summaryrefslogtreecommitdiff
path: root/services/sensorservice/SensorDevice.cpp
blob: 7d9b0b730a34a4e7d92e612614c4b8c87a1390f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "SensorDevice.h"
#include "SensorService.h"

#include <android-base/logging.h>
#include <sensors/convert.h>
#include <utils/Atomic.h>
#include <utils/Errors.h>
#include <utils/Singleton.h>

#include <chrono>
#include <cinttypes>
#include <thread>

using android::hardware::hidl_vec;

using namespace android::hardware::sensors::V1_0;
using namespace android::hardware::sensors::V1_0::implementation;


namespace android {
// ---------------------------------------------------------------------------

ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)

static status_t StatusFromResult(Result result) {
    switch (result) {
        case Result::OK:
            return OK;
        case Result::BAD_VALUE:
            return BAD_VALUE;
        case Result::PERMISSION_DENIED:
            return PERMISSION_DENIED;
        case Result::INVALID_OPERATION:
            return INVALID_OPERATION;
        case Result::NO_MEMORY:
            return NO_MEMORY;
    }
}

SensorDevice::SensorDevice() : mHidlTransportErrors(20) {
    if (!connectHidlService()) {
        return;
    }

    float minPowerMa = 0.001; // 1 microAmp

    checkReturn(mSensors->getSensorsList(
            [&](const auto &list) {
                const size_t count = list.size();

                mActivationCount.setCapacity(count);
                Info model;
                for (size_t i=0 ; i < count; i++) {
                    sensor_t sensor;
                    convertToSensor(list[i], &sensor);
                    // Sanity check and clamp power if it is 0 (or close)
                    if (sensor.power < minPowerMa) {
                        ALOGE("Reported power %f not deemed sane, clamping to %f",
                              sensor.power, minPowerMa);
                        sensor.power = minPowerMa;
                    }
                    mSensorList.push_back(sensor);

                    mActivationCount.add(list[i].sensorHandle, model);

                    checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
                }
            }));

    mIsDirectReportSupported =
           (checkReturn(mSensors->unregisterDirectChannel(-1)) != Result::INVALID_OPERATION);
}

bool SensorDevice::connectHidlService() {
    // SensorDevice may wait upto 100ms * 10 = 1s for hidl service.
    constexpr auto RETRY_DELAY = std::chrono::milliseconds(100);
    size_t retry = 10;

    while (true) {
        int initStep = 0;
        mSensors = ISensors::getService();
        if (mSensors != nullptr) {
            ++initStep;
            // Poke ISensor service. If it has lingering connection from previous generation of
            // system server, it will kill itself. There is no intention to handle the poll result,
            // which will be done since the size is 0.
            if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) {
                // ok to continue
                break;
            }
            // hidl service is restarting, pointer is invalid.
            mSensors = nullptr;
        }

        if (--retry <= 0) {
            ALOGE("Cannot connect to ISensors hidl service!");
            break;
        }
        // Delay 100ms before retry, hidl service is expected to come up in short time after
        // crash.
        ALOGI("%s unsuccessful, try again soon (remaining retry %zu).",
                (initStep == 0) ? "getService()" : "poll() check", retry);
        std::this_thread::sleep_for(RETRY_DELAY);
    }
    return (mSensors != nullptr);
}

void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
    // not need to check mSensors because this is is only called after successful poll()
    if (connected) {
        Info model;
        mActivationCount.add(handle, model);
        checkReturn(mSensors->activate(handle, 0 /* enabled */));
    } else {
        mActivationCount.removeItem(handle);
    }
}

std::string SensorDevice::dump() const {
    if (mSensors == nullptr) return "HAL not initialized\n";

    String8 result;
    result.appendFormat("Total %zu h/w sensors, %zu running:\n",
                        mSensorList.size(), mActivationCount.size());

    Mutex::Autolock _l(mLock);
    for (const auto & s : mSensorList) {
        int32_t handle = s.handle;
        const Info& info = mActivationCount.valueFor(handle);
        if (info.batchParams.isEmpty()) continue;

        result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());

        result.append("sampling_period(ms) = {");
        for (size_t j = 0; j < info.batchParams.size(); j++) {
            const BatchParams& params = info.batchParams[j];
            result.appendFormat("%.1f%s", params.mTSample / 1e6f,
                j < info.batchParams.size() - 1 ? ", " : "");
        }
        result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);

        result.append("batching_period(ms) = {");
        for (size_t j = 0; j < info.batchParams.size(); j++) {
            const BatchParams& params = info.batchParams[j];
            result.appendFormat("%.1f%s", params.mTBatch / 1e6f,
                    j < info.batchParams.size() - 1 ? ", " : "");
        }
        result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
    }

    return result.string();
}

ssize_t SensorDevice::getSensorList(sensor_t const** list) {
    *list = &mSensorList[0];

    return mSensorList.size();
}

status_t SensorDevice::initCheck() const {
    return mSensors != NULL ? NO_ERROR : NO_INIT;
}

ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
    if (mSensors == nullptr) return NO_INIT;

    ssize_t err;
    int numHidlTransportErrors = 0;
    bool hidlTransportError = false;

    do {
        auto ret = mSensors->poll(
                count,
                [&](auto result,
                    const auto &events,
                    const auto &dynamicSensorsAdded) {
                    if (result == Result::OK) {
                        convertToSensorEvents(events, dynamicSensorsAdded, buffer);
                        err = (ssize_t)events.size();
                    } else {
                        err = StatusFromResult(result);
                    }
                });

        if (ret.isOk())  {
            hidlTransportError = false;
        } else {
            hidlTransportError = true;
            numHidlTransportErrors++;
            if (numHidlTransportErrors > 50) {
                // Log error and bail
                ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
                handleHidlDeath(ret.description());
            } else {
                std::this_thread::sleep_for(std::chrono::milliseconds(10));
            }
        }
    } while (hidlTransportError);

    if(numHidlTransportErrors > 0) {
        ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
        HidlTransportErrorLog errLog(time(NULL), numHidlTransportErrors);
        mHidlTransportErrors.add(errLog);
        mTotalHidlTransportErrors++;
    }

    return err;
}

void SensorDevice::autoDisable(void *ident, int handle) {
    Info& info( mActivationCount.editValueFor(handle) );
    Mutex::Autolock _l(mLock);
    info.removeBatchParamsForIdent(ident);
}

status_t SensorDevice::activate(void* ident, int handle, int enabled) {
    if (mSensors == nullptr) return NO_INIT;

    status_t err(NO_ERROR);
    bool actuateHardware = false;

    Mutex::Autolock _l(mLock);
    Info& info( mActivationCount.editValueFor(handle) );

    ALOGD_IF(DEBUG_CONNECTIONS,
             "SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu",
             ident, handle, enabled, info.batchParams.size());

    if (enabled) {
        ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));

        if (isClientDisabledLocked(ident)) {
            ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d",
                    ident, handle);
            return INVALID_OPERATION;
        }

        if (info.batchParams.indexOfKey(ident) >= 0) {
          if (info.numActiveClients() == 1) {
              // This is the first connection, we need to activate the underlying h/w sensor.
              actuateHardware = true;
          }
        } else {
            // Log error. Every activate call should be preceded by a batch() call.
            ALOGE("\t >>>ERROR: activate called without batch");
        }
    } else {
        ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));

        // If a connected dynamic sensor is deactivated, remove it from the
        // dictionary.
        auto it = mConnectedDynamicSensors.find(handle);
        if (it != mConnectedDynamicSensors.end()) {
            delete it->second;
            mConnectedDynamicSensors.erase(it);
        }

        if (info.removeBatchParamsForIdent(ident) >= 0) {
            if (info.numActiveClients() == 0) {
                // This is the last connection, we need to de-activate the underlying h/w sensor.
                actuateHardware = true;
            } else {
                // Call batch for this sensor with the previously calculated best effort
                // batch_rate and timeout. One of the apps has unregistered for sensor
                // events, and the best effort batch parameters might have changed.
                ALOGD_IF(DEBUG_CONNECTIONS,
                         "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle,
                         info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
                checkReturn(mSensors->batch(
                        handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
            }
        } else {
            // sensor wasn't enabled for this ident
        }

        if (isClientDisabledLocked(ident)) {
            return NO_ERROR;
        }
    }

    if (actuateHardware) {
        ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
                 enabled);
        err = StatusFromResult(checkReturn(mSensors->activate(handle, enabled)));
        ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
                 strerror(-err));

        if (err != NO_ERROR && enabled) {
            // Failure when enabling the sensor. Clean up on failure.
            info.removeBatchParamsForIdent(ident);
        }
    }

    return err;
}

status_t SensorDevice::batch(
        void* ident,
        int handle,
        int flags,
        int64_t samplingPeriodNs,
        int64_t maxBatchReportLatencyNs) {
    if (mSensors == nullptr) return NO_INIT;

    if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
        samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
    }
    if (maxBatchReportLatencyNs < 0) {
        maxBatchReportLatencyNs = 0;
    }

    ALOGD_IF(DEBUG_CONNECTIONS,
             "SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64,
             ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);

    Mutex::Autolock _l(mLock);
    Info& info(mActivationCount.editValueFor(handle));

    if (info.batchParams.indexOfKey(ident) < 0) {
        BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
        info.batchParams.add(ident, params);
    } else {
        // A batch has already been called with this ident. Update the batch parameters.
        info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
    }

    BatchParams prevBestBatchParams = info.bestBatchParams;
    // Find the minimum of all timeouts and batch_rates for this sensor.
    info.selectBatchParams();

    ALOGD_IF(DEBUG_CONNECTIONS,
             "\t>>> curr_period=%" PRId64 " min_period=%" PRId64
             " curr_timeout=%" PRId64 " min_timeout=%" PRId64,
             prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
             prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);

    status_t err(NO_ERROR);
    // If the min period or min timeout has changed since the last batch call, call batch.
    if (prevBestBatchParams != info.bestBatchParams) {
        ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
                 info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
        err = StatusFromResult(
                checkReturn(mSensors->batch(
                    handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch)));
        if (err != NO_ERROR) {
            ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s",
                  mSensors.get(), handle, info.bestBatchParams.mTSample,
                  info.bestBatchParams.mTBatch, strerror(-err));
            info.removeBatchParamsForIdent(ident);
        }
    }
    return err;
}

status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
    return batch(ident, handle, 0, samplingPeriodNs, 0);
}

int SensorDevice::getHalDeviceVersion() const {
    if (mSensors == nullptr) return -1;
    return SENSORS_DEVICE_API_VERSION_1_4;
}

status_t SensorDevice::flush(void* ident, int handle) {
    if (mSensors == nullptr) return NO_INIT;
    if (isClientDisabled(ident)) return INVALID_OPERATION;
    ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
    return StatusFromResult(checkReturn(mSensors->flush(handle)));
}

bool SensorDevice::isClientDisabled(void* ident) {
    Mutex::Autolock _l(mLock);
    return isClientDisabledLocked(ident);
}

bool SensorDevice::isClientDisabledLocked(void* ident) {
    return mDisabledClients.indexOf(ident) >= 0;
}

void SensorDevice::enableAllSensors() {
    if (mSensors == nullptr) return;
    Mutex::Autolock _l(mLock);
    mDisabledClients.clear();
    ALOGI("cleared mDisabledClients");
    for (size_t i = 0; i< mActivationCount.size(); ++i) {
        Info& info = mActivationCount.editValueAt(i);
        if (info.batchParams.isEmpty()) continue;
        info.selectBatchParams();
        const int sensor_handle = mActivationCount.keyAt(i);
        ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
                   sensor_handle);
        status_t err = StatusFromResult(
                checkReturn(mSensors->batch(
                    sensor_handle,
                    info.bestBatchParams.mTSample,
                    info.bestBatchParams.mTBatch)));
        ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));

        if (err == NO_ERROR) {
            err = StatusFromResult(
                    checkReturn(mSensors->activate(sensor_handle, 1 /* enabled */)));
            ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
        }
    }
}

void SensorDevice::disableAllSensors() {
    if (mSensors == nullptr) return;
    Mutex::Autolock _l(mLock);
    for (size_t i = 0; i< mActivationCount.size(); ++i) {
        const Info& info = mActivationCount.valueAt(i);
        // Check if this sensor has been activated previously and disable it.
        if (info.batchParams.size() > 0) {
           const int sensor_handle = mActivationCount.keyAt(i);
           ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
                   sensor_handle);
           checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */));

           // Add all the connections that were registered for this sensor to the disabled
           // clients list.
           for (size_t j = 0; j < info.batchParams.size(); ++j) {
               mDisabledClients.add(info.batchParams.keyAt(j));
               ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
           }
        }
    }
}

status_t SensorDevice::injectSensorData(
        const sensors_event_t *injected_sensor_event) {
    if (mSensors == nullptr) return NO_INIT;
    ALOGD_IF(DEBUG_CONNECTIONS,
            "sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
            injected_sensor_event->sensor,
            injected_sensor_event->timestamp, injected_sensor_event->data[0],
            injected_sensor_event->data[1], injected_sensor_event->data[2],
            injected_sensor_event->data[3], injected_sensor_event->data[4],
            injected_sensor_event->data[5]);

    Event ev;
    convertFromSensorEvent(*injected_sensor_event, &ev);

    return StatusFromResult(checkReturn(mSensors->injectSensorData(ev)));
}

status_t SensorDevice::setMode(uint32_t mode) {
    if (mSensors == nullptr) return NO_INIT;
    return StatusFromResult(
            checkReturn(mSensors->setOperationMode(
                    static_cast<hardware::sensors::V1_0::OperationMode>(mode))));
}

int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
    if (mSensors == nullptr) return NO_INIT;
    Mutex::Autolock _l(mLock);

    SharedMemType type;
    switch (memory->type) {
        case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
            type = SharedMemType::ASHMEM;
            break;
        case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
            type = SharedMemType::GRALLOC;
            break;
        default:
            return BAD_VALUE;
    }

    SharedMemFormat format;
    if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
        return BAD_VALUE;
    }
    format = SharedMemFormat::SENSORS_EVENT;

    SharedMemInfo mem = {
        .type = type,
        .format = format,
        .size = static_cast<uint32_t>(memory->size),
        .memoryHandle = memory->handle,
    };

    int32_t ret;
    checkReturn(mSensors->registerDirectChannel(mem,
            [&ret](auto result, auto channelHandle) {
                if (result == Result::OK) {
                    ret = channelHandle;
                } else {
                    ret = StatusFromResult(result);
                }
            }));
    return ret;
}

void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
    if (mSensors == nullptr) return;
    Mutex::Autolock _l(mLock);
    checkReturn(mSensors->unregisterDirectChannel(channelHandle));
}

int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle,
        int32_t channelHandle, const struct sensors_direct_cfg_t *config) {
    if (mSensors == nullptr) return NO_INIT;
    Mutex::Autolock _l(mLock);

    RateLevel rate;
    switch(config->rate_level) {
        case SENSOR_DIRECT_RATE_STOP:
            rate = RateLevel::STOP;
            break;
        case SENSOR_DIRECT_RATE_NORMAL:
            rate = RateLevel::NORMAL;
            break;
        case SENSOR_DIRECT_RATE_FAST:
            rate = RateLevel::FAST;
            break;
        case SENSOR_DIRECT_RATE_VERY_FAST:
            rate = RateLevel::VERY_FAST;
            break;
        default:
            return BAD_VALUE;
    }

    int32_t ret;
    checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
            [&ret, rate] (auto result, auto token) {
                if (rate == RateLevel::STOP) {
                    ret = StatusFromResult(result);
                } else {
                    if (result == Result::OK) {
                        ret = token;
                    } else {
                        ret = StatusFromResult(result);
                    }
                }
            }));

    return ret;
}

// ---------------------------------------------------------------------------

int SensorDevice::Info::numActiveClients() {
    SensorDevice& device(SensorDevice::getInstance());
    int num = 0;
    for (size_t i = 0; i < batchParams.size(); ++i) {
        if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
            ++num;
        }
    }
    return num;
}

status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int,
                                                    int64_t samplingPeriodNs,
                                                    int64_t maxBatchReportLatencyNs) {
    ssize_t index = batchParams.indexOfKey(ident);
    if (index < 0) {
        ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64
              " timeout=%" PRId64 ") failed (%s)",
              ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
        return BAD_INDEX;
    }
    BatchParams& params = batchParams.editValueAt(index);
    params.mTSample = samplingPeriodNs;
    params.mTBatch = maxBatchReportLatencyNs;
    return NO_ERROR;
}

void SensorDevice::Info::selectBatchParams() {
    BatchParams bestParams; // default to max Tsample and max Tbatch
    SensorDevice& device(SensorDevice::getInstance());

    for (size_t i = 0; i < batchParams.size(); ++i) {
        if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
            continue;
        }
        bestParams.merge(batchParams[i]);
    }
    // if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
    if (bestParams.mTBatch <= bestParams.mTSample) {
        bestParams.mTBatch = 0;
    }
    bestBatchParams = bestParams;
}

ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
    ssize_t idx = batchParams.removeItem(ident);
    if (idx >= 0) {
        selectBatchParams();
    }
    return idx;
}

void SensorDevice::notifyConnectionDestroyed(void* ident) {
    Mutex::Autolock _l(mLock);
    mDisabledClients.remove(ident);
}

bool SensorDevice::isDirectReportSupported() const {
    return mIsDirectReportSupported;
}

void SensorDevice::convertToSensorEvent(
        const Event &src, sensors_event_t *dst) {
    ::android::hardware::sensors::V1_0::implementation::convertToSensorEvent(
            src, dst);

    if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) {
        const DynamicSensorInfo &dyn = src.u.dynamic;

        dst->dynamic_sensor_meta.connected = dyn.connected;
        dst->dynamic_sensor_meta.handle = dyn.sensorHandle;
        if (dyn.connected) {
            auto it = mConnectedDynamicSensors.find(dyn.sensorHandle);
            CHECK(it != mConnectedDynamicSensors.end());

            dst->dynamic_sensor_meta.sensor = it->second;

            memcpy(dst->dynamic_sensor_meta.uuid,
                   dyn.uuid.data(),
                   sizeof(dst->dynamic_sensor_meta.uuid));
        }
    }
}

void SensorDevice::convertToSensorEvents(
        const hidl_vec<Event> &src,
        const hidl_vec<SensorInfo> &dynamicSensorsAdded,
        sensors_event_t *dst) {
    // Allocate a sensor_t structure for each dynamic sensor added and insert
    // it into the dictionary of connected dynamic sensors keyed by handle.
    for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
        const SensorInfo &info = dynamicSensorsAdded[i];

        auto it = mConnectedDynamicSensors.find(info.sensorHandle);
        CHECK(it == mConnectedDynamicSensors.end());

        sensor_t *sensor = new sensor_t;
        convertToSensor(info, sensor);

        mConnectedDynamicSensors.insert(
                std::make_pair(sensor->handle, sensor));
    }

    for (size_t i = 0; i < src.size(); ++i) {
        convertToSensorEvent(src[i], &dst[i]);
    }
}

void SensorDevice::handleHidlDeath(const std::string & detail) {
    // restart is the only option at present.
    LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
}

// ---------------------------------------------------------------------------
}; // namespace android