_api_disconnect(mWindow, mApi); } private: ANativeWindow* mWindow; const int mApi; }; static bool hasCaptureBlackoutContentPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); return uid == AID_GRAPHICS || uid == AID_SYSTEM || PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid); } static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { return OK; } // If the caller doesn't have the correct permissions but is only attempting to screenshot // itself, we allow it to continue. if (captureArgs.uid == uid) { return OK; } ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } status_t SurfaceFlinger::setSchedFifo(bool enabled) { static constexpr int kFifoPriority = 2; static constexpr int kOtherPriority = 0; struct sched_param param = {0}; int sched_policy; if (enabled) { sched_policy = SCHED_FIFO; param.sched_priority = kFifoPriority; } else { sched_policy = SCHED_OTHER; param.sched_priority = kOtherPriority; } if (sched_setscheduler(0, sched_policy, ¶m) != 0) { return -errno; } return NO_ERROR; } status_t SurfaceFlinger::setSchedAttr(bool enabled) { static const unsigned int kUclampMin = base::GetUintProperty("ro.surface_flinger.uclamp.min", 0U); if (!kUclampMin) { // uclamp.min set to 0 (default), skip setting return NO_ERROR; } // Currently, there is no wrapper in bionic: b/183240349. struct sched_attr { uint32_t size; uint32_t sched_policy; uint64_t sched_flags; int32_t sched_nice; uint32_t sched_priority; uint64_t sched_runtime; uint64_t sched_deadline; uint64_t sched_period; uint32_t sched_util_min; uint32_t sched_util_max; }; sched_attr attr = {}; attr.size = sizeof(attr); attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP); attr.sched_util_min = enabled ? kUclampMin : 0; attr.sched_util_max = 1024; if (syscall(__NR_sched_setattr, 0, &attr, 0)) { return -errno; } return NO_ERROR; } namespace { ui::Dataspace pickBestDataspace(ui::Dataspace requestedDataspace, const DisplayDevice* display, bool capturingHdrLayers, bool hintForSeamlessTransition) { if (requestedDataspace != ui::Dataspace::UNKNOWN || display == nullptr) { return requestedDataspace; } const auto& state = display->getCompositionDisplay()->getState(); const auto dataspaceForColorMode = ui::pickDataspaceFor(state.colorMode); // TODO: Enable once HDR screenshots are ready. if constexpr (/* DISABLES CODE */ (false)) { // For now since we only support 8-bit screenshots, just use HLG and // assume that 1.0 >= display max luminance. This isn't quite as future // proof as PQ is, but is good enough. // Consider using PQ once we support 16-bit screenshots and we're able // to consistently supply metadata to image encoders. return ui::Dataspace::BT2020_HLG; } return dataspaceForColorMode; } } // namespace status_t SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args, const sp& captureListener) { ATRACE_CALL(); status_t validate = validateScreenshotPermissions(args); if (validate != OK) { return validate; } if (!args.displayToken) return BAD_VALUE; wp displayWeak; ui::LayerStack layerStack; ui::Size reqSize(args.width, args.height); std::unordered_set excludeLayerIds; { Mutex::Autolock lock(mStateLock); sp display = getDisplayDeviceLocked(args.displayToken); if (!display) return NAME_NOT_FOUND; displayWeak = display; layerStack = display->getLayerStack(); // set the requested width/height to the logical display layer stack rect size by default if (args.width == 0 || args.height == 0) { reqSize = display->getLayerStackSpaceRect().getSize(); } for (const auto& handle : args.excludeHandles) { uint32_t excludeLayer = LayerHandle::getLayerId(handle); if (excludeLayer != UNASSIGNED_LAYER_ID) { excludeLayerIds.emplace(excludeLayer); } else { ALOGW("Invalid layer handle passed as excludeLayer to captureDisplay"); return NAME_NOT_FOUND; } } } RenderAreaFuture renderAreaFuture = ftl::defer([=] { return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, args.dataspace, args.useIdentityTransform, args.hintForSeamlessTransition, args.captureSecureLayers); }); GetLayerSnapshotsFunction getLayerSnapshots; if (mLayerLifecycleManagerEnabled) { getLayerSnapshots = getLayerSnapshotsForScreenshots(layerStack, args.uid, std::move(excludeLayerIds)); } else { auto traverseLayers = [this, args, excludeLayerIds, layerStack](const LayerVector::Visitor& visitor) { traverseLayersInLayerStack(layerStack, args.uid, std::move(excludeLayerIds), visitor); }; getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers); } auto future = captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, reqSize, args.pixelFormat, args.allowProtected, args.grayscale, captureListener); return fenceStatus(future.get()); } status_t SurfaceFlinger::captureDisplay(DisplayId displayId, const sp& captureListener) { ui::LayerStack layerStack; wp displayWeak; ui::Size size; { Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayId); if (!display) { return NAME_NOT_FOUND; } displayWeak = display; layerStack = display->getLayerStack(); size = display->getLayerStackSpaceRect().getSize(); } RenderAreaFuture renderAreaFuture = ftl::defer([=] { return DisplayRenderArea::create(displayWeak, Rect(), size, ui::Dataspace::UNKNOWN, false /* useIdentityTransform */, false /* hintForSeamlessTransition */, false /* captureSecureLayers */); }); GetLayerSnapshotsFunction getLayerSnapshots; if (mLayerLifecycleManagerEnabled) { getLayerSnapshots = getLayerSnapshotsForScreenshots(layerStack, CaptureArgs::UNSET_UID, /*snapshotFilterFn=*/nullptr); } else { auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) { traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, {}, visitor); }; getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers); } if (captureListener == nullptr) { ALOGE("capture screen must provide a capture listener callback"); return BAD_VALUE; } constexpr bool kAllowProtected = false; constexpr bool kGrayscale = false; auto future = captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, size, ui::PixelFormat::RGBA_8888, kAllowProtected, kGrayscale, captureListener); return fenceStatus(future.get()); } status_t SurfaceFlinger::captureLayers(const LayerCaptureArgs& args, const sp& captureListener) { ATRACE_CALL(); status_t validate = validateScreenshotPermissions(args); if (validate != OK) { return validate; } ui::Size reqSize; sp parent; Rect crop(args.sourceCrop); std::unordered_set excludeLayerIds; ui::Dataspace dataspace = args.dataspace; // Call this before holding mStateLock to avoid any deadlocking. bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission(); { Mutex::Autolock lock(mStateLock); parent = LayerHandle::getLayer(args.layerHandle); if (parent == nullptr) { ALOGE("captureLayers called with an invalid or removed parent"); return NAME_NOT_FOUND; } if (!canCaptureBlackoutContent && parent->getDrawingState().flags & layer_state_t::eLayerSecure) { ALOGW("Attempting to capture secure layer: PERMISSION_DENIED"); return PERMISSION_DENIED; } Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState()); if (args.sourceCrop.width() <= 0) { crop.left = 0; crop.right = parentSourceBounds.getWidth(); } if (args.sourceCrop.height() <= 0) { crop.top = 0; crop.bottom = parentSourceBounds.getHeight(); } if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) { // Error out if the layer has no source bounds (i.e. they are boundless) and a source // crop was not specified, or an invalid frame scale was provided. return BAD_VALUE; } reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY); for (const auto& handle : args.excludeHandles) { uint32_t excludeLayer = LayerHandle::getLayerId(handle); if (excludeLayer != UNASSIGNED_LAYER_ID) { excludeLayerIds.emplace(excludeLayer); } else { ALOGW("Invalid layer handle passed as excludeLayer to captureLayers"); return NAME_NOT_FOUND; } } } // mStateLock // really small crop or frameScale if (reqSize.width <= 0 || reqSize.height <= 0) { ALOGW("Failed to captureLayes: crop or scale too small"); return BAD_VALUE; } bool childrenOnly = args.childrenOnly; RenderAreaFuture renderAreaFuture = ftl::defer([=]() -> std::unique_ptr { ui::Transform layerTransform; Rect layerBufferSize; if (mLayerLifecycleManagerEnabled) { frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(parent->getSequence()); if (!snapshot) { ALOGW("Couldn't find layer snapshot for %d", parent->getSequence()); } else { layerTransform = snapshot->localTransform; layerBufferSize = snapshot->bufferSize; } } else { layerTransform = parent->getTransform(); layerBufferSize = parent->getBufferSize(parent->getDrawingState()); } return std::make_unique(*this, parent, crop, reqSize, dataspace, childrenOnly, args.captureSecureLayers, layerTransform, layerBufferSize, args.hintForSeamlessTransition); }); GetLayerSnapshotsFunction getLayerSnapshots; if (mLayerLifecycleManagerEnabled) { std::optional parentCrop = std::nullopt; if (args.childrenOnly) { parentCrop = crop.isEmpty() ? FloatRect(0, 0, reqSize.width, reqSize.height) : crop.toFloatRect(); } getLayerSnapshots = getLayerSnapshotsForScreenshots(parent->sequence, args.uid, std::move(excludeLayerIds), args.childrenOnly, parentCrop); } else { auto traverseLayers = [parent, args, excludeLayerIds](const LayerVector::Visitor& visitor) { parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { if (!layer->isVisible()) { return; } else if (args.childrenOnly && layer == parent.get()) { return; } else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) { return; } auto p = sp::fromExisting(layer); while (p != nullptr) { if (excludeLayerIds.count(p->sequence) != 0) { return; } p = p->getParent(); } visitor(layer); }); }; getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers); } if (captureListener == nullptr) { ALOGE("capture screen must provide a capture listener callback"); return BAD_VALUE; } auto future = captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, reqSize, args.pixelFormat, args.allowProtected, args.grayscale, captureListener); return fenceStatus(future.get()); } ftl::SharedFuture SurfaceFlinger::captureScreenCommon( RenderAreaFuture renderAreaFuture, GetLayerSnapshotsFunction getLayerSnapshots, ui::Size bufferSize, ui::PixelFormat reqPixelFormat, bool allowProtected, bool grayscale, const sp& captureListener) { ATRACE_CALL(); if (exceedsMaxRenderTargetSize(bufferSize.getWidth(), bufferSize.getHeight())) { ALOGE("Attempted to capture screen with size (%" PRId32 ", %" PRId32 ") that exceeds render target size limit.", bufferSize.getWidth(), bufferSize.getHeight()); return ftl::yield(base::unexpected(BAD_VALUE)).share(); } // Loop over all visible layers to see whether there's any protected layer. A protected layer is // typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer. // A protected layer has no implication on whether it's secure, which is explicitly set by // application to avoid being screenshot or drawn via unsecure display. const bool supportsProtected = getRenderEngine().supportsProtectedContent(); bool hasProtectedLayer = false; if (allowProtected && supportsProtected) { hasProtectedLayer = mScheduler ->schedule([=]() { bool protectedLayerFound = false; auto layers = getLayerSnapshots(); for (auto& [_, layerFe] : layers) { protectedLayerFound |= (layerFe->mSnapshot->isVisible && layerFe->mSnapshot->hasProtectedContent); } return protectedLayerFound; }) .get(); } const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE | (hasProtectedLayer && allowProtected && supportsProtected ? GRALLOC_USAGE_PROTECTED : GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN); sp buffer = getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(), static_cast(reqPixelFormat), 1 /* layerCount */, usage, "screenshot"); const status_t bufferStatus = buffer->initCheck(); if (bufferStatus != OK) { // Animations may end up being really janky, but don't crash here. // Otherwise an irreponsible process may cause an SF crash by allocating // too much. ALOGE("%s: Buffer failed to allocate: %d", __func__, bufferStatus); return ftl::yield(base::unexpected(bufferStatus)).share(); } const std::shared_ptr texture = std::make_shared< renderengine::impl::ExternalTexture>(buffer, getRenderEngine(), renderengine::impl::ExternalTexture::Usage:: WRITEABLE); return captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, texture, false /* regionSampling */, grayscale, captureListener); } ftl::SharedFuture SurfaceFlinger::captureScreenCommon( RenderAreaFuture renderAreaFuture, GetLayerSnapshotsFunction getLayerSnapshots, const std::shared_ptr& buffer, bool regionSampling, bool grayscale, const sp& captureListener) { ATRACE_CALL(); bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission(); auto future = mScheduler->schedule( [=, renderAreaFuture = std::move(renderAreaFuture)]() FTL_FAKE_GUARD( kMainThreadContext) mutable -> ftl::SharedFuture { ScreenCaptureResults captureResults; std::shared_ptr renderArea = renderAreaFuture.get(); if (!renderArea) { ALOGW("Skipping screen capture because of invalid render area."); if (captureListener) { captureResults.fenceResult = base::unexpected(NO_MEMORY); captureListener->onScreenCaptureCompleted(captureResults); } return ftl::yield(base::unexpected(NO_ERROR)).share(); } ftl::SharedFuture renderFuture; renderArea->render([&]() FTL_FAKE_GUARD(kMainThreadContext) { renderFuture = renderScreenImpl(renderArea, getLayerSnapshots, buffer, canCaptureBlackoutContent, regionSampling, grayscale, captureResults); }); if (captureListener) { // Defer blocking on renderFuture back to the Binder thread. return ftl::Future(std::move(renderFuture)) .then([captureListener, captureResults = std::move(captureResults)]( FenceResult fenceResult) mutable -> FenceResult { captureResults.fenceResult = std::move(fenceResult); captureListener->onScreenCaptureCompleted(captureResults); return base::unexpected(NO_ERROR); }) .share(); } return renderFuture; }); // Flatten nested futures. auto chain = ftl::Future(std::move(future)).then([](ftl::SharedFuture future) { return future; }); return chain.share(); } ftl::SharedFuture SurfaceFlinger::renderScreenImpl( std::shared_ptr renderArea, GetLayerSnapshotsFunction getLayerSnapshots, const std::shared_ptr& buffer, bool canCaptureBlackoutContent, bool regionSampling, bool grayscale, ScreenCaptureResults& captureResults) { ATRACE_CALL(); auto layers = getLayerSnapshots(); for (auto& [_, layerFE] : layers) { frontend::LayerSnapshot* snapshot = layerFE->mSnapshot.get(); captureResults.capturedSecureLayers |= (snapshot->isVisible && snapshot->isSecure); captureResults.capturedHdrLayers |= isHdrLayer(*snapshot); layerFE->mSnapshot->geomLayerTransform = renderArea->getTransform() * layerFE->mSnapshot->geomLayerTransform; layerFE->mSnapshot->geomInverseLayerTransform = layerFE->mSnapshot->geomLayerTransform.inverse(); } // We allow the system server to take screenshots of secure layers for // use in situations like the Screen-rotation animation and place // the impetus on WindowManager to not persist them. if (captureResults.capturedSecureLayers && !canCaptureBlackoutContent) { ALOGW("FB is protected: PERMISSION_DENIED"); return ftl::yield(base::unexpected(PERMISSION_DENIED)).share(); } auto capturedBuffer = buffer; auto requestedDataspace = renderArea->getReqDataSpace(); auto parent = renderArea->getParentLayer(); auto renderIntent = RenderIntent::TONE_MAP_COLORIMETRIC; auto sdrWhitePointNits = DisplayDevice::sDefaultMaxLumiance; auto displayBrightnessNits = DisplayDevice::sDefaultMaxLumiance; captureResults.capturedDataspace = requestedDataspace; { Mutex::Autolock lock(mStateLock); const DisplayDevice* display = nullptr; if (parent) { display = findDisplay([layerStack = parent->getLayerStack()](const auto& display) { return display.getLayerStack() == layerStack; }).get(); } if (display == nullptr) { display = renderArea->getDisplayDevice().get(); } if (display == nullptr) { display = getDefaultDisplayDeviceLocked().get(); } if (display != nullptr) { const auto& state = display->getCompositionDisplay()->getState(); captureResults.capturedDataspace = pickBestDataspace(requestedDataspace, display, captureResults.capturedHdrLayers, renderArea->getHintForSeamlessTransition()); sdrWhitePointNits = state.sdrWhitePointNits; displayBrightnessNits = state.displayBrightnessNits; if (requestedDataspace == ui::Dataspace::UNKNOWN) { renderIntent = state.renderIntent; } } } captureResults.buffer = capturedBuffer->getBuffer(); ui::LayerStack layerStack{ui::DEFAULT_LAYER_STACK}; if (!layers.empty()) { const sp& layerFE = layers.back().second; layerStack = layerFE->getCompositionState()->outputFilter.layerStack; } auto copyLayerFEs = [&layers]() { std::vector> layerFEs; layerFEs.reserve(layers.size()); for (const auto& [_, layerFE] : layers) { layerFEs.push_back(layerFE); } return layerFEs; }; auto present = [this, buffer = capturedBuffer, dataspace = captureResults.capturedDataspace, sdrWhitePointNits, displayBrightnessNits, grayscale, layerFEs = copyLayerFEs(), layerStack, regionSampling, renderArea = std::move(renderArea), renderIntent]() -> FenceResult { std::unique_ptr compositionEngine = mFactory.createCompositionEngine(); compositionEngine->setRenderEngine(mRenderEngine.get()); compositionengine::Output::ColorProfile colorProfile{.dataspace = dataspace, .renderIntent = renderIntent}; float targetBrightness = 1.0f; if (dataspace == ui::Dataspace::BT2020_HLG) { const float maxBrightnessNits = displayBrightnessNits / sdrWhitePointNits * 203; // With a low dimming ratio, don't fit the entire curve. Otherwise mixed content // will appear way too bright. if (maxBrightnessNits < 1000.f) { targetBrightness = 1000.f / maxBrightnessNits; } } std::shared_ptr output = createScreenCaptureOutput( ScreenCaptureOutputArgs{.compositionEngine = *compositionEngine, .colorProfile = colorProfile, .renderArea = *renderArea, .layerStack = layerStack, .buffer = std::move(buffer), .sdrWhitePointNits = sdrWhitePointNits, .displayBrightnessNits = displayBrightnessNits, .targetBrightness = targetBrightness, .regionSampling = regionSampling}); const float colorSaturation = grayscale ? 0 : 1; compositionengine::CompositionRefreshArgs refreshArgs{ .outputs = {output}, .layers = std::move(layerFEs), .updatingOutputGeometryThisFrame = true, .updatingGeometryThisFrame = true, .colorTransformMatrix = calculateColorMatrix(colorSaturation), }; compositionEngine->present(refreshArgs); return output->getRenderSurface()->getClientTargetAcquireFence(); }; // If RenderEngine is threaded, we can safely call CompositionEngine::present off the main // thread as the RenderEngine::drawLayers call will run on RenderEngine's thread. Otherwise, // we need RenderEngine to run on the main thread so we call CompositionEngine::present // immediately. // // TODO(b/196334700) Once we use RenderEngineThreaded everywhere we can always defer the call // to CompositionEngine::present. const bool renderEngineIsThreaded = [&]() { using Type = renderengine::RenderEngine::RenderEngineType; const auto type = mRenderEngine->getRenderEngineType(); return type == Type::THREADED || type == Type::SKIA_GL_THREADED; }(); auto presentFuture = renderEngineIsThreaded ? ftl::defer(std::move(present)).share() : ftl::yield(present()).share(); for (auto& [layer, layerFE] : layers) { layer->onLayerDisplayed(ftl::Future(presentFuture) .then([layerFE = std::move(layerFE)](FenceResult) { return layerFE->stealCompositionResult() .releaseFences.back() .first.get(); }) .share(), ui::INVALID_LAYER_STACK); } return presentFuture; } void SurfaceFlinger::traverseLegacyLayers(const LayerVector::Visitor& visitor) const { if (mLayerLifecycleManagerEnabled) { for (auto& layer : mLegacyLayers) { visitor(layer.second.get()); } } else { mDrawingState.traverse(visitor); } } // --------------------------------------------------------------------------- void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverse(visitor); } void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverseInZOrder(stateSet, visitor); } void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const { layersSortedByZ.traverseInReverseZOrder(stateSet, visitor); } void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid, std::unordered_set excludeLayerIds, const LayerVector::Visitor& visitor) { // We loop through the first level of layers without traversing, // as we need to determine which layers belong to the requested display. for (const auto& layer : mDrawingState.layersSortedByZ) { if (layer->getLayerStack() != layerStack) { continue; } // relative layers are traversed in Layer::traverseInZOrder layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { if (layer->isInternalDisplayOverlay()) { return; } if (!layer->isVisible()) { return; } if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) { return; } if (!excludeLayerIds.empty()) { auto p = sp::fromExisting(layer); while (p != nullptr) { if (excludeLayerIds.count(p->sequence) != 0) { return; } p = p->getParent(); } } visitor(layer); }); } } ftl::Optional SurfaceFlinger::getPreferredDisplayMode( PhysicalDisplayId displayId, DisplayModeId defaultModeId) const { if (const auto schedulerMode = mScheduler->getPreferredDisplayMode(); schedulerMode.modePtr->getPhysicalDisplayId() == displayId) { return schedulerMode; } return mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::snapshotRef) .and_then([&](const display::DisplaySnapshot& snapshot) { return snapshot.displayModes().get(defaultModeId); }) .transform([](const DisplayModePtr& modePtr) { return scheduler::FrameRateMode{modePtr->getFps(), ftl::as_non_null(modePtr)}; }); } status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal( const sp& display, const scheduler::RefreshRateSelector::PolicyVariant& policy) { const auto displayId = display->getPhysicalId(); Mutex::Autolock lock(mStateLock); if (mDebugDisplayModeSetByBackdoor) { // ignore this request as mode is overridden by backdoor return NO_ERROR; } auto& selector = display->refreshRateSelector(); using SetPolicyResult = scheduler::RefreshRateSelector::SetPolicyResult; switch (selector.setPolicy(policy)) { case SetPolicyResult::Invalid: return BAD_VALUE; case SetPolicyResult::Unchanged: return NO_ERROR; case SetPolicyResult::Changed: break; } const bool isInternalDisplay = mPhysicalDisplays.get(displayId) .transform(&PhysicalDisplay::isInternal) .value_or(false); if (isInternalDisplay && displayId != mActiveDisplayId) { // The policy will be be applied when the display becomes active. ALOGV("%s(%s): Inactive display", __func__, to_string(displayId).c_str()); return NO_ERROR; } return applyRefreshRateSelectorPolicy(displayId, selector); } status_t SurfaceFlinger::applyRefreshRateSelectorPolicy( PhysicalDisplayId displayId, const scheduler::RefreshRateSelector& selector, bool force) { const scheduler::RefreshRateSelector::Policy currentPolicy = selector.getCurrentPolicy(); ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str()); // TODO(b/140204874): Leave the event in until we do proper testing with all apps that might // be depending in this callback. if (const auto activeMode = selector.getActiveMode(); displayId == mActiveDisplayId) { mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode); toggleKernelIdleTimer(); } else { mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode); } auto preferredModeOpt = getPreferredDisplayMode(displayId, currentPolicy.defaultMode); if (!preferredModeOpt) { ALOGE("%s: Preferred mode is unknown", __func__); return NAME_NOT_FOUND; } auto preferredMode = std::move(*preferredModeOpt); const auto preferredModeId = preferredMode.modePtr->getId(); ALOGV("Switching to Scheduler preferred mode %d (%s)", preferredModeId.value(), to_string(preferredMode.fps).c_str()); if (!selector.isModeAllowed(preferredMode)) { ALOGE("%s: Preferred mode %d is disallowed", __func__, preferredModeId.value()); return INVALID_OPERATION; } setDesiredActiveMode({std::move(preferredMode), .emitEvent = true}, force); return NO_ERROR; } namespace { FpsRange translate(const gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange& aidlRange) { return FpsRange{Fps::fromValue(aidlRange.min), Fps::fromValue(aidlRange.max)}; } FpsRanges translate(const gui::DisplayModeSpecs::RefreshRateRanges& aidlRanges) { return FpsRanges{translate(aidlRanges.physical), translate(aidlRanges.render)}; } gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange translate(const FpsRange& range) { gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange aidlRange; aidlRange.min = range.min.getValue(); aidlRange.max = range.max.getValue(); return aidlRange; } gui::DisplayModeSpecs::RefreshRateRanges translate(const FpsRanges& ranges) { gui::DisplayModeSpecs::RefreshRateRanges aidlRanges; aidlRanges.physical = translate(ranges.physical); aidlRanges.render = translate(ranges.render); return aidlRanges; } } // namespace status_t SurfaceFlinger::setDesiredDisplayModeSpecs(const sp& displayToken, const gui::DisplayModeSpecs& specs) { ATRACE_CALL(); if (!displayToken) { return BAD_VALUE; } auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t { const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayToken)); if (!display) { ALOGE("Attempt to set desired display modes for invalid display token %p", displayToken.get()); return NAME_NOT_FOUND; } else if (display->isVirtual()) { ALOGW("Attempt to set desired display modes for virtual display"); return INVALID_OPERATION; } else { using Policy = scheduler::RefreshRateSelector::DisplayManagerPolicy; const Policy policy{DisplayModeId(specs.defaultMode), translate(specs.primaryRanges), translate(specs.appRequestRanges), specs.allowGroupSwitching}; return setDesiredDisplayModeSpecsInternal(display, policy); } }); return future.get(); } status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp& displayToken, gui::DisplayModeSpecs* outSpecs) { ATRACE_CALL(); if (!displayToken || !outSpecs) { return BAD_VALUE; } Mutex::Autolock lock(mStateLock); const auto display = getDisplayDeviceLocked(displayToken); if (!display) { return NAME_NOT_FOUND; } if (display->isVirtual()) { return INVALID_OPERATION; } scheduler::RefreshRateSelector::Policy policy = display->refreshRateSelector().getDisplayManagerPolicy(); outSpecs->defaultMode = policy.defaultMode.value(); outSpecs->allowGroupSwitching = policy.allowGroupSwitching; outSpecs->primaryRanges = translate(policy.primaryRanges); outSpecs->appRequestRanges = translate(policy.appRequestRanges); return NO_ERROR; } void SurfaceFlinger::onLayerFirstRef(Layer* layer) { mNumLayers++; if (!layer->isRemovedFromCurrentState()) { mScheduler->registerLayer(layer); } } void SurfaceFlinger::onLayerDestroyed(Layer* layer) { mNumLayers--; removeHierarchyFromOffscreenLayers(layer); if (!layer->isRemovedFromCurrentState()) { mScheduler->deregisterLayer(layer); } if (mTransactionTracing) { mTransactionTracing->onLayerRemoved(layer->getSequence()); } } void SurfaceFlinger::onLayerUpdate() { scheduleCommit(FrameHint::kActive); } // WARNING: ONLY CALL THIS FROM LAYER DTOR // Here we add children in the current state to offscreen layers and remove the // layer itself from the offscreen layer list. Since // this is the dtor, it is safe to access the current state. This keeps us // from dangling children layers such that they are not reachable from the // Drawing state nor the offscreen layer list // See b/141111965 void SurfaceFlinger::removeHierarchyFromOffscreenLayers(Layer* layer) { for (auto& child : layer->getCurrentChildren()) { mOffscreenLayers.emplace(child.get()); } mOffscreenLayers.erase(layer); } void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) { mOffscreenLayers.erase(layer); } status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor, float lightPosY, float lightPosZ, float lightRadius) { Mutex::Autolock _l(mStateLock); mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor); mCurrentState.globalShadowSettings.spotColor = vec4(spotColor); mCurrentState.globalShadowSettings.lightPos.y = lightPosY; mCurrentState.globalShadowSettings.lightPos.z = lightPosZ; mCurrentState.globalShadowSettings.lightRadius = lightRadius; // these values are overridden when calculating the shadow settings for a layer. mCurrentState.globalShadowSettings.lightPos.x = 0.f; mCurrentState.globalShadowSettings.length = 0.f; return NO_ERROR; } const std::unordered_map& SurfaceFlinger::getGenericLayerMetadataKeyMap() const { // TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking // on the work to remove the table in that bug rather than adding more to // it. static const std::unordered_map genericLayerMetadataKeyMap{ {"org.chromium.arc.V1_0.TaskId", gui::METADATA_TASK_ID}, {"org.chromium.arc.V1_0.CursorInfo", gui::METADATA_MOUSE_CURSOR}, }; return genericLayerMetadataKeyMap; } status_t SurfaceFlinger::setOverrideFrameRate(uid_t uid, float frameRate) { PhysicalDisplayId displayId = [&]() { Mutex::Autolock lock(mStateLock); return getDefaultDisplayDeviceLocked()->getPhysicalId(); }(); mScheduler->setGameModeRefreshRateForUid(FrameRateOverride{static_cast(uid), frameRate}); mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId); return NO_ERROR; } void SurfaceFlinger::enableRefreshRateOverlay(bool enable) { bool setByHwc = getHwComposer().hasCapability(Capability::REFRESH_RATE_CHANGED_CALLBACK_DEBUG); for (const auto& [id, display] : mPhysicalDisplays) { if (display.snapshot().connectionType() == ui::DisplayConnectionType::Internal) { if (setByHwc) { const auto status = getHwComposer().setRefreshRateChangedCallbackDebugEnabled(id, enable); if (status != NO_ERROR) { ALOGE("Error updating the refresh rate changed callback debug enabled"); return; } } if (const auto device = getDisplayDeviceLocked(id)) { device->enableRefreshRateOverlay(enable, setByHwc, mRefreshRateOverlaySpinner, mRefreshRateOverlayRenderRate, mRefreshRateOverlayShowInMiddle); } } } } int SurfaceFlinger::getGpuContextPriority() { return getRenderEngine().getContextPriority(); } int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate, std::chrono::nanoseconds presentLatency) { auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs(); if (presentLatency.count() % refreshRate.getPeriodNsecs()) { pipelineDepth++; } return std::max(1ll, pipelineDepth - 1); } status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const { Fps maxRefreshRate = 60_Hz; if (!getHwComposer().isHeadless()) { if (const auto display = getDefaultDisplayDevice()) { maxRefreshRate = display->refreshRateSelector().getSupportedRefreshRateRange().max; } } *buffers = getMaxAcquiredBufferCountForRefreshRate(maxRefreshRate); return NO_ERROR; } uint32_t SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const { Fps refreshRate = 60_Hz; if (const auto frameRateOverride = mScheduler->getFrameRateOverride(uid)) { refreshRate = *frameRateOverride; } else if (!getHwComposer().isHeadless()) { if (const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked())) { refreshRate = display->refreshRateSelector().getActiveMode().fps; } } return getMaxAcquiredBufferCountForRefreshRate(refreshRate); } int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const { const auto vsyncConfig = mVsyncConfiguration->getConfigsForRefreshRate(refreshRate).late; const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration; return calculateMaxAcquiredBufferCount(refreshRate, presentLatency); } void SurfaceFlinger::handleLayerCreatedLocked(const LayerCreatedState& state, VsyncId vsyncId) { sp layer = state.layer.promote(); if (!layer) { ALOGD("Layer was destroyed soon after creation %p", state.layer.unsafe_get()); return; } MUTEX_ALIAS(mStateLock, layer->mFlinger->mStateLock); sp parent; bool addToRoot = state.addToRoot; if (state.initialParent != nullptr) { parent = state.initialParent.promote(); if (parent == nullptr) { ALOGD("Parent was destroyed soon after creation %p", state.initialParent.unsafe_get()); addToRoot = false; } } if (parent == nullptr && addToRoot) { layer->setIsAtRoot(true); mCurrentState.layersSortedByZ.add(layer); } else if (parent == nullptr) { layer->onRemovedFromCurrentState(); } else if (parent->isRemovedFromCurrentState()) { parent->addChild(layer); layer->onRemovedFromCurrentState(); } else { parent->addChild(layer); } ui::LayerStack layerStack = layer->getLayerStack(LayerVector::StateSet::Current); sp hintDisplay; // Find the display that includes the layer. for (const auto& [token, display] : mDisplays) { if (display->getLayerStack() == layerStack) { hintDisplay = display; break; } } if (hintDisplay) { layer->updateTransformHint(hintDisplay->getTransformHint()); } } void SurfaceFlinger::sample() { if (!mLumaSampling || !mRegionSamplingThread) { return; } mRegionSamplingThread->onCompositionComplete(mScheduler->getScheduledFrameTime()); } void SurfaceFlinger::onActiveDisplaySizeChanged(const DisplayDevice& activeDisplay) { mScheduler->onActiveDisplayAreaChanged(activeDisplay.getWidth() * activeDisplay.getHeight()); getRenderEngine().onActiveDisplaySizeChanged(activeDisplay.getSize()); } void SurfaceFlinger::onActiveDisplayChangedLocked(const DisplayDevice* inactiveDisplayPtr, const DisplayDevice& activeDisplay) { ATRACE_CALL(); // For the first display activated during boot, there is no need to force setDesiredActiveMode, // because DM is about to send its policy via setDesiredDisplayModeSpecs. bool forceApplyPolicy = false; if (inactiveDisplayPtr) { inactiveDisplayPtr->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(false); forceApplyPolicy = true; } mActiveDisplayId = activeDisplay.getPhysicalId(); activeDisplay.getCompositionDisplay()->setLayerCachingTexturePoolEnabled(true); resetPhaseConfiguration(activeDisplay.getActiveMode().fps); mScheduler->setModeChangePending(false); mScheduler->setPacesetterDisplay(mActiveDisplayId); onActiveDisplaySizeChanged(activeDisplay); mActiveDisplayTransformHint = activeDisplay.getTransformHint(); sActiveDisplayRotationFlags = ui::Transform::toRotationFlags(activeDisplay.getOrientation()); // The policy of the new active/pacesetter display may have changed while it was inactive. In // that case, its preferred mode has not been propagated to HWC (via setDesiredActiveMode). In // either case, the Scheduler's cachedModeChangedParams must be initialized to the newly active // mode, and the kernel idle timer of the newly active display must be toggled. applyRefreshRateSelectorPolicy(mActiveDisplayId, activeDisplay.refreshRateSelector(), forceApplyPolicy); } status_t SurfaceFlinger::addWindowInfosListener( const sp& windowInfosListener) { mWindowInfosListenerInvoker->addWindowInfosListener(windowInfosListener); setTransactionFlags(eInputInfoUpdateNeeded); return NO_ERROR; } status_t SurfaceFlinger::removeWindowInfosListener( const sp& windowInfosListener) const { mWindowInfosListenerInvoker->removeWindowInfosListener(windowInfosListener); return NO_ERROR; } std::shared_ptr SurfaceFlinger::getExternalTextureFromBufferData( BufferData& bufferData, const char* layerName, uint64_t transactionId) { if (bufferData.buffer && exceedsMaxRenderTargetSize(bufferData.buffer->getWidth(), bufferData.buffer->getHeight())) { std::string errorMessage = base::StringPrintf("Attempted to create an ExternalTexture with size (%u, %u) for " "layer %s that exceeds render target size limit of %u.", bufferData.buffer->getWidth(), bufferData.buffer->getHeight(), layerName, static_cast(mMaxRenderTargetSize)); ALOGD("%s", errorMessage.c_str()); if (bufferData.releaseBufferListener) { bufferData.releaseBufferListener->onTransactionQueueStalled( String8(errorMessage.c_str())); } return nullptr; } bool cachedBufferChanged = bufferData.flags.test(BufferData::BufferDataChange::cachedBufferChanged); if (cachedBufferChanged && bufferData.buffer) { auto result = ClientCache::getInstance().add(bufferData.cachedBuffer, bufferData.buffer); if (result.ok()) { return result.value(); } if (result.error() == ClientCache::AddError::CacheFull) { ALOGE("Attempted to create an ExternalTexture for layer %s but CacheFull", layerName); if (bufferData.releaseBufferListener) { bufferData.releaseBufferListener->onTransactionQueueStalled( String8("Buffer processing hung due to full buffer cache")); } } return nullptr; } if (cachedBufferChanged) { return ClientCache::getInstance().get(bufferData.cachedBuffer); } if (bufferData.buffer) { return std::make_shared< renderengine::impl::ExternalTexture>(bufferData.buffer, getRenderEngine(), renderengine::impl::ExternalTexture::Usage:: READABLE); } return nullptr; } bool SurfaceFlinger::commitMirrorDisplays(VsyncId vsyncId) { std::vector mirrorDisplays; { std::scoped_lock lock(mMirrorDisplayLock); mirrorDisplays = std::move(mMirrorDisplays); mMirrorDisplays.clear(); if (mirrorDisplays.size() == 0) { return false; } } sp unused; for (const auto& mirrorDisplay : mirrorDisplays) { // Set mirror layer's default layer stack to -1 so it doesn't end up rendered on a display // accidentally. sp rootMirrorLayer = LayerHandle::getLayer(mirrorDisplay.rootHandle); rootMirrorLayer->setLayerStack(ui::LayerStack::fromValue(-1)); for (const auto& layer : mDrawingState.layersSortedByZ) { if (layer->getLayerStack() != mirrorDisplay.layerStack || layer->isInternalDisplayOverlay()) { continue; } LayerCreationArgs mirrorArgs(this, mirrorDisplay.client, "MirrorLayerParent", ISurfaceComposerClient::eNoColorFill, gui::LayerMetadata()); sp childMirror; { Mutex::Autolock lock(mStateLock); createEffectLayer(mirrorArgs, &unused, &childMirror); MUTEX_ALIAS(mStateLock, childMirror->mFlinger->mStateLock); childMirror->setClonedChild(layer->createClone(childMirror->getSequence())); childMirror->reparent(mirrorDisplay.rootHandle); } // lock on mStateLock needs to be released before binder handle gets destroyed unused.clear(); } } return true; } bool SurfaceFlinger::commitCreatedLayers(VsyncId vsyncId, std::vector& createdLayers) { if (createdLayers.size() == 0) { return false; } Mutex::Autolock _l(mStateLock); for (const auto& createdLayer : createdLayers) { handleLayerCreatedLocked(createdLayer, vsyncId); } mLayersAdded = true; return mLayersAdded; } void SurfaceFlinger::updateLayerMetadataSnapshot() { LayerMetadata parentMetadata; for (const auto& layer : mDrawingState.layersSortedByZ) { layer->updateMetadataSnapshot(parentMetadata); } std::unordered_set visited; mDrawingState.traverse([&visited](Layer* layer) { if (visited.find(layer) != visited.end()) { return; } // If the layer isRelativeOf, then either it's relative metadata will be set // recursively when updateRelativeMetadataSnapshot is called on its relative parent or // it's relative parent has been deleted. Clear the layer's relativeLayerMetadata to ensure // that layers with deleted relative parents don't hold stale relativeLayerMetadata. if (layer->getDrawingState().isRelativeOf) { layer->editLayerSnapshot()->relativeLayerMetadata = {}; return; } layer->updateRelativeMetadataSnapshot({}, visited); }); } void SurfaceFlinger::moveSnapshotsFromCompositionArgs( compositionengine::CompositionRefreshArgs& refreshArgs, std::vector>& layers) { if (mLayerLifecycleManagerEnabled) { std::vector>& snapshots = mLayerSnapshotBuilder.getSnapshots(); for (auto [_, layerFE] : layers) { auto i = layerFE->mSnapshot->globalZ; snapshots[i] = std::move(layerFE->mSnapshot); } } if (mLegacyFrontEndEnabled && !mLayerLifecycleManagerEnabled) { for (auto [layer, layerFE] : layers) { layer->updateLayerSnapshot(std::move(layerFE->mSnapshot)); } } } std::vector> SurfaceFlinger::moveSnapshotsToCompositionArgs( compositionengine::CompositionRefreshArgs& refreshArgs, bool cursorOnly, int64_t vsyncId) { std::vector> layers; if (mLayerLifecycleManagerEnabled) { nsecs_t currentTime = systemTime(); mLayerSnapshotBuilder.forEachVisibleSnapshot( [&](std::unique_ptr& snapshot) { if (cursorOnly && snapshot->compositionType != aidl::android::hardware::graphics::composer3::Composition::CURSOR) { return; } if (!snapshot->hasSomethingToDraw()) { return; } auto it = mLegacyLayers.find(snapshot->sequence); LOG_ALWAYS_FATAL_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot->getDebugString().c_str()); auto& legacyLayer = it->second; sp layerFE = legacyLayer->getCompositionEngineLayerFE(snapshot->path); snapshot->fps = getLayerFramerate(currentTime, snapshot->sequence); layerFE->mSnapshot = std::move(snapshot); refreshArgs.layers.push_back(layerFE); layers.emplace_back(legacyLayer.get(), layerFE.get()); }); } if (mLegacyFrontEndEnabled && !mLayerLifecycleManagerEnabled) { auto moveSnapshots = [&layers, &refreshArgs, cursorOnly](Layer* layer) { if (const auto& layerFE = layer->getCompositionEngineLayerFE()) { if (cursorOnly && layer->getLayerSnapshot()->compositionType != aidl::android::hardware::graphics::composer3::Composition::CURSOR) return; layer->updateSnapshot(refreshArgs.updatingGeometryThisFrame); layerFE->mSnapshot = layer->stealLayerSnapshot(); refreshArgs.layers.push_back(layerFE); layers.emplace_back(layer, layerFE.get()); } }; if (cursorOnly || !mVisibleRegionsDirty) { // for hot path avoid traversals by walking though the previous composition list for (sp layer : mPreviouslyComposedLayers) { moveSnapshots(layer.get()); } } else { mPreviouslyComposedLayers.clear(); mDrawingState.traverseInZOrder( [&moveSnapshots](Layer* layer) { moveSnapshots(layer); }); mPreviouslyComposedLayers.reserve(layers.size()); for (auto [layer, _] : layers) { mPreviouslyComposedLayers.push_back(sp::fromExisting(layer)); } } } return layers; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots( std::optional layerStack, uint32_t uid, std::function snapshotFilterFn) { return [&, layerStack, uid]() { std::vector>> layers; bool stopTraversal = false; mLayerSnapshotBuilder.forEachVisibleSnapshot( [&](std::unique_ptr& snapshot) { if (stopTraversal) { return; } if (layerStack && snapshot->outputFilter.layerStack != *layerStack) { return; } if (uid != CaptureArgs::UNSET_UID && snapshot->uid != uid) { return; } if (!snapshot->hasSomethingToDraw()) { return; } if (snapshotFilterFn && !snapshotFilterFn(*snapshot, stopTraversal)) { return; } auto it = mLegacyLayers.find(snapshot->sequence); LOG_ALWAYS_FATAL_IF(it == mLegacyLayers.end(), "Couldnt find layer object for %s", snapshot->getDebugString().c_str()); Layer* legacyLayer = (it == mLegacyLayers.end()) ? nullptr : it->second.get(); sp layerFE = getFactory().createLayerFE(snapshot->name); layerFE->mSnapshot = std::make_unique(*snapshot); layers.emplace_back(legacyLayer, std::move(layerFE)); }); return layers; }; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots(std::optional layerStack, uint32_t uid, std::unordered_set excludeLayerIds) { return [&, layerStack, uid, excludeLayerIds = std::move(excludeLayerIds)]() { if (excludeLayerIds.empty()) { auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); return layers; } frontend::LayerSnapshotBuilder::Args args{.root = mLayerHierarchyBuilder.getHierarchy(), .layerLifecycleManager = mLayerLifecycleManager, .forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY, .displays = mFrontEndDisplayInfos, .displayChanges = true, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .excludeLayerIds = std::move(excludeLayerIds), .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap()}; mLayerSnapshotBuilder.update(args); auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); args.excludeLayerIds.clear(); mLayerSnapshotBuilder.update(args); return layers; }; } std::function>>()> SurfaceFlinger::getLayerSnapshotsForScreenshots(uint32_t rootLayerId, uint32_t uid, std::unordered_set excludeLayerIds, bool childrenOnly, const std::optional& parentCrop) { return [&, rootLayerId, uid, excludeLayerIds = std::move(excludeLayerIds), childrenOnly, parentCrop]() { auto root = mLayerHierarchyBuilder.getPartialHierarchy(rootLayerId, childrenOnly); frontend::LayerSnapshotBuilder::Args args{.root = root, .layerLifecycleManager = mLayerLifecycleManager, .forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY, .displays = mFrontEndDisplayInfos, .displayChanges = true, .globalShadowSettings = mDrawingState.globalShadowSettings, .supportsBlur = mSupportsBlur, .forceFullDamage = mForceFullDamage, .parentCrop = parentCrop, .excludeLayerIds = std::move(excludeLayerIds), .supportedLayerGenericMetadata = getHwComposer().getSupportedLayerGenericMetadata(), .genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap()}; mLayerSnapshotBuilder.update(args); auto getLayerSnapshotsFn = getLayerSnapshotsForScreenshots({}, uid, /*snapshotFilterFn=*/nullptr); std::vector>> layers = getLayerSnapshotsFn(); args.root = mLayerHierarchyBuilder.getHierarchy(); args.parentCrop.reset(); args.excludeLayerIds.clear(); mLayerSnapshotBuilder.update(args); return layers; }; } frontend::Update SurfaceFlinger::flushLifecycleUpdates() { frontend::Update update; ATRACE_NAME("TransactionHandler:flushTransactions"); // Locking: // 1. to prevent onHandleDestroyed from being called while the state lock is held, // we must keep a copy of the transactions (specifically the composer // states) around outside the scope of the lock. // 2. Transactions and created layers do not share a lock. To prevent applying // transactions with layers still in the createdLayer queue, flush the transactions // before committing the created layers. update.transactions = mTransactionHandler.flushTransactions(); { // TODO(b/238781169) lockless queue this and keep order. std::scoped_lock lock(mCreatedLayersLock); update.layerCreatedStates = std::move(mCreatedLayers); mCreatedLayers.clear(); update.newLayers = std::move(mNewLayers); mNewLayers.clear(); update.layerCreationArgs = std::move(mNewLayerArgs); mNewLayerArgs.clear(); update.destroyedHandles = std::move(mDestroyedHandles); mDestroyedHandles.clear(); } return update; } void SurfaceFlinger::addToLayerTracing(bool visibleRegionDirty, int64_t time, int64_t vsyncId) { const uint32_t tracingFlags = mLayerTracing.getFlags(); LayersProto layers(dumpDrawingStateProto(tracingFlags)); if (tracingFlags & LayerTracing::TRACE_EXTRA) { dumpOffscreenLayersProto(layers); } std::string hwcDump; if (tracingFlags & LayerTracing::TRACE_HWC) { dumpHwc(hwcDump); } auto displays = dumpDisplayProto(); mLayerTracing.notify(visibleRegionDirty, time, vsyncId, &layers, std::move(hwcDump), &displays); } // gui::ISurfaceComposer binder::Status SurfaceComposerAIDL::bootFinished() { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->bootFinished(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::createDisplayEventConnection( VsyncSource vsyncSource, EventRegistration eventRegistration, const sp& layerHandle, sp* outConnection) { sp conn = mFlinger->createDisplayEventConnection(vsyncSource, eventRegistration, layerHandle); if (conn == nullptr) { *outConnection = nullptr; return binderStatusFromStatusT(BAD_VALUE); } else { *outConnection = conn; return binder::Status::ok(); } } binder::Status SurfaceComposerAIDL::createConnection(sp* outClient) { const sp client = sp::make(mFlinger); if (client->initCheck() == NO_ERROR) { *outClient = client; return binder::Status::ok(); } else { *outClient = nullptr; return binderStatusFromStatusT(BAD_VALUE); } } binder::Status SurfaceComposerAIDL::createDisplay(const std::string& displayName, bool secure, float requestedRefreshRate, sp* outDisplay) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } String8 displayName8 = String8::format("%s", displayName.c_str()); *outDisplay = mFlinger->createDisplay(displayName8, secure, requestedRefreshRate); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::destroyDisplay(const sp& display) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->destroyDisplay(display); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getPhysicalDisplayIds(std::vector* outDisplayIds) { std::vector physicalDisplayIds = mFlinger->getPhysicalDisplayIds(); std::vector displayIds; displayIds.reserve(physicalDisplayIds.size()); for (auto item : physicalDisplayIds) { displayIds.push_back(static_cast(item.value)); } *outDisplayIds = displayIds; return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getPhysicalDisplayToken(int64_t displayId, sp* outDisplay) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } const auto id = DisplayId::fromValue(static_cast(displayId)); *outDisplay = mFlinger->getPhysicalDisplayToken(*id); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setPowerMode(const sp& display, int mode) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setPowerMode(display, mode); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getSupportedFrameTimestamps( std::vector* outSupported) { status_t status; if (!outSupported) { status = UNEXPECTED_NULL; } else { outSupported->clear(); status = mFlinger->getSupportedFrameTimestamps(outSupported); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayStats(const sp& display, gui::DisplayStatInfo* outStatInfo) { DisplayStatInfo statInfo; status_t status = mFlinger->getDisplayStats(display, &statInfo); if (status == NO_ERROR) { outStatInfo->vsyncTime = static_cast(statInfo.vsyncTime); outStatInfo->vsyncPeriod = static_cast(statInfo.vsyncPeriod); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayState(const sp& display, gui::DisplayState* outState) { ui::DisplayState state; status_t status = mFlinger->getDisplayState(display, &state); if (status == NO_ERROR) { outState->layerStack = state.layerStack.id; outState->orientation = static_cast(state.orientation); outState->layerStackSpaceRect.width = state.layerStackSpaceRect.width; outState->layerStackSpaceRect.height = state.layerStackSpaceRect.height; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getStaticDisplayInfo(int64_t displayId, gui::StaticDisplayInfo* outInfo) { using Tag = gui::DeviceProductInfo::ManufactureOrModelDate::Tag; ui::StaticDisplayInfo info; status_t status = mFlinger->getStaticDisplayInfo(displayId, &info); if (status == NO_ERROR) { // convert ui::StaticDisplayInfo to gui::StaticDisplayInfo outInfo->connectionType = static_cast(info.connectionType); outInfo->density = info.density; outInfo->secure = info.secure; outInfo->installOrientation = static_cast(info.installOrientation); gui::DeviceProductInfo dinfo; std::optional dpi = info.deviceProductInfo; dinfo.name = std::move(dpi->name); dinfo.manufacturerPnpId = std::vector(dpi->manufacturerPnpId.begin(), dpi->manufacturerPnpId.end()); dinfo.productId = dpi->productId; dinfo.relativeAddress = std::vector(dpi->relativeAddress.begin(), dpi->relativeAddress.end()); if (const auto* model = std::get_if(&dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ModelYear modelYear; modelYear.year = model->year; dinfo.manufactureOrModelDate.set(modelYear); } else if (const auto* manufacture = std::get_if( &dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ManufactureYear date; date.modelYear.year = manufacture->year; dinfo.manufactureOrModelDate.set(date); } else if (const auto* manufacture = std::get_if( &dpi->manufactureOrModelDate)) { gui::DeviceProductInfo::ManufactureWeekAndYear date; date.manufactureYear.modelYear.year = manufacture->year; date.week = manufacture->week; dinfo.manufactureOrModelDate.set(date); } outInfo->deviceProductInfo = dinfo; } return binderStatusFromStatusT(status); } void SurfaceComposerAIDL::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo& info, gui::DynamicDisplayInfo*& outInfo) { // convert ui::DynamicDisplayInfo to gui::DynamicDisplayInfo outInfo->supportedDisplayModes.clear(); outInfo->supportedDisplayModes.reserve(info.supportedDisplayModes.size()); for (const auto& mode : info.supportedDisplayModes) { gui::DisplayMode outMode; outMode.id = mode.id; outMode.resolution.width = mode.resolution.width; outMode.resolution.height = mode.resolution.height; outMode.xDpi = mode.xDpi; outMode.yDpi = mode.yDpi; outMode.refreshRate = mode.refreshRate; outMode.appVsyncOffset = mode.appVsyncOffset; outMode.sfVsyncOffset = mode.sfVsyncOffset; outMode.presentationDeadline = mode.presentationDeadline; outMode.group = mode.group; std::transform(mode.supportedHdrTypes.begin(), mode.supportedHdrTypes.end(), std::back_inserter(outMode.supportedHdrTypes), [](const ui::Hdr& value) { return static_cast(value); }); outInfo->supportedDisplayModes.push_back(outMode); } outInfo->activeDisplayModeId = info.activeDisplayModeId; outInfo->renderFrameRate = info.renderFrameRate; outInfo->supportedColorModes.clear(); outInfo->supportedColorModes.reserve(info.supportedColorModes.size()); for (const auto& cmode : info.supportedColorModes) { outInfo->supportedColorModes.push_back(static_cast(cmode)); } outInfo->activeColorMode = static_cast(info.activeColorMode); gui::HdrCapabilities& hdrCapabilities = outInfo->hdrCapabilities; hdrCapabilities.supportedHdrTypes.clear(); hdrCapabilities.supportedHdrTypes.reserve(info.hdrCapabilities.getSupportedHdrTypes().size()); for (const auto& hdr : info.hdrCapabilities.getSupportedHdrTypes()) { hdrCapabilities.supportedHdrTypes.push_back(static_cast(hdr)); } hdrCapabilities.maxLuminance = info.hdrCapabilities.getDesiredMaxLuminance(); hdrCapabilities.maxAverageLuminance = info.hdrCapabilities.getDesiredMaxAverageLuminance(); hdrCapabilities.minLuminance = info.hdrCapabilities.getDesiredMinLuminance(); outInfo->autoLowLatencyModeSupported = info.autoLowLatencyModeSupported; outInfo->gameContentTypeSupported = info.gameContentTypeSupported; outInfo->preferredBootDisplayMode = info.preferredBootDisplayMode; } binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromToken( const sp& display, gui::DynamicDisplayInfo* outInfo) { ui::DynamicDisplayInfo info; status_t status = mFlinger->getDynamicDisplayInfoFromToken(display, &info); if (status == NO_ERROR) { getDynamicDisplayInfoInternal(info, outInfo); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromId(int64_t displayId, gui::DynamicDisplayInfo* outInfo) { ui::DynamicDisplayInfo info; status_t status = mFlinger->getDynamicDisplayInfoFromId(displayId, &info); if (status == NO_ERROR) { getDynamicDisplayInfoInternal(info, outInfo); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayNativePrimaries(const sp& display, gui::DisplayPrimaries* outPrimaries) { ui::DisplayPrimaries primaries; status_t status = mFlinger->getDisplayNativePrimaries(display, primaries); if (status == NO_ERROR) { outPrimaries->red.X = primaries.red.X; outPrimaries->red.Y = primaries.red.Y; outPrimaries->red.Z = primaries.red.Z; outPrimaries->green.X = primaries.green.X; outPrimaries->green.Y = primaries.green.Y; outPrimaries->green.Z = primaries.green.Z; outPrimaries->blue.X = primaries.blue.X; outPrimaries->blue.Y = primaries.blue.Y; outPrimaries->blue.Z = primaries.blue.Z; outPrimaries->white.X = primaries.white.X; outPrimaries->white.Y = primaries.white.Y; outPrimaries->white.Z = primaries.white.Z; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setActiveColorMode(const sp& display, int colorMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setActiveColorMode(display, static_cast(colorMode)); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setBootDisplayMode(const sp& display, int displayModeId) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setBootDisplayMode(display, DisplayModeId{displayModeId}); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::clearBootDisplayMode(const sp& display) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->clearBootDisplayMode(display); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getOverlaySupport(gui::OverlayProperties* outProperties) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getOverlaySupport(outProperties); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getBootDisplayModeSupport(bool* outMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getBootDisplayModeSupport(outMode); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getHdrConversionCapabilities( std::vector* hdrConversionCapabilities) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getHdrConversionCapabilities(hdrConversionCapabilities); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setHdrConversionStrategy( const gui::HdrConversionStrategy& hdrConversionStrategy, int32_t* outPreferredHdrOutputType) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setHdrConversionStrategy(hdrConversionStrategy, outPreferredHdrOutputType); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getHdrOutputConversionSupport(bool* outMode) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->getHdrOutputConversionSupport(outMode); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setAutoLowLatencyMode(const sp& display, bool on) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setAutoLowLatencyMode(display, on); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setGameContentType(const sp& display, bool on) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } mFlinger->setGameContentType(display, on); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::captureDisplay( const DisplayCaptureArgs& args, const sp& captureListener) { status_t status = mFlinger->captureDisplay(args, captureListener); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::captureDisplayById( int64_t displayId, const sp& captureListener) { status_t status; IPCThreadState* ipc = IPCThreadState::self(); const int uid = ipc->getCallingUid(); if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) { std::optional id = DisplayId::fromValue(static_cast(displayId)); status = mFlinger->captureDisplay(*id, captureListener); } else { status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::captureLayers( const LayerCaptureArgs& args, const sp& captureListener) { status_t status = mFlinger->captureLayers(args, captureListener); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::overrideHdrTypes(const sp& display, const std::vector& hdrTypes) { // overrideHdrTypes is used by CTS tests, which acquire the necessary // permission dynamically. Don't use the permission cache for this check. status_t status = checkAccessPermission(false); if (status != OK) { return binderStatusFromStatusT(status); } std::vector hdrTypesVector; for (int32_t i : hdrTypes) { hdrTypesVector.push_back(static_cast(i)); } status = mFlinger->overrideHdrTypes(display, hdrTypesVector); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::onPullAtom(int32_t atomId, gui::PullAtomData* outPullData) { status_t status; const int uid = IPCThreadState::self()->getCallingUid(); if (uid != AID_SYSTEM) { status = PERMISSION_DENIED; } else { status = mFlinger->onPullAtom(atomId, &outPullData->data, &outPullData->success); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getLayerDebugInfo(std::vector* outLayers) { if (!outLayers) { return binderStatusFromStatusT(UNEXPECTED_NULL); } IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); return binderStatusFromStatusT(PERMISSION_DENIED); } status_t status = mFlinger->getLayerDebugInfo(outLayers); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getColorManagement(bool* outGetColorManagement) { status_t status = mFlinger->getColorManagement(outGetColorManagement); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getCompositionPreference(gui::CompositionPreference* outPref) { ui::Dataspace dataspace; ui::PixelFormat pixelFormat; ui::Dataspace wideColorGamutDataspace; ui::PixelFormat wideColorGamutPixelFormat; status_t status = mFlinger->getCompositionPreference(&dataspace, &pixelFormat, &wideColorGamutDataspace, &wideColorGamutPixelFormat); if (status == NO_ERROR) { outPref->defaultDataspace = static_cast(dataspace); outPref->defaultPixelFormat = static_cast(pixelFormat); outPref->wideColorGamutDataspace = static_cast(wideColorGamutDataspace); outPref->wideColorGamutPixelFormat = static_cast(wideColorGamutPixelFormat); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayedContentSamplingAttributes( const sp& display, gui::ContentSamplingAttributes* outAttrs) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } ui::PixelFormat format; ui::Dataspace dataspace; uint8_t componentMask; status = mFlinger->getDisplayedContentSamplingAttributes(display, &format, &dataspace, &componentMask); if (status == NO_ERROR) { outAttrs->format = static_cast(format); outAttrs->dataspace = static_cast(dataspace); outAttrs->componentMask = static_cast(componentMask); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDisplayContentSamplingEnabled(const sp& display, bool enable, int8_t componentMask, int64_t maxFrames) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setDisplayContentSamplingEnabled(display, enable, static_cast(componentMask), static_cast(maxFrames)); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayedContentSample(const sp& display, int64_t maxFrames, int64_t timestamp, gui::DisplayedFrameStats* outStats) { if (!outStats) { return binderStatusFromStatusT(BAD_VALUE); } status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } DisplayedFrameStats stats; status = mFlinger->getDisplayedContentSample(display, static_cast(maxFrames), static_cast(timestamp), &stats); if (status == NO_ERROR) { // convert from ui::DisplayedFrameStats to gui::DisplayedFrameStats outStats->numFrames = static_cast(stats.numFrames); outStats->component_0_sample.reserve(stats.component_0_sample.size()); for (const auto& s : stats.component_0_sample) { outStats->component_0_sample.push_back(static_cast(s)); } outStats->component_1_sample.reserve(stats.component_1_sample.size()); for (const auto& s : stats.component_1_sample) { outStats->component_1_sample.push_back(static_cast(s)); } outStats->component_2_sample.reserve(stats.component_2_sample.size()); for (const auto& s : stats.component_2_sample) { outStats->component_2_sample.push_back(static_cast(s)); } outStats->component_3_sample.reserve(stats.component_3_sample.size()); for (const auto& s : stats.component_3_sample) { outStats->component_3_sample.push_back(static_cast(s)); } } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getProtectedContentSupport(bool* outSupported) { status_t status = mFlinger->getProtectedContentSupport(outSupported); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::isWideColorDisplay(const sp& token, bool* outIsWideColorDisplay) { status_t status = mFlinger->isWideColorDisplay(token, outIsWideColorDisplay); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addRegionSamplingListener( const gui::ARect& samplingArea, const sp& stopLayerHandle, const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status != OK) { return binderStatusFromStatusT(status); } android::Rect rect; rect.left = samplingArea.left; rect.top = samplingArea.top; rect.right = samplingArea.right; rect.bottom = samplingArea.bottom; status = mFlinger->addRegionSamplingListener(rect, stopLayerHandle, listener); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeRegionSamplingListener( const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->removeRegionSamplingListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addFpsListener(int32_t taskId, const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->addFpsListener(taskId, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeFpsListener(const sp& listener) { status_t status = checkReadFrameBufferPermission(); if (status == OK) { status = mFlinger->removeFpsListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addTunnelModeEnabledListener( const sp& listener) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->addTunnelModeEnabledListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeTunnelModeEnabledListener( const sp& listener) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->removeTunnelModeEnabledListener(listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDesiredDisplayModeSpecs(const sp& displayToken, const gui::DisplayModeSpecs& specs) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->setDesiredDisplayModeSpecs(displayToken, specs); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDesiredDisplayModeSpecs(const sp& displayToken, gui::DisplayModeSpecs* outSpecs) { if (!outSpecs) { return binderStatusFromStatusT(BAD_VALUE); } status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } status = mFlinger->getDesiredDisplayModeSpecs(displayToken, outSpecs); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayBrightnessSupport(const sp& displayToken, bool* outSupport) { status_t status = mFlinger->getDisplayBrightnessSupport(displayToken, outSupport); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setDisplayBrightness(const sp& displayToken, const gui::DisplayBrightness& brightness) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->setDisplayBrightness(displayToken, brightness); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addHdrLayerInfoListener( const sp& displayToken, const sp& listener) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->addHdrLayerInfoListener(displayToken, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeHdrLayerInfoListener( const sp& displayToken, const sp& listener) { status_t status = checkControlDisplayBrightnessPermission(); if (status == OK) { status = mFlinger->removeHdrLayerInfoListener(displayToken, listener); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::notifyPowerBoost(int boostId) { status_t status = checkAccessPermission(); if (status == OK) { status = mFlinger->notifyPowerBoost(boostId); } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::setGlobalShadowSettings(const gui::Color& ambientColor, const gui::Color& spotColor, float lightPosY, float lightPosZ, float lightRadius) { status_t status = checkAccessPermission(); if (status != OK) { return binderStatusFromStatusT(status); } half4 ambientColorHalf = {ambientColor.r, ambientColor.g, ambientColor.b, ambientColor.a}; half4 spotColorHalf = {spotColor.r, spotColor.g, spotColor.b, spotColor.a}; status = mFlinger->setGlobalShadowSettings(ambientColorHalf, spotColorHalf, lightPosY, lightPosZ, lightRadius); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getDisplayDecorationSupport( const sp& displayToken, std::optional* outSupport) { std::optional support; status_t status = mFlinger->getDisplayDecorationSupport(displayToken, &support); if (status != NO_ERROR) { ALOGE("getDisplayDecorationSupport failed with error %d", status); return binderStatusFromStatusT(status); } if (!support || !support.has_value()) { outSupport->reset(); } else { outSupport->emplace(); outSupport->value().format = static_cast(support->format); outSupport->value().alphaInterpretation = static_cast(support->alphaInterpretation); } return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::setOverrideFrameRate(int32_t uid, float frameRate) { status_t status; const int c_uid = IPCThreadState::self()->getCallingUid(); if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) { status = mFlinger->setOverrideFrameRate(uid, frameRate); } else { ALOGE("setOverrideFrameRate() permission denied for uid: %d", c_uid); status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::getGpuContextPriority(int32_t* outPriority) { *outPriority = mFlinger->getGpuContextPriority(); return binder::Status::ok(); } binder::Status SurfaceComposerAIDL::getMaxAcquiredBufferCount(int32_t* buffers) { status_t status = mFlinger->getMaxAcquiredBufferCount(buffers); return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::addWindowInfosListener( const sp& windowInfosListener) { status_t status; const int pid = IPCThreadState::self()->getCallingPid(); const int uid = IPCThreadState::self()->getCallingUid(); // TODO(b/270566761) update permissions check so that only system_server and shell can add // WindowInfosListeners if (uid == AID_SYSTEM || uid == AID_GRAPHICS || checkPermission(sAccessSurfaceFlinger, pid, uid)) { status = mFlinger->addWindowInfosListener(windowInfosListener); } else { status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } binder::Status SurfaceComposerAIDL::removeWindowInfosListener( const sp& windowInfosListener) { status_t status; const int pid = IPCThreadState::self()->getCallingPid(); const int uid = IPCThreadState::self()->getCallingUid(); if (uid == AID_SYSTEM || uid == AID_GRAPHICS || checkPermission(sAccessSurfaceFlinger, pid, uid)) { status = mFlinger->removeWindowInfosListener(windowInfosListener); } else { status = PERMISSION_DENIED; } return binderStatusFromStatusT(status); } status_t SurfaceComposerAIDL::checkAccessPermission(bool usePermissionCache) { if (!mFlinger->callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) { IPCThreadState* ipc = IPCThreadState::self(); ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(), ipc->getCallingUid()); return PERMISSION_DENIED; } return OK; } status_t SurfaceComposerAIDL::checkControlDisplayBrightnessPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && (uid != AID_SYSTEM) && !PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) { ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } status_t SurfaceComposerAIDL::checkReadFrameBufferPermission() { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } return OK; } void SurfaceFlinger::forceFutureUpdate(int delayInMs) { static_cast(mScheduler->scheduleDelayed([&]() { scheduleRepaint(); }, ms2ns(delayInMs))); } const DisplayDevice* SurfaceFlinger::getDisplayFromLayerStack(ui::LayerStack layerStack) { for (const auto& [_, display] : mDisplays) { if (display->getLayerStack() == layerStack) { return display.get(); } } return nullptr; } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion -Wextra"