summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/CompositionEngine/src/Output.cpp
blob: e8f54f57b14dbbbc53833ce753a9a09c7986bdb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
/*
 * Copyright 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <thread>

#include <android-base/stringprintf.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/LayerFE.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/Output.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"

#include <renderengine/DisplaySettings.h>
#include <renderengine/RenderEngine.h>

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"

#include <ui/DebugUtils.h>
#include <ui/HdrCapabilities.h>
#include <utils/Trace.h>

#include "TracedOrdinal.h"

namespace android::compositionengine {

Output::~Output() = default;

namespace impl {

namespace {

template <typename T>
class Reversed {
public:
    explicit Reversed(const T& container) : mContainer(container) {}
    auto begin() { return mContainer.rbegin(); }
    auto end() { return mContainer.rend(); }

private:
    const T& mContainer;
};

// Helper for enumerating over a container in reverse order
template <typename T>
Reversed<T> reversed(const T& c) {
    return Reversed<T>(c);
}

} // namespace

std::shared_ptr<Output> createOutput(
        const compositionengine::CompositionEngine& compositionEngine) {
    return createOutputTemplated<Output>(compositionEngine);
}

Output::~Output() = default;

bool Output::isValid() const {
    return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
            mRenderSurface->isValid();
}

std::optional<DisplayId> Output::getDisplayId() const {
    return {};
}

const std::string& Output::getName() const {
    return mName;
}

void Output::setName(const std::string& name) {
    mName = name;
}

void Output::setCompositionEnabled(bool enabled) {
    auto& outputState = editState();
    if (outputState.isEnabled == enabled) {
        return;
    }

    outputState.isEnabled = enabled;
    dirtyEntireOutput();
}

void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame,
                           const Rect& viewport, const Rect& sourceClip,
                           const Rect& destinationClip, bool needsFiltering) {
    auto& outputState = editState();
    outputState.transform = transform;
    outputState.orientation = orientation;
    outputState.sourceClip = sourceClip;
    outputState.destinationClip = destinationClip;
    outputState.frame = frame;
    outputState.viewport = viewport;
    outputState.needsFiltering = needsFiltering;

    dirtyEntireOutput();
}

// TODO(b/121291683): Rename setSize() once more is moved.
void Output::setBounds(const ui::Size& size) {
    mRenderSurface->setDisplaySize(size);
    // TODO(b/121291683): Rename outputState.size once more is moved.
    editState().bounds = Rect(mRenderSurface->getSize());

    dirtyEntireOutput();
}

void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
    auto& outputState = editState();
    outputState.layerStackId = layerStackId;
    outputState.layerStackInternal = isInternal;

    dirtyEntireOutput();
}

void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
    auto& colorTransformMatrix = editState().colorTransformMatrix;
    if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
        return;
    }

    colorTransformMatrix = *args.colorTransformMatrix;

    dirtyEntireOutput();
}

void Output::setColorProfile(const ColorProfile& colorProfile) {
    ui::Dataspace targetDataspace =
            getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
                                                         colorProfile.colorSpaceAgnosticDataspace);

    auto& outputState = editState();
    if (outputState.colorMode == colorProfile.mode &&
        outputState.dataspace == colorProfile.dataspace &&
        outputState.renderIntent == colorProfile.renderIntent &&
        outputState.targetDataspace == targetDataspace) {
        return;
    }

    outputState.colorMode = colorProfile.mode;
    outputState.dataspace = colorProfile.dataspace;
    outputState.renderIntent = colorProfile.renderIntent;
    outputState.targetDataspace = targetDataspace;

    mRenderSurface->setBufferDataspace(colorProfile.dataspace);

    ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
          decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
          decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);

    dirtyEntireOutput();
}

void Output::dump(std::string& out) const {
    using android::base::StringAppendF;

    StringAppendF(&out, "   Composition Output State: [\"%s\"]", mName.c_str());

    out.append("\n   ");

    dumpBase(out);
}

void Output::dumpBase(std::string& out) const {
    dumpState(out);

    if (mDisplayColorProfile) {
        mDisplayColorProfile->dump(out);
    } else {
        out.append("    No display color profile!\n");
    }

    if (mRenderSurface) {
        mRenderSurface->dump(out);
    } else {
        out.append("    No render surface!\n");
    }

    android::base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount());
    for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
        if (!outputLayer) {
            continue;
        }
        outputLayer->dump(out);
    }
}

compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
    return mDisplayColorProfile.get();
}

void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
    mDisplayColorProfile = std::move(mode);
}

const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
    return mReleasedLayers;
}

void Output::setDisplayColorProfileForTest(
        std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
    mDisplayColorProfile = std::move(mode);
}

compositionengine::RenderSurface* Output::getRenderSurface() const {
    return mRenderSurface.get();
}

void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
    mRenderSurface = std::move(surface);
    editState().bounds = Rect(mRenderSurface->getSize());

    dirtyEntireOutput();
}

void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
    if (cacheSize == 0) {
        mClientCompositionRequestCache.reset();
    } else {
        mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
    }
};

void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
    mRenderSurface = std::move(surface);
}

Region Output::getDirtyRegion(bool repaintEverything) const {
    const auto& outputState = getState();
    Region dirty(outputState.viewport);
    if (!repaintEverything) {
        dirty.andSelf(outputState.dirtyRegion);
    }
    return dirty;
}

bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
    // The layerStackId's must match, and also the layer must not be internal
    // only when not on an internal output.
    const auto& outputState = getState();
    return layerStackId && (*layerStackId == outputState.layerStackId) &&
            (!internalOnly || outputState.layerStackInternal);
}

bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
    const auto* layerFEState = layerFE->getCompositionState();
    return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
}

std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
        const sp<LayerFE>& layerFE) const {
    return impl::createOutputLayer(*this, layerFE);
}

compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
    auto index = findCurrentOutputLayerForLayer(layerFE);
    return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
}

std::optional<size_t> Output::findCurrentOutputLayerForLayer(
        const sp<compositionengine::LayerFE>& layer) const {
    for (size_t i = 0; i < getOutputLayerCount(); i++) {
        auto outputLayer = getOutputLayerOrderedByZByIndex(i);
        if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
            return i;
        }
    }
    return std::nullopt;
}

void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
    mReleasedLayers = std::move(layers);
}

void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
                     LayerFESet& geomSnapshots) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    rebuildLayerStacks(refreshArgs, geomSnapshots);
}

void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    updateColorProfile(refreshArgs);
    updateAndWriteCompositionState(refreshArgs);
    setColorTransform(refreshArgs);
    beginFrame();
    prepareFrame();
    devOptRepaintFlash(refreshArgs);
    finishFrame(refreshArgs);
    postFramebuffer();
}

void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
                                LayerFESet& layerFESet) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    auto& outputState = editState();

    // Do nothing if this output is not enabled or there is no need to perform this update
    if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
        return;
    }

    // Process the layers to determine visibility and coverage
    compositionengine::Output::CoverageState coverage{layerFESet};
    collectVisibleLayers(refreshArgs, coverage);

    // Compute the resulting coverage for this output, and store it for later
    const ui::Transform& tr = outputState.transform;
    Region undefinedRegion{outputState.bounds};
    undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));

    outputState.undefinedRegion = undefinedRegion;
    outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
}

void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
                                  compositionengine::Output::CoverageState& coverage) {
    // Evaluate the layers from front to back to determine what is visible. This
    // also incrementally calculates the coverage information for each layer as
    // well as the entire output.
    for (auto layer : reversed(refreshArgs.layers)) {
        // Incrementally process the coverage for each layer
        ensureOutputLayerIfVisible(layer, coverage);

        // TODO(b/121291683): Stop early if the output is completely covered and
        // no more layers could even be visible underneath the ones on top.
    }

    setReleasedLayers(refreshArgs);

    finalizePendingOutputLayers();

    // Generate a simple Z-order values to each visible output layer
    uint32_t zOrder = 0;
    for (auto* outputLayer : getOutputLayersOrderedByZ()) {
        outputLayer->editState().z = zOrder++;
    }
}

void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
                                        compositionengine::Output::CoverageState& coverage) {
    // Ensure we have a snapshot of the basic geometry layer state. Limit the
    // snapshots to once per frame for each candidate layer, as layers may
    // appear on multiple outputs.
    if (!coverage.latchedLayers.count(layerFE)) {
        coverage.latchedLayers.insert(layerFE);
        layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
    }

    // Only consider the layers on the given layer stack
    if (!belongsInOutput(layerFE)) {
        return;
    }

    // Obtain a read-only pointer to the front-end layer state
    const auto* layerFEState = layerFE->getCompositionState();
    if (CC_UNLIKELY(!layerFEState)) {
        return;
    }

    // handle hidden surfaces by setting the visible region to empty
    if (CC_UNLIKELY(!layerFEState->isVisible)) {
        return;
    }

    /*
     * opaqueRegion: area of a surface that is fully opaque.
     */
    Region opaqueRegion;

    /*
     * visibleRegion: area of a surface that is visible on screen and not fully
     * transparent. This is essentially the layer's footprint minus the opaque
     * regions above it. Areas covered by a translucent surface are considered
     * visible.
     */
    Region visibleRegion;

    /*
     * coveredRegion: area of a surface that is covered by all visible regions
     * above it (which includes the translucent areas).
     */
    Region coveredRegion;

    /*
     * transparentRegion: area of a surface that is hinted to be completely
     * transparent. This is only used to tell when the layer has no visible non-
     * transparent regions and can be removed from the layer list. It does not
     * affect the visibleRegion of this layer or any layers beneath it. The hint
     * may not be correct if apps don't respect the SurfaceView restrictions
     * (which, sadly, some don't).
     */
    Region transparentRegion;

    /*
     * shadowRegion: Region cast by the layer's shadow.
     */
    Region shadowRegion;

    const ui::Transform& tr = layerFEState->geomLayerTransform;

    // Get the visible region
    // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
    // for computations like this?
    const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
    visibleRegion.set(visibleRect);

    if (layerFEState->shadowRadius > 0.0f) {
        // if the layer casts a shadow, offset the layers visible region and
        // calculate the shadow region.
        const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
        Rect visibleRectWithShadows(visibleRect);
        visibleRectWithShadows.inset(inset, inset, inset, inset);
        visibleRegion.set(visibleRectWithShadows);
        shadowRegion = visibleRegion.subtract(visibleRect);
    }

    if (visibleRegion.isEmpty()) {
        return;
    }

    // Remove the transparent area from the visible region
    if (!layerFEState->isOpaque) {
        if (tr.preserveRects()) {
            // transform the transparent region
            transparentRegion = tr.transform(layerFEState->transparentRegionHint);
        } else {
            // transformation too complex, can't do the
            // transparent region optimization.
            transparentRegion.clear();
        }
    }

    // compute the opaque region
    const auto layerOrientation = tr.getOrientation();
    if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
        // If we one of the simple category of transforms (0/90/180/270 rotation
        // + any flip), then the opaque region is the layer's footprint.
        // Otherwise we don't try and compute the opaque region since there may
        // be errors at the edges, and we treat the entire layer as
        // translucent.
        opaqueRegion.set(visibleRect);
    }

    // Clip the covered region to the visible region
    coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);

    // Update accumAboveCoveredLayers for next (lower) layer
    coverage.aboveCoveredLayers.orSelf(visibleRegion);

    // subtract the opaque region covered by the layers above us
    visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);

    if (visibleRegion.isEmpty()) {
        return;
    }

    // Get coverage information for the layer as previously displayed,
    // also taking over ownership from mOutputLayersorderedByZ.
    auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
    auto prevOutputLayer =
            prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;

    //  Get coverage information for the layer as previously displayed
    // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
    const Region kEmptyRegion;
    const Region& oldVisibleRegion =
            prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
    const Region& oldCoveredRegion =
            prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;

    // compute this layer's dirty region
    Region dirty;
    if (layerFEState->contentDirty) {
        // we need to invalidate the whole region
        dirty = visibleRegion;
        // as well, as the old visible region
        dirty.orSelf(oldVisibleRegion);
    } else {
        /* compute the exposed region:
         *   the exposed region consists of two components:
         *   1) what's VISIBLE now and was COVERED before
         *   2) what's EXPOSED now less what was EXPOSED before
         *
         * note that (1) is conservative, we start with the whole visible region
         * but only keep what used to be covered by something -- which mean it
         * may have been exposed.
         *
         * (2) handles areas that were not covered by anything but got exposed
         * because of a resize.
         *
         */
        const Region newExposed = visibleRegion - coveredRegion;
        const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
        dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
    }
    dirty.subtractSelf(coverage.aboveOpaqueLayers);

    // accumulate to the screen dirty region
    coverage.dirtyRegion.orSelf(dirty);

    // Update accumAboveOpaqueLayers for next (lower) layer
    coverage.aboveOpaqueLayers.orSelf(opaqueRegion);

    // Compute the visible non-transparent region
    Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);

    // Perform the final check to see if this layer is visible on this output
    // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
    const auto& outputState = getState();
    Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
    drawRegion.andSelf(outputState.bounds);
    if (drawRegion.isEmpty()) {
        return;
    }

    Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);

    // The layer is visible. Either reuse the existing outputLayer if we have
    // one, or create a new one if we do not.
    auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);

    // Store the layer coverage information into the layer state as some of it
    // is useful later.
    auto& outputLayerState = result->editState();
    outputLayerState.visibleRegion = visibleRegion;
    outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
    outputLayerState.coveredRegion = coveredRegion;
    outputLayerState.outputSpaceVisibleRegion =
            outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport));
    outputLayerState.shadowRegion = shadowRegion;
}

void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
    // The base class does nothing with this call.
}

void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
    for (auto* layer : getOutputLayersOrderedByZ()) {
        layer->getLayerFE().prepareCompositionState(
                args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
                                               : LayerFE::StateSubset::Content);
    }
}

void Output::updateAndWriteCompositionState(
        const compositionengine::CompositionRefreshArgs& refreshArgs) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    if (!getState().isEnabled) {
        return;
    }

    mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
    bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;

    for (auto* layer : getOutputLayersOrderedByZ()) {
        layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
                                      refreshArgs.devOptForceClientComposition ||
                                              forceClientComposition,
                                      refreshArgs.internalDisplayRotationFlags);

        if (mLayerRequestingBackgroundBlur == layer) {
            forceClientComposition = false;
        }

        // Send the updated state to the HWC, if appropriate.
        layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame);
    }
}

compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
    compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
    for (auto* layer : getOutputLayersOrderedByZ()) {
        if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) {
            layerRequestingBgComposition = layer;
        }
    }
    return layerRequestingBgComposition;
}

void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
    setColorProfile(pickColorProfile(refreshArgs));
}

// Returns a data space that fits all visible layers.  The returned data space
// can only be one of
//  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
//  - Dataspace::DISPLAY_P3
//  - Dataspace::DISPLAY_BT2020
// The returned HDR data space is one of
//  - Dataspace::UNKNOWN
//  - Dataspace::BT2020_HLG
//  - Dataspace::BT2020_PQ
ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
                                       bool* outIsHdrClientComposition) const {
    ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
    *outHdrDataSpace = ui::Dataspace::UNKNOWN;

    for (const auto* layer : getOutputLayersOrderedByZ()) {
        switch (layer->getLayerFE().getCompositionState()->dataspace) {
            case ui::Dataspace::V0_SCRGB:
            case ui::Dataspace::V0_SCRGB_LINEAR:
            case ui::Dataspace::BT2020:
            case ui::Dataspace::BT2020_ITU:
            case ui::Dataspace::BT2020_LINEAR:
            case ui::Dataspace::DISPLAY_BT2020:
                bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
                break;
            case ui::Dataspace::DISPLAY_P3:
                bestDataSpace = ui::Dataspace::DISPLAY_P3;
                break;
            case ui::Dataspace::BT2020_PQ:
            case ui::Dataspace::BT2020_ITU_PQ:
                bestDataSpace = ui::Dataspace::DISPLAY_P3;
                *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
                *outIsHdrClientComposition =
                        layer->getLayerFE().getCompositionState()->forceClientComposition;
                break;
            case ui::Dataspace::BT2020_HLG:
            case ui::Dataspace::BT2020_ITU_HLG:
                bestDataSpace = ui::Dataspace::DISPLAY_P3;
                // When there's mixed PQ content and HLG content, we set the HDR
                // data space to be BT2020_PQ and convert HLG to PQ.
                if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
                    *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
                }
                break;
            default:
                break;
        }
    }

    return bestDataSpace;
}

compositionengine::Output::ColorProfile Output::pickColorProfile(
        const compositionengine::CompositionRefreshArgs& refreshArgs) const {
    if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
        return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
                            ui::RenderIntent::COLORIMETRIC,
                            refreshArgs.colorSpaceAgnosticDataspace};
    }

    ui::Dataspace hdrDataSpace;
    bool isHdrClientComposition = false;
    ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);

    switch (refreshArgs.forceOutputColorMode) {
        case ui::ColorMode::SRGB:
            bestDataSpace = ui::Dataspace::V0_SRGB;
            break;
        case ui::ColorMode::DISPLAY_P3:
            bestDataSpace = ui::Dataspace::DISPLAY_P3;
            break;
        default:
            break;
    }

    // respect hdrDataSpace only when there is no legacy HDR support
    const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
            !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
    if (isHdr) {
        bestDataSpace = hdrDataSpace;
    }

    ui::RenderIntent intent;
    switch (refreshArgs.outputColorSetting) {
        case OutputColorSetting::kManaged:
        case OutputColorSetting::kUnmanaged:
            intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
                           : ui::RenderIntent::COLORIMETRIC;
            break;
        case OutputColorSetting::kEnhanced:
            intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
            break;
        default: // vendor display color setting
            intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
            break;
    }

    ui::ColorMode outMode;
    ui::Dataspace outDataSpace;
    ui::RenderIntent outRenderIntent;
    mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
                                           &outRenderIntent);

    return ColorProfile{outMode, outDataSpace, outRenderIntent,
                        refreshArgs.colorSpaceAgnosticDataspace};
}

void Output::beginFrame() {
    auto& outputState = editState();
    const bool dirty = !getDirtyRegion(false).isEmpty();
    const bool empty = getOutputLayerCount() == 0;
    const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;

    // If nothing has changed (!dirty), don't recompose.
    // If something changed, but we don't currently have any visible layers,
    //   and didn't when we last did a composition, then skip it this time.
    // The second rule does two things:
    // - When all layers are removed from a display, we'll emit one black
    //   frame, then nothing more until we get new layers.
    // - When a display is created with a private layer stack, we won't
    //   emit any black frames until a layer is added to the layer stack.
    const bool mustRecompose = dirty && !(empty && wasEmpty);

    const char flagPrefix[] = {'-', '+'};
    static_cast<void>(flagPrefix);
    ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
             mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
             flagPrefix[empty], flagPrefix[wasEmpty]);

    mRenderSurface->beginFrame(mustRecompose);

    if (mustRecompose) {
        outputState.lastCompositionHadVisibleLayers = !empty;
    }
}

void Output::prepareFrame() {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    const auto& outputState = getState();
    if (!outputState.isEnabled) {
        return;
    }

    chooseCompositionStrategy();

    mRenderSurface->prepareFrame(outputState.usesClientComposition,
                                 outputState.usesDeviceComposition);
}

void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
    if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
        return;
    }

    if (getState().isEnabled) {
        // transform the dirty region into this screen's coordinate space
        const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
        if (!dirtyRegion.isEmpty()) {
            base::unique_fd readyFence;
            // redraw the whole screen
            static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));

            mRenderSurface->queueBuffer(std::move(readyFence));
        }
    }

    postFramebuffer();

    std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);

    prepareFrame();
}

void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    if (!getState().isEnabled) {
        return;
    }

    // Repaint the framebuffer (if needed), getting the optional fence for when
    // the composition completes.
    auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
    if (!optReadyFence) {
        return;
    }

    // swap buffers (presentation)
    mRenderSurface->queueBuffer(std::move(*optReadyFence));
}

std::optional<base::unique_fd> Output::composeSurfaces(
        const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    const auto& outputState = getState();
    OutputCompositionState& outputCompositionState = editState();
    const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
                                                      outputState.usesClientComposition};

    auto& renderEngine = getCompositionEngine().getRenderEngine();
    const bool supportsProtectedContent = renderEngine.supportsProtectedContent();

    // If we the display is secure, protected content support is enabled, and at
    // least one layer has protected content, we need to use a secure back
    // buffer.
    if (outputState.isSecure && supportsProtectedContent) {
        auto layers = getOutputLayersOrderedByZ();
        bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
            return layer->getLayerFE().getCompositionState()->hasProtectedContent;
        });
        if (needsProtected != renderEngine.isProtected()) {
            renderEngine.useProtectedContext(needsProtected);
        }
        if (needsProtected != mRenderSurface->isProtected() &&
            needsProtected == renderEngine.isProtected()) {
            mRenderSurface->setProtected(needsProtected);
        }
    }

    base::unique_fd fd;
    sp<GraphicBuffer> buf;

    // If we aren't doing client composition on this output, but do have a
    // flipClientTarget request for this frame on this output, we still need to
    // dequeue a buffer.
    if (hasClientComposition || outputState.flipClientTarget) {
        buf = mRenderSurface->dequeueBuffer(&fd);
        if (buf == nullptr) {
            ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
                  "client composition for this frame",
                  mName.c_str());
            return {};
        }
    }

    base::unique_fd readyFence;
    if (!hasClientComposition) {
        setExpensiveRenderingExpected(false);
        return readyFence;
    }

    ALOGV("hasClientComposition");

    renderengine::DisplaySettings clientCompositionDisplay;
    clientCompositionDisplay.physicalDisplay = outputState.destinationClip;
    clientCompositionDisplay.clip = outputState.sourceClip;
    clientCompositionDisplay.orientation = outputState.orientation;
    clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
            ? outputState.dataspace
            : ui::Dataspace::UNKNOWN;
    clientCompositionDisplay.maxLuminance =
            mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();

    // Compute the global color transform matrix.
    if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
        clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
    }

    // Note: Updated by generateClientCompositionRequests
    clientCompositionDisplay.clearRegion = Region::INVALID_REGION;

    // Generate the client composition requests for the layers on this output.
    std::vector<LayerFE::LayerSettings> clientCompositionLayers =
            generateClientCompositionRequests(supportsProtectedContent,
                                              clientCompositionDisplay.clearRegion,
                                              clientCompositionDisplay.outputDataspace);
    appendRegionFlashRequests(debugRegion, clientCompositionLayers);

    // Check if the client composition requests were rendered into the provided graphic buffer. If
    // so, we can reuse the buffer and avoid client composition.
    if (mClientCompositionRequestCache) {
        if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay,
                                                   clientCompositionLayers)) {
            outputCompositionState.reusedClientComposition = true;
            setExpensiveRenderingExpected(false);
            return readyFence;
        }
        mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay,
                                            clientCompositionLayers);
    }

    // We boost GPU frequency here because there will be color spaces conversion
    // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
    // GPU composition can finish in time. We must reset GPU frequency afterwards,
    // because high frequency consumes extra battery.
    const bool expensiveBlurs =
            refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
    const bool expensiveRenderingExpected =
            clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
    if (expensiveRenderingExpected) {
        setExpensiveRenderingExpected(true);
    }

    std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
    clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
    std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
                   std::back_inserter(clientCompositionLayerPointers),
                   [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
                       return &settings;
                   });

    const nsecs_t renderEngineStart = systemTime();
    status_t status =
            renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers,
                                    buf->getNativeBuffer(), /*useFramebufferCache=*/true,
                                    std::move(fd), &readyFence);

    if (status != NO_ERROR && mClientCompositionRequestCache) {
        // If rendering was not successful, remove the request from the cache.
        mClientCompositionRequestCache->remove(buf->getId());
    }

    auto& timeStats = getCompositionEngine().getTimeStats();
    if (readyFence.get() < 0) {
        timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
    } else {
        timeStats.recordRenderEngineDuration(renderEngineStart,
                                             std::make_shared<FenceTime>(
                                                     new Fence(dup(readyFence.get()))));
    }

    return readyFence;
}

std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
        bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
    std::vector<LayerFE::LayerSettings> clientCompositionLayers;
    ALOGV("Rendering client layers");

    const auto& outputState = getState();
    const Region viewportRegion(outputState.viewport);
    const bool useIdentityTransform = false;
    bool firstLayer = true;
    // Used when a layer clears part of the buffer.
    Region dummyRegion;

    for (auto* layer : getOutputLayersOrderedByZ()) {
        const auto& layerState = layer->getState();
        const auto* layerFEState = layer->getLayerFE().getCompositionState();
        auto& layerFE = layer->getLayerFE();

        const Region clip(viewportRegion.intersect(layerState.visibleRegion));
        ALOGV("Layer: %s", layerFE.getDebugName());
        if (clip.isEmpty()) {
            ALOGV("  Skipping for empty clip");
            firstLayer = false;
            continue;
        }

        const bool clientComposition = layer->requiresClientComposition();

        // We clear the client target for non-client composed layers if
        // requested by the HWC. We skip this if the layer is not an opaque
        // rectangle, as by definition the layer must blend with whatever is
        // underneath. We also skip the first layer as the buffer target is
        // guaranteed to start out cleared.
        const bool clearClientComposition =
                layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;

        ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition);

        // If the layer casts a shadow but the content casting the shadow is occluded, skip
        // composing the non-shadow content and only draw the shadows.
        const bool realContentIsVisible = clientComposition &&
                !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();

        if (clientComposition || clearClientComposition) {
            compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
                    clip,
                    useIdentityTransform,
                    layer->needsFiltering() || outputState.needsFiltering,
                    outputState.isSecure,
                    supportsProtectedContent,
                    clientComposition ? clearRegion : dummyRegion,
                    outputState.viewport,
                    outputDataspace,
                    realContentIsVisible,
                    !clientComposition, /* clearContent  */
            };
            std::vector<LayerFE::LayerSettings> results =
                    layerFE.prepareClientCompositionList(targetSettings);
            if (realContentIsVisible && !results.empty()) {
                layer->editState().clientCompositionTimestamp = systemTime();
            }

            clientCompositionLayers.insert(clientCompositionLayers.end(),
                                           std::make_move_iterator(results.begin()),
                                           std::make_move_iterator(results.end()));
            results.clear();
        }

        firstLayer = false;
    }

    return clientCompositionLayers;
}

void Output::appendRegionFlashRequests(
        const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
    if (flashRegion.isEmpty()) {
        return;
    }

    LayerFE::LayerSettings layerSettings;
    layerSettings.source.buffer.buffer = nullptr;
    layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
    layerSettings.alpha = half(1.0);

    for (const auto& rect : flashRegion) {
        layerSettings.geometry.boundaries = rect.toFloatRect();
        clientCompositionLayers.push_back(layerSettings);
    }
}

void Output::setExpensiveRenderingExpected(bool) {
    // The base class does nothing with this call.
}

void Output::postFramebuffer() {
    ATRACE_CALL();
    ALOGV(__FUNCTION__);

    if (!getState().isEnabled) {
        return;
    }

    auto& outputState = editState();
    outputState.dirtyRegion.clear();
    mRenderSurface->flip();

    auto frame = presentAndGetFrameFences();

    mRenderSurface->onPresentDisplayCompleted();

    for (auto* layer : getOutputLayersOrderedByZ()) {
        // The layer buffer from the previous frame (if any) is released
        // by HWC only when the release fence from this frame (if any) is
        // signaled.  Always get the release fence from HWC first.
        sp<Fence> releaseFence = Fence::NO_FENCE;

        if (auto hwcLayer = layer->getHwcLayer()) {
            if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
                releaseFence = f->second;
            }
        }

        // If the layer was client composited in the previous frame, we
        // need to merge with the previous client target acquire fence.
        // Since we do not track that, always merge with the current
        // client target acquire fence when it is available, even though
        // this is suboptimal.
        // TODO(b/121291683): Track previous frame client target acquire fence.
        if (outputState.usesClientComposition) {
            releaseFence =
                    Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
        }

        layer->getLayerFE().onLayerDisplayed(releaseFence);
    }

    // We've got a list of layers needing fences, that are disjoint with
    // OutputLayersOrderedByZ.  The best we can do is to
    // supply them with the present fence.
    for (auto& weakLayer : mReleasedLayers) {
        if (auto layer = weakLayer.promote(); layer != nullptr) {
            layer->onLayerDisplayed(frame.presentFence);
        }
    }

    // Clear out the released layers now that we're done with them.
    mReleasedLayers.clear();
}

void Output::dirtyEntireOutput() {
    auto& outputState = editState();
    outputState.dirtyRegion.set(outputState.bounds);
}

void Output::chooseCompositionStrategy() {
    // The base output implementation can only do client composition
    auto& outputState = editState();
    outputState.usesClientComposition = true;
    outputState.usesDeviceComposition = false;
    outputState.reusedClientComposition = false;
}

bool Output::getSkipColorTransform() const {
    return true;
}

compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
    compositionengine::Output::FrameFences result;
    if (getState().usesClientComposition) {
        result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
    }
    return result;
}

} // namespace impl
} // namespace android::compositionengine