summaryrefslogtreecommitdiff
path: root/libs/binder/tests/binderThroughputTest.cpp
blob: 3b1faa8c2fac3f37d664aa54c3c26a90091fd892 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include <binder/Binder.h>
#include <binder/IBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>

#include <iostream>
#include <vector>
#include <tuple>

#include <unistd.h>
#include <sys/wait.h>

using namespace std;
using namespace android;

enum BinderWorkerServiceCode {
    BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION,
};

#define ASSERT_TRUE(cond) \
do { \
    if (!(cond)) {\
       cerr << __func__ << ":" << __LINE__ << " condition:" << #cond << " failed\n" << endl; \
       exit(EXIT_FAILURE); \
    } \
} while (0)

class BinderWorkerService : public BBinder
{
public:
    BinderWorkerService() {}
    ~BinderWorkerService() {}
    virtual status_t onTransact(uint32_t code,
                                const Parcel& data, Parcel* reply,
                                uint32_t flags = 0) {
        (void)flags;
        (void)data;
        (void)reply;
        switch (code) {
        case BINDER_NOP:
            return NO_ERROR;
        default:
            return UNKNOWN_TRANSACTION;
        };
    }
};

class Pipe {
    int m_readFd;
    int m_writeFd;
    Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {}
    Pipe(const Pipe &) = delete;
    Pipe& operator=(const Pipe &) = delete;
    Pipe& operator=(const Pipe &&) = delete;
public:
    Pipe(Pipe&& rval) noexcept {
        m_readFd = rval.m_readFd;
        m_writeFd = rval.m_writeFd;
        rval.m_readFd = 0;
        rval.m_writeFd = 0;
    }
    ~Pipe() {
        if (m_readFd)
            close(m_readFd);
        if (m_writeFd)
            close(m_writeFd);
    }
    void signal() {
        bool val = true;
        int error = write(m_writeFd, &val, sizeof(val));
        ASSERT_TRUE(error >= 0);
    };
    void wait() {
        bool val = false;
        int error = read(m_readFd, &val, sizeof(val));
        ASSERT_TRUE(error >= 0);
    }
    template <typename T> void send(const T& v) {
        int error = write(m_writeFd, &v, sizeof(T));
        ASSERT_TRUE(error >= 0);
    }
    template <typename T> void recv(T& v) {
        int error = read(m_readFd, &v, sizeof(T));
        ASSERT_TRUE(error >= 0);
    }
    static tuple<Pipe, Pipe> createPipePair() {
        int a[2];
        int b[2];

        int error1 = pipe(a);
        int error2 = pipe(b);
        ASSERT_TRUE(error1 >= 0);
        ASSERT_TRUE(error2 >= 0);

        return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
    }
};

static const uint32_t num_buckets = 128;
static uint64_t max_time_bucket = 50ull * 1000000;
static uint64_t time_per_bucket = max_time_bucket / num_buckets;

struct ProcResults {
    uint64_t m_worst = 0;
    uint32_t m_buckets[num_buckets] = {0};
    uint64_t m_transactions = 0;
    uint64_t m_long_transactions = 0;
    uint64_t m_total_time = 0;
    uint64_t m_best = max_time_bucket;

    void add_time(uint64_t time) {
        if (time > max_time_bucket) {
            m_long_transactions++;
        }
        m_buckets[min((uint32_t)(time / time_per_bucket), num_buckets - 1)] += 1;
        m_best = min(time, m_best);
        m_worst = max(time, m_worst);
        m_transactions += 1;
        m_total_time += time;
    }
    static ProcResults combine(const ProcResults& a, const ProcResults& b) {
        ProcResults ret;
        for (int i = 0; i < num_buckets; i++) {
            ret.m_buckets[i] = a.m_buckets[i] + b.m_buckets[i];
        }
        ret.m_worst = max(a.m_worst, b.m_worst);
        ret.m_best = min(a.m_best, b.m_best);
        ret.m_transactions = a.m_transactions + b.m_transactions;
        ret.m_long_transactions = a.m_long_transactions + b.m_long_transactions;
        ret.m_total_time = a.m_total_time + b.m_total_time;
        return ret;
    }
    void dump() {
        if (m_long_transactions > 0) {
            cout << (double)m_long_transactions / m_transactions << "% of transactions took longer "
                "than estimated max latency. Consider setting -m to be higher than "
                 << m_worst / 1000 << " microseconds" << endl;
        }

        double best = (double)m_best / 1.0E6;
        double worst = (double)m_worst / 1.0E6;
        double average = (double)m_total_time / m_transactions / 1.0E6;
        cout << "average:" << average << "ms worst:" << worst << "ms best:" << best << "ms" << endl;

        uint64_t cur_total = 0;
        float time_per_bucket_ms = time_per_bucket / 1.0E6;
        for (int i = 0; i < num_buckets; i++) {
            float cur_time = time_per_bucket_ms * i + 0.5f * time_per_bucket_ms;
            if ((cur_total < 0.5f * m_transactions) && (cur_total + m_buckets[i] >= 0.5f * m_transactions)) {
                cout << "50%: " << cur_time << " ";
            }
            if ((cur_total < 0.9f * m_transactions) && (cur_total + m_buckets[i] >= 0.9f * m_transactions)) {
                cout << "90%: " << cur_time << " ";
            }
            if ((cur_total < 0.95f * m_transactions) && (cur_total + m_buckets[i] >= 0.95f * m_transactions)) {
                cout << "95%: " << cur_time << " ";
            }
            if ((cur_total < 0.99f * m_transactions) && (cur_total + m_buckets[i] >= 0.99f * m_transactions)) {
                cout << "99%: " << cur_time << " ";
            }
            cur_total += m_buckets[i];
        }
        cout << endl;
    }
};

String16 generateServiceName(int num)
{
    char num_str[32];
    snprintf(num_str, sizeof(num_str), "%d", num);
    String16 serviceName = String16("binderWorker") + String16(num_str);
    return serviceName;
}

void worker_fx(int num,
               int worker_count,
               int iterations,
               int payload_size,
               bool cs_pair,
               Pipe p)
{
    // Create BinderWorkerService and for go.
    ProcessState::self()->startThreadPool();
    sp<IServiceManager> serviceMgr = defaultServiceManager();
    sp<BinderWorkerService> service = new BinderWorkerService;
    serviceMgr->addService(generateServiceName(num), service);

    srand(num);
    p.signal();
    p.wait();

    // If client/server pairs, then half the workers are
    // servers and half are clients
    int server_count = cs_pair ? worker_count / 2 : worker_count;

    // Get references to other binder services.
    cout << "Created BinderWorker" << num << endl;
    (void)worker_count;
    vector<sp<IBinder> > workers;
    for (int i = 0; i < server_count; i++) {
        if (num == i)
            continue;
        workers.push_back(serviceMgr->getService(generateServiceName(i)));
    }

    // Run the benchmark if client
    ProcResults results;
    chrono::time_point<chrono::high_resolution_clock> start, end;
    for (int i = 0; (!cs_pair || num >= server_count) && i < iterations; i++) {
        Parcel data, reply;
        int target = cs_pair ? num % server_count : rand() % workers.size();
        int sz = payload_size;

        while (sz >= sizeof(uint32_t)) {
            data.writeInt32(0);
            sz -= sizeof(uint32_t);
        }
        start = chrono::high_resolution_clock::now();
        status_t ret = workers[target]->transact(BINDER_NOP, data, &reply);
        end = chrono::high_resolution_clock::now();

        uint64_t cur_time = uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - start).count());
        results.add_time(cur_time);

        if (ret != NO_ERROR) {
           cout << "thread " << num << " failed " << ret << "i : " << i << endl;
           exit(EXIT_FAILURE);
        }
    }

    // Signal completion to master and wait.
    p.signal();
    p.wait();

    // Send results to master and wait for go to exit.
    p.send(results);
    p.wait();

    exit(EXIT_SUCCESS);
}

Pipe make_worker(int num, int iterations, int worker_count, int payload_size, bool cs_pair)
{
    auto pipe_pair = Pipe::createPipePair();
    pid_t pid = fork();
    if (pid) {
        /* parent */
        return move(get<0>(pipe_pair));
    } else {
        /* child */
        worker_fx(num, worker_count, iterations, payload_size, cs_pair, move(get<1>(pipe_pair)));
        /* never get here */
        return move(get<0>(pipe_pair));
    }

}

void wait_all(vector<Pipe>& v)
{
    for (int i = 0; i < v.size(); i++) {
        v[i].wait();
    }
}

void signal_all(vector<Pipe>& v)
{
    for (int i = 0; i < v.size(); i++) {
        v[i].signal();
    }
}

void run_main(int iterations,
              int workers,
              int payload_size,
              int cs_pair,
              bool training_round=false)
{
    vector<Pipe> pipes;
    // Create all the workers and wait for them to spawn.
    for (int i = 0; i < workers; i++) {
        pipes.push_back(make_worker(i, iterations, workers, payload_size, cs_pair));
    }
    wait_all(pipes);

    // Run the workers and wait for completion.
    chrono::time_point<chrono::high_resolution_clock> start, end;
    cout << "waiting for workers to complete" << endl;
    start = chrono::high_resolution_clock::now();
    signal_all(pipes);
    wait_all(pipes);
    end = chrono::high_resolution_clock::now();

    // Calculate overall throughput.
    double iterations_per_sec = double(iterations * workers) / (chrono::duration_cast<chrono::nanoseconds>(end - start).count() / 1.0E9);
    cout << "iterations per sec: " << iterations_per_sec << endl;

    // Collect all results from the workers.
    cout << "collecting results" << endl;
    signal_all(pipes);
    ProcResults tot_results;
    for (int i = 0; i < workers; i++) {
        ProcResults tmp_results;
        pipes[i].recv(tmp_results);
        tot_results = ProcResults::combine(tot_results, tmp_results);
    }

    // Kill all the workers.
    cout << "killing workers" << endl;
    signal_all(pipes);
    for (int i = 0; i < workers; i++) {
        int status;
        wait(&status);
        if (status != 0) {
            cout << "nonzero child status" << status << endl;
        }
    }
    if (training_round) {
        // sets max_time_bucket to 2 * m_worst from the training round.
        // Also needs to adjust time_per_bucket accordingly.
        max_time_bucket = 2 * tot_results.m_worst;
        time_per_bucket = max_time_bucket / num_buckets;
        cout << "Max latency during training: " << tot_results.m_worst / 1.0E6 << "ms" << endl;
    } else {
            tot_results.dump();
    }
}

int main(int argc, char *argv[])
{
    int workers = 2;
    int iterations = 10000;
    int payload_size = 0;
    bool cs_pair = false;
    bool training_round = false;
    (void)argc;
    (void)argv;

    // Parse arguments.
    for (int i = 1; i < argc; i++) {
        if (string(argv[i]) == "--help") {
            cout << "Usage: binderThroughputTest [OPTIONS]" << endl;
            cout << "\t-i N    : Specify number of iterations." << endl;
            cout << "\t-m N    : Specify expected max latency in microseconds." << endl;
            cout << "\t-p      : Split workers into client/server pairs." << endl;
            cout << "\t-s N    : Specify payload size." << endl;
            cout << "\t-t N    : Run training round." << endl;
            cout << "\t-w N    : Specify total number of workers." << endl;
            return 0;
        }
        if (string(argv[i]) == "-w") {
            workers = atoi(argv[i+1]);
            i++;
            continue;
        }
        if (string(argv[i]) == "-i") {
            iterations = atoi(argv[i+1]);
            i++;
            continue;
        }
        if (string(argv[i]) == "-s") {
            payload_size = atoi(argv[i+1]);
            i++;
        }
        if (string(argv[i]) == "-p") {
            // client/server pairs instead of spreading
            // requests to all workers. If true, half
            // the workers become clients and half servers
            cs_pair = true;
        }
        if (string(argv[i]) == "-t") {
            // Run one training round before actually collecting data
            // to get an approximation of max latency.
            training_round = true;
        }
        if (string(argv[i]) == "-m") {
            // Caller specified the max latency in microseconds.
            // No need to run training round in this case.
            if (atoi(argv[i+1]) > 0) {
                max_time_bucket = strtoull(argv[i+1], (char **)nullptr, 10) * 1000;
                time_per_bucket = max_time_bucket / num_buckets;
                i++;
            } else {
                cout << "Max latency -m must be positive." << endl;
                exit(EXIT_FAILURE);
            }
        }
    }

    if (training_round) {
        cout << "Start training round" << endl;
        run_main(iterations, workers, payload_size, cs_pair, training_round=true);
        cout << "Completed training round" << endl << endl;
    }

    run_main(iterations, workers, payload_size, cs_pair);
    return 0;
}