summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/Scheduler/Scheduler.cpp
blob: 5c0ba01cd3979ef3133729833314a733633490ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * Copyright 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS

#include "Scheduler.h"

#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <cutils/properties.h>
#include <input/InputWindow.h>
#include <system/window.h>
#include <ui/DisplayStatInfo.h>
#include <utils/Timers.h>
#include <utils/Trace.h>

#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>

#include "../Layer.h"
#include "DispSync.h"
#include "DispSyncSource.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "InjectVSyncSource.h"
#include "OneShotTimer.h"
#include "SchedulerUtils.h"
#include "SurfaceFlingerProperties.h"
#include "Timer.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"

#define RETURN_IF_INVALID_HANDLE(handle, ...)                        \
    do {                                                             \
        if (mConnections.count(handle) == 0) {                       \
            ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
            return __VA_ARGS__;                                      \
        }                                                            \
    } while (false)

namespace android {

std::unique_ptr<DispSync> createDispSync(bool supportKernelTimer) {
    // TODO (140302863) remove this and use the vsync_reactor system.
    if (property_get_bool("debug.sf.vsync_reactor", true)) {
        // TODO (144707443) tune Predictor tunables.
        static constexpr int defaultRate = 60;
        static constexpr auto initialPeriod =
                std::chrono::duration<nsecs_t, std::ratio<1, defaultRate>>(1);
        static constexpr size_t vsyncTimestampHistorySize = 20;
        static constexpr size_t minimumSamplesForPrediction = 6;
        static constexpr uint32_t discardOutlierPercent = 20;
        auto tracker = std::make_unique<
                scheduler::VSyncPredictor>(std::chrono::duration_cast<std::chrono::nanoseconds>(
                                                   initialPeriod)
                                                   .count(),
                                           vsyncTimestampHistorySize, minimumSamplesForPrediction,
                                           discardOutlierPercent);

        static constexpr auto vsyncMoveThreshold =
                std::chrono::duration_cast<std::chrono::nanoseconds>(3ms);
        static constexpr auto timerSlack =
                std::chrono::duration_cast<std::chrono::nanoseconds>(500us);
        auto dispatch = std::make_unique<
                scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), *tracker,
                                                    timerSlack.count(), vsyncMoveThreshold.count());

        static constexpr size_t pendingFenceLimit = 20;
        return std::make_unique<scheduler::VSyncReactor>(std::make_unique<scheduler::SystemClock>(),
                                                         std::move(dispatch), std::move(tracker),
                                                         pendingFenceLimit, supportKernelTimer);
    } else {
        return std::make_unique<impl::DispSync>("SchedulerDispSync",
                                                sysprop::running_without_sync_framework(true));
    }
}

Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function,
                     const scheduler::RefreshRateConfigs& refreshRateConfig,
                     ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
                     bool useContentDetection)
      : mSupportKernelTimer(sysprop::support_kernel_idle_timer(false)),
        mPrimaryDispSync(createDispSync(mSupportKernelTimer)),
        mEventControlThread(new impl::EventControlThread(std::move(function))),
        mSchedulerCallback(schedulerCallback),
        mRefreshRateConfigs(refreshRateConfig),
        mUseContentDetection(useContentDetection),
        mUseContentDetectionV2(useContentDetectionV2) {
    using namespace sysprop;

    if (mUseContentDetectionV2) {
        mLayerHistory = std::make_unique<scheduler::impl::LayerHistoryV2>(refreshRateConfig);
    } else {
        mLayerHistory = std::make_unique<scheduler::impl::LayerHistory>();
    }

    const int setIdleTimerMs = property_get_int32("debug.sf.set_idle_timer_ms", 0);

    if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) {
        const auto callback = mSupportKernelTimer ? &Scheduler::kernelIdleTimerCallback
                                                  : &Scheduler::idleTimerCallback;
        mIdleTimer.emplace(
                std::chrono::milliseconds(millis),
                [this, callback] { std::invoke(callback, this, TimerState::Reset); },
                [this, callback] { std::invoke(callback, this, TimerState::Expired); });
        mIdleTimer->start();
    }

    if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
        // Touch events are coming to SF every 100ms, so the timer needs to be higher than that
        mTouchTimer.emplace(
                std::chrono::milliseconds(millis),
                [this] { touchTimerCallback(TimerState::Reset); },
                [this] { touchTimerCallback(TimerState::Expired); });
        mTouchTimer->start();
    }

    if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
        mDisplayPowerTimer.emplace(
                std::chrono::milliseconds(millis),
                [this] { displayPowerTimerCallback(TimerState::Reset); },
                [this] { displayPowerTimerCallback(TimerState::Expired); });
        mDisplayPowerTimer->start();
    }
}

Scheduler::Scheduler(std::unique_ptr<DispSync> primaryDispSync,
                     std::unique_ptr<EventControlThread> eventControlThread,
                     const scheduler::RefreshRateConfigs& configs,
                     ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
                     bool useContentDetection)
      : mSupportKernelTimer(false),
        mPrimaryDispSync(std::move(primaryDispSync)),
        mEventControlThread(std::move(eventControlThread)),
        mSchedulerCallback(schedulerCallback),
        mRefreshRateConfigs(configs),
        mUseContentDetection(useContentDetection),
        mUseContentDetectionV2(useContentDetectionV2) {}

Scheduler::~Scheduler() {
    // Ensure the OneShotTimer threads are joined before we start destroying state.
    mDisplayPowerTimer.reset();
    mTouchTimer.reset();
    mIdleTimer.reset();
}

DispSync& Scheduler::getPrimaryDispSync() {
    return *mPrimaryDispSync;
}

std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(const char* name,
                                                                  nsecs_t phaseOffsetNs) {
    return std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), phaseOffsetNs,
                                            true /* traceVsync */, name);
}

Scheduler::ConnectionHandle Scheduler::createConnection(
        const char* connectionName, nsecs_t phaseOffsetNs,
        impl::EventThread::InterceptVSyncsCallback interceptCallback) {
    auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs);
    auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource),
                                                           std::move(interceptCallback));
    return createConnection(std::move(eventThread));
}

Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
    const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
    ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);

    auto connection =
            createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress);

    mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
    return handle;
}

sp<EventThreadConnection> Scheduler::createConnectionInternal(
        EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) {
    return eventThread->createEventConnection([&] { resync(); }, configChanged);
}

sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
        ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) {
    RETURN_IF_INVALID_HANDLE(handle, nullptr);
    return createConnectionInternal(mConnections[handle].thread.get(), configChanged);
}

sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
    RETURN_IF_INVALID_HANDLE(handle, nullptr);
    return mConnections[handle].connection;
}

void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
                                  bool connected) {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections[handle].thread->onHotplugReceived(displayId, connected);
}

void Scheduler::onScreenAcquired(ConnectionHandle handle) {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections[handle].thread->onScreenAcquired();
}

void Scheduler::onScreenReleased(ConnectionHandle handle) {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections[handle].thread->onScreenReleased();
}

void Scheduler::onPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId,
                                              HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
    std::lock_guard<std::mutex> lock(mFeatureStateLock);
    // Cache the last reported config for primary display.
    mFeatures.cachedConfigChangedParams = {handle, displayId, configId, vsyncPeriod};
    onNonPrimaryDisplayConfigChanged(handle, displayId, configId, vsyncPeriod);
}

void Scheduler::dispatchCachedReportedConfig() {
    const auto configId = *mFeatures.configId;
    const auto vsyncPeriod =
            mRefreshRateConfigs.getRefreshRateFromConfigId(configId).getVsyncPeriod();

    // If there is no change from cached config, there is no need to dispatch an event
    if (configId == mFeatures.cachedConfigChangedParams->configId &&
        vsyncPeriod == mFeatures.cachedConfigChangedParams->vsyncPeriod) {
        return;
    }

    mFeatures.cachedConfigChangedParams->configId = configId;
    mFeatures.cachedConfigChangedParams->vsyncPeriod = vsyncPeriod;
    onNonPrimaryDisplayConfigChanged(mFeatures.cachedConfigChangedParams->handle,
                                     mFeatures.cachedConfigChangedParams->displayId,
                                     mFeatures.cachedConfigChangedParams->configId,
                                     mFeatures.cachedConfigChangedParams->vsyncPeriod);
}

void Scheduler::onNonPrimaryDisplayConfigChanged(ConnectionHandle handle,
                                                 PhysicalDisplayId displayId,
                                                 HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod);
}

size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
    RETURN_IF_INVALID_HANDLE(handle, 0);
    return mConnections[handle].thread->getEventThreadConnectionCount();
}

void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections.at(handle).thread->dump(result);
}

void Scheduler::setPhaseOffset(ConnectionHandle handle, nsecs_t phaseOffset) {
    RETURN_IF_INVALID_HANDLE(handle);
    mConnections[handle].thread->setPhaseOffset(phaseOffset);
}

void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) {
    stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0, systemTime());
    stats->vsyncPeriod = mPrimaryDispSync->getPeriod();
}

Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
    if (mInjectVSyncs == enable) {
        return {};
    }

    ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");

    if (!mInjectorConnectionHandle) {
        auto vsyncSource = std::make_unique<InjectVSyncSource>();
        mVSyncInjector = vsyncSource.get();

        auto eventThread =
                std::make_unique<impl::EventThread>(std::move(vsyncSource),
                                                    impl::EventThread::InterceptVSyncsCallback());

        mInjectorConnectionHandle = createConnection(std::move(eventThread));
    }

    mInjectVSyncs = enable;
    return mInjectorConnectionHandle;
}

bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime) {
    if (!mInjectVSyncs || !mVSyncInjector) {
        return false;
    }

    mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime);
    return true;
}

void Scheduler::enableHardwareVsync() {
    std::lock_guard<std::mutex> lock(mHWVsyncLock);
    if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
        mPrimaryDispSync->beginResync();
        mEventControlThread->setVsyncEnabled(true);
        mPrimaryHWVsyncEnabled = true;
    }
}

void Scheduler::disableHardwareVsync(bool makeUnavailable) {
    std::lock_guard<std::mutex> lock(mHWVsyncLock);
    if (mPrimaryHWVsyncEnabled) {
        mEventControlThread->setVsyncEnabled(false);
        mPrimaryDispSync->endResync();
        mPrimaryHWVsyncEnabled = false;
    }
    if (makeUnavailable) {
        mHWVsyncAvailable = false;
    }
}

void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
    {
        std::lock_guard<std::mutex> lock(mHWVsyncLock);
        if (makeAvailable) {
            mHWVsyncAvailable = makeAvailable;
        } else if (!mHWVsyncAvailable) {
            // Hardware vsync is not currently available, so abort the resync
            // attempt for now
            return;
        }
    }

    if (period <= 0) {
        return;
    }

    setVsyncPeriod(period);
}

void Scheduler::resync() {
    static constexpr nsecs_t kIgnoreDelay = ms2ns(750);

    const nsecs_t now = systemTime();
    const nsecs_t last = mLastResyncTime.exchange(now);

    if (now - last > kIgnoreDelay) {
        resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod());
    }
}

void Scheduler::setVsyncPeriod(nsecs_t period) {
    std::lock_guard<std::mutex> lock(mHWVsyncLock);
    mPrimaryDispSync->setPeriod(period);

    if (!mPrimaryHWVsyncEnabled) {
        mPrimaryDispSync->beginResync();
        mEventControlThread->setVsyncEnabled(true);
        mPrimaryHWVsyncEnabled = true;
    }
}

void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
                                bool* periodFlushed) {
    bool needsHwVsync = false;
    *periodFlushed = false;
    { // Scope for the lock
        std::lock_guard<std::mutex> lock(mHWVsyncLock);
        if (mPrimaryHWVsyncEnabled) {
            needsHwVsync =
                    mPrimaryDispSync->addResyncSample(timestamp, hwcVsyncPeriod, periodFlushed);
        }
    }

    if (needsHwVsync) {
        enableHardwareVsync();
    } else {
        disableHardwareVsync(false);
    }
}

void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
    if (mPrimaryDispSync->addPresentFence(fenceTime)) {
        enableHardwareVsync();
    } else {
        disableHardwareVsync(false);
    }
}

void Scheduler::setIgnorePresentFences(bool ignore) {
    mPrimaryDispSync->setIgnorePresentFences(ignore);
}

nsecs_t Scheduler::getDispSyncExpectedPresentTime(nsecs_t now) {
    return mPrimaryDispSync->expectedPresentTime(now);
}

void Scheduler::registerLayer(Layer* layer) {
    if (!mLayerHistory) return;

    const auto minFps = mRefreshRateConfigs.getMinRefreshRate().getFps();
    const auto maxFps = mRefreshRateConfigs.getMaxRefreshRate().getFps();

    if (layer->getWindowType() == InputWindowInfo::TYPE_STATUS_BAR) {
        mLayerHistory->registerLayer(layer, minFps, maxFps,
                                     scheduler::LayerHistory::LayerVoteType::NoVote);
    } else if (!mUseContentDetection) {
        // If the content detection feature is off, all layers are registered at Max. We still keep
        // the layer history, since we use it for other features (like Frame Rate API), so layers
        // still need to be registered.
        mLayerHistory->registerLayer(layer, minFps, maxFps,
                                     scheduler::LayerHistory::LayerVoteType::Max);
    } else if (!mUseContentDetectionV2) {
        // In V1 of content detection, all layers are registered as Heuristic (unless it's
        // wallpaper).
        const auto highFps =
                layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER ? minFps : maxFps;

        mLayerHistory->registerLayer(layer, minFps, highFps,
                                     scheduler::LayerHistory::LayerVoteType::Heuristic);
    } else {
        if (layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER) {
            // Running Wallpaper at Min is considered as part of content detection.
            mLayerHistory->registerLayer(layer, minFps, maxFps,
                                         scheduler::LayerHistory::LayerVoteType::Min);
        } else {
            mLayerHistory->registerLayer(layer, minFps, maxFps,
                                         scheduler::LayerHistory::LayerVoteType::Heuristic);
        }
    }
}

void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
                                   LayerHistory::LayerUpdateType updateType) {
    if (mLayerHistory) {
        mLayerHistory->record(layer, presentTime, systemTime(), updateType);
    }
}

void Scheduler::setConfigChangePending(bool pending) {
    if (mLayerHistory) {
        mLayerHistory->setConfigChangePending(pending);
    }
}

void Scheduler::chooseRefreshRateForContent() {
    if (!mLayerHistory) return;

    ATRACE_CALL();

    scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime());
    HwcConfigIndexType newConfigId;
    {
        std::lock_guard<std::mutex> lock(mFeatureStateLock);
        if (mFeatures.contentRequirements == summary) {
            return;
        }
        mFeatures.contentRequirements = summary;
        mFeatures.contentDetectionV1 =
                !summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off;

        scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
        newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
        if (mFeatures.configId == newConfigId) {
            // We don't need to change the config, but we might need to send an event
            // about a config change, since it was suppressed due to a previous idleConsidered
            if (!consideredSignals.idle) {
                dispatchCachedReportedConfig();
            }
            return;
        }
        mFeatures.configId = newConfigId;
        auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
        mSchedulerCallback.changeRefreshRate(newRefreshRate,
                                             consideredSignals.idle ? ConfigEvent::None
                                                                    : ConfigEvent::Changed);
    }
}

void Scheduler::resetIdleTimer() {
    if (mIdleTimer) {
        mIdleTimer->reset();
    }
}

void Scheduler::notifyTouchEvent() {
    if (!mTouchTimer) return;

    // Touch event will boost the refresh rate to performance.
    // Clear Layer History to get fresh FPS detection.
    // NOTE: Instead of checking all the layers, we should be checking the layer
    // that is currently on top. b/142507166 will give us this capability.
    std::lock_guard<std::mutex> lock(mFeatureStateLock);
    if (mLayerHistory) {
        // Layer History will be cleared based on RefreshRateConfigs::getBestRefreshRate

        mTouchTimer->reset();

        if (mSupportKernelTimer && mIdleTimer) {
            mIdleTimer->reset();
        }
    }
}

void Scheduler::setDisplayPowerState(bool normal) {
    {
        std::lock_guard<std::mutex> lock(mFeatureStateLock);
        mFeatures.isDisplayPowerStateNormal = normal;
    }

    if (mDisplayPowerTimer) {
        mDisplayPowerTimer->reset();
    }

    // Display Power event will boost the refresh rate to performance.
    // Clear Layer History to get fresh FPS detection
    if (mLayerHistory) {
        mLayerHistory->clear();
    }
}

void Scheduler::kernelIdleTimerCallback(TimerState state) {
    ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));

    // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
    // magic number
    const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate();
    constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f;
    if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
        // If we're not in performance mode then the kernel timer shouldn't do
        // anything, as the refresh rate during DPU power collapse will be the
        // same.
        resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
    } else if (state == TimerState::Expired &&
               refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
        // Disable HW VSYNC if the timer expired, as we don't need it enabled if
        // we're not pushing frames, and if we're in PERFORMANCE mode then we'll
        // need to update the DispSync model anyway.
        disableHardwareVsync(false /* makeUnavailable */);
    }

    mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}

void Scheduler::idleTimerCallback(TimerState state) {
    handleTimerStateChanged(&mFeatures.idleTimer, state);
    ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}

void Scheduler::touchTimerCallback(TimerState state) {
    const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
    if (handleTimerStateChanged(&mFeatures.touch, touch)) {
        mLayerHistory->clear();
    }
    ATRACE_INT("TouchState", static_cast<int>(touch));
}

void Scheduler::displayPowerTimerCallback(TimerState state) {
    handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
    ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}

void Scheduler::dump(std::string& result) const {
    using base::StringAppendF;
    const char* const states[] = {"off", "on"};

    StringAppendF(&result, "+  Idle timer: %s\n",
                  mIdleTimer ? mIdleTimer->dump().c_str() : states[0]);
    StringAppendF(&result, "+  Touch timer: %s\n",
                  mTouchTimer ? mTouchTimer->dump().c_str() : states[0]);
    StringAppendF(&result, "+  Use content detection: %s\n\n",
                  sysprop::use_content_detection_for_refresh_rate(false) ? "on" : "off");
}

template <class T>
bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
    HwcConfigIndexType newConfigId;
    scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
    {
        std::lock_guard<std::mutex> lock(mFeatureStateLock);
        if (*currentState == newState) {
            return false;
        }
        *currentState = newState;
        newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
        if (mFeatures.configId == newConfigId) {
            // We don't need to change the config, but we might need to send an event
            // about a config change, since it was suppressed due to a previous idleConsidered
            if (!consideredSignals.idle) {
                dispatchCachedReportedConfig();
            }
            return consideredSignals.touch;
        }
        mFeatures.configId = newConfigId;
    }
    const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
    mSchedulerCallback.changeRefreshRate(newRefreshRate,
                                         consideredSignals.idle ? ConfigEvent::None
                                                                : ConfigEvent::Changed);
    return consideredSignals.touch;
}

HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType(
        scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
    ATRACE_CALL();
    if (consideredSignals) *consideredSignals = {};

    // If Display Power is not in normal operation we want to be in performance mode. When coming
    // back to normal mode, a grace period is given with DisplayPowerTimer.
    if (mDisplayPowerTimer &&
        (!mFeatures.isDisplayPowerStateNormal ||
         mFeatures.displayPowerTimer == TimerState::Reset)) {
        return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
    }

    const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
    const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired;

    if (!mUseContentDetectionV2) {
        // As long as touch is active we want to be in performance mode.
        if (touchActive) {
            return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
        }

        // If timer has expired as it means there is no new content on the screen.
        if (idle) {
            if (consideredSignals) consideredSignals->idle = true;
            return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId();
        }

        // If content detection is off we choose performance as we don't know the content fps.
        if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) {
            // NOTE: V1 always calls this, but this is not a default behavior for V2.
            return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
        }

        // Content detection is on, find the appropriate refresh rate with minimal error
        return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements)
                .getConfigId();
    }

    return mRefreshRateConfigs
            .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle},
                                consideredSignals)
            .getConfigId();
}

std::optional<HwcConfigIndexType> Scheduler::getPreferredConfigId() {
    std::lock_guard<std::mutex> lock(mFeatureStateLock);
    // Make sure that the default config ID is first updated, before returned.
    if (mFeatures.configId.has_value()) {
        mFeatures.configId = calculateRefreshRateConfigIndexType();
    }
    return mFeatures.configId;
}

void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
    if (timeline.refreshRequired) {
        mSchedulerCallback.repaintEverythingForHWC();
    }

    std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
    mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);

    const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
    if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
        mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
    }
}

void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
    bool callRepaint = false;
    {
        std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
        if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
            if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
                mLastVsyncPeriodChangeTimeline->refreshRequired = false;
            } else {
                // We need to send another refresh as refreshTimeNanos is still in the future
                callRepaint = true;
            }
        }
    }

    if (callRepaint) {
        mSchedulerCallback.repaintEverythingForHWC();
    }
}

void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) {
    if (mLayerHistory) {
        mLayerHistory->setDisplayArea(displayArea);
    }
}

} // namespace android