/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_RS_BUILD_FOR_HOST #include "rsContext.h" #include #include #include #include #else #include "rsContextHostStub.h" #include #include #endif //ANDROID_RS_BUILD_FOR_HOST #include "rsProgramVertex.h" using namespace android; using namespace android::renderscript; ProgramVertex::ProgramVertex(Context *rsc, bool texMat) : Program(rsc) { mAllocFile = __FILE__; mAllocLine = __LINE__; mTextureMatrixEnable = texMat; mLightCount = 0; init(rsc); } ProgramVertex::ProgramVertex(Context *rsc, const char * shaderText, uint32_t shaderLength, const uint32_t * params, uint32_t paramLength) : Program(rsc, shaderText, shaderLength, params, paramLength) { mAllocFile = __FILE__; mAllocLine = __LINE__; mTextureMatrixEnable = false; mLightCount = 0; init(rsc); } ProgramVertex::~ProgramVertex() { } static void logMatrix(const char *txt, const float *f) { LOGV("Matrix %s, %p", txt, f); LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[0], f[4], f[8], f[12]); LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[1], f[5], f[9], f[13]); LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[2], f[6], f[10], f[14]); LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[3], f[7], f[11], f[15]); } void ProgramVertex::setupGL(const Context *rsc, ProgramVertexState *state) { if ((state->mLast.get() == this) && !mDirty) { return; } state->mLast.set(this); const float *f = static_cast(mConstants[0]->getPtr()); glMatrixMode(GL_TEXTURE); if (mTextureMatrixEnable) { glLoadMatrixf(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]); } else { glLoadIdentity(); } glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (mLightCount) { #ifndef ANDROID_RS_BUILD_FOR_HOST // GLES Only int v = 0; glEnable(GL_LIGHTING); glLightModelxv(GL_LIGHT_MODEL_TWO_SIDE, &v); for (uint32_t ct = 0; ct < mLightCount; ct++) { const Light *l = mLights[ct].get(); glEnable(GL_LIGHT0 + ct); l->setupGL(ct); } for (uint32_t ct = mLightCount; ct < MAX_LIGHTS; ct++) { glDisable(GL_LIGHT0 + ct); } #endif //ANDROID_RS_BUILD_FOR_HOST } else { glDisable(GL_LIGHTING); } if (!f) { LOGE("Must bind constants to vertex program"); } glMatrixMode(GL_PROJECTION); glLoadMatrixf(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); glMatrixMode(GL_MODELVIEW); glLoadMatrixf(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]); mDirty = false; } void ProgramVertex::loadShader(Context *rsc) { Program::loadShader(rsc, GL_VERTEX_SHADER); } void ProgramVertex::createShader() { mShader.setTo(""); mShader.append("varying vec4 varColor;\n"); mShader.append("varying vec4 varTex0;\n"); if (mUserShader.length() > 1) { mShader.append("uniform mat4 "); mShader.append(mUniformNames[0]); mShader.append(";\n"); for (uint32_t ct=0; ct < mConstantCount; ct++) { const Element *e = mConstantTypes[ct]->getElement(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); const char *fn = e->getFieldName(field); if (fn[0] == '#') { continue; } // Cannot be complex rsAssert(!f->getFieldCount()); if(f->getType() == RS_TYPE_MATRIX_4X4) { mShader.append("uniform mat4 UNI_"); } else if(f->getType() == RS_TYPE_MATRIX_3X3) { mShader.append("uniform mat3 UNI_"); } else if(f->getType() == RS_TYPE_MATRIX_2X2) { mShader.append("uniform mat2 UNI_"); } else { switch(f->getComponent().getVectorSize()) { case 1: mShader.append("uniform float UNI_"); break; case 2: mShader.append("uniform vec2 UNI_"); break; case 3: mShader.append("uniform vec3 UNI_"); break; case 4: mShader.append("uniform vec4 UNI_"); break; default: rsAssert(0); } } mShader.append(fn); mShader.append(";\n"); } } for (uint32_t ct=0; ct < mInputCount; ct++) { const Element *e = mInputElements[ct].get(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); const char *fn = e->getFieldName(field); if (fn[0] == '#') { continue; } // Cannot be complex rsAssert(!f->getFieldCount()); switch(f->getComponent().getVectorSize()) { case 1: mShader.append("attribute float ATTRIB_"); break; case 2: mShader.append("attribute vec2 ATTRIB_"); break; case 3: mShader.append("attribute vec3 ATTRIB_"); break; case 4: mShader.append("attribute vec4 ATTRIB_"); break; default: rsAssert(0); } mShader.append(fn); mShader.append(";\n"); } } mShader.append(mUserShader); } else { mShader.append("attribute vec4 ATTRIB_position;\n"); mShader.append("attribute vec4 ATTRIB_color;\n"); mShader.append("attribute vec3 ATTRIB_normal;\n"); mShader.append("attribute vec4 ATTRIB_texture0;\n"); for (uint32_t ct=0; ct < mUniformCount; ct++) { mShader.append("uniform mat4 "); mShader.append(mUniformNames[ct]); mShader.append(";\n"); } mShader.append("void main() {\n"); mShader.append(" gl_Position = UNI_MVP * ATTRIB_position;\n"); mShader.append(" gl_PointSize = 1.0;\n"); mShader.append(" varColor = ATTRIB_color;\n"); if (mTextureMatrixEnable) { mShader.append(" varTex0 = UNI_TexMatrix * ATTRIB_texture0;\n"); } else { mShader.append(" varTex0 = ATTRIB_texture0;\n"); } mShader.append("}\n"); } } void ProgramVertex::setupGL2(const Context *rsc, ProgramVertexState *state, ShaderCache *sc) { //LOGE("sgl2 vtx1 %x", glGetError()); if ((state->mLast.get() == this) && !mDirty) { return; } rsc->checkError("ProgramVertex::setupGL2 start"); const float *f = static_cast(mConstants[0]->getPtr()); Matrix mvp; mvp.load(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); Matrix t; t.load(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]); mvp.multiply(&t); glUniformMatrix4fv(sc->vtxUniformSlot(0), 1, GL_FALSE, mvp.m); if (mTextureMatrixEnable) { glUniformMatrix4fv(sc->vtxUniformSlot(1), 1, GL_FALSE, &f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]); } rsc->checkError("ProgramVertex::setupGL2 begin uniforms"); uint32_t uidx = 1; for (uint32_t ct=0; ct < mConstantCount; ct++) { Allocation *alloc = mConstants[ct+1].get(); if (!alloc) { continue; } const uint8_t *data = static_cast(alloc->getPtr()); const Element *e = mConstantTypes[ct]->getElement(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); uint32_t offset = e->getFieldOffsetBytes(field); int32_t slot = sc->vtxUniformSlot(uidx); const char *fieldName = e->getFieldName(field); const float *fd = reinterpret_cast(&data[offset]); // If this field is padding, skip it if(fieldName[0] == '#') { continue; } //LOGE("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s", slot, offset, ct, field, uidx, fieldName); if (slot >= 0) { if(f->getType() == RS_TYPE_MATRIX_4X4) { glUniformMatrix4fv(slot, 1, GL_FALSE, fd); } else if(f->getType() == RS_TYPE_MATRIX_3X3) { glUniformMatrix3fv(slot, 1, GL_FALSE, fd); } else if(f->getType() == RS_TYPE_MATRIX_2X2) { glUniformMatrix2fv(slot, 1, GL_FALSE, fd); } else { switch(f->getComponent().getVectorSize()) { case 1: //LOGE("Uniform 1 = %f", fd[0]); glUniform1fv(slot, 1, fd); break; case 2: //LOGE("Uniform 2 = %f %f", fd[0], fd[1]); glUniform2fv(slot, 1, fd); break; case 3: //LOGE("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]); glUniform3fv(slot, 1, fd); break; case 4: //LOGE("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]); glUniform4fv(slot, 1, fd); break; default: rsAssert(0); } } } uidx ++; } } state->mLast.set(this); rsc->checkError("ProgramVertex::setupGL2"); } void ProgramVertex::addLight(const Light *l) { if (mLightCount < MAX_LIGHTS) { mLights[mLightCount].set(l); mLightCount++; } } void ProgramVertex::setProjectionMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants[0]->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::setModelviewMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants[0]->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::setTextureMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants[0]->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::getProjectionMatrix(rsc_Matrix *m) const { float *f = static_cast(mConstants[0]->getPtr()); memcpy(m, &f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], sizeof(rsc_Matrix)); } void ProgramVertex::transformToScreen(const Context *rsc, float *v4out, const float *v3in) const { float *f = static_cast(mConstants[0]->getPtr()); Matrix mvp; mvp.loadMultiply((Matrix *)&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], (Matrix *)&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); mvp.vectorMultiply(v4out, v3in); } void ProgramVertex::initAddUserElement(const Element *e, String8 *names, uint32_t *count, const char *prefix) { rsAssert(e->getFieldCount()); for (uint32_t ct=0; ct < e->getFieldCount(); ct++) { const Element *ce = e->getField(ct); if (ce->getFieldCount()) { initAddUserElement(ce, names, count, prefix); } else if(e->getFieldName(ct)[0] != '#') { String8 tmp(prefix); tmp.append(e->getFieldName(ct)); names[*count].setTo(tmp.string()); (*count)++; } } } void ProgramVertex::init(Context *rsc) { mAttribCount = 0; if (mUserShader.size() > 0) { for (uint32_t ct=0; ct < mInputCount; ct++) { initAddUserElement(mInputElements[ct].get(), mAttribNames, &mAttribCount, "ATTRIB_"); } mUniformCount = 1; mUniformNames[0].setTo("UNI_MVP"); for (uint32_t ct=0; ct < mConstantCount; ct++) { initAddUserElement(mConstantTypes[ct]->getElement(), mUniformNames, &mUniformCount, "UNI_"); } } else { mUniformCount = 2; mUniformNames[0].setTo("UNI_MVP"); mUniformNames[1].setTo("UNI_TexMatrix"); } createShader(); } void ProgramVertex::serialize(OStream *stream) const { } ProgramVertex *ProgramVertex::createFromStream(Context *rsc, IStream *stream) { return NULL; } /////////////////////////////////////////////////////////////////////// ProgramVertexState::ProgramVertexState() { } ProgramVertexState::~ProgramVertexState() { } void ProgramVertexState::init(Context *rsc) { #ifndef ANDROID_RS_BUILD_FOR_HOST RsElement e = (RsElement) Element::create(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 1); rsi_TypeBegin(rsc, e); rsi_TypeAdd(rsc, RS_DIMENSION_X, 48); mAllocType.set((Type *)rsi_TypeCreate(rsc)); ProgramVertex *pv = new ProgramVertex(rsc, false); Allocation *alloc = (Allocation *)rsi_AllocationCreateTyped(rsc, mAllocType.get()); mDefaultAlloc.set(alloc); mDefault.set(pv); pv->init(rsc); pv->bindAllocation(alloc, 0); updateSize(rsc); #endif //ANDROID_RS_BUILD_FOR_HOST } void ProgramVertexState::updateSize(Context *rsc) { Matrix m; m.loadOrtho(0,rsc->getWidth(), rsc->getHeight(),0, -1,1); mDefaultAlloc->subData(RS_PROGRAM_VERTEX_PROJECTION_OFFSET, 16, &m.m[0], 16*4); m.loadIdentity(); mDefaultAlloc->subData(RS_PROGRAM_VERTEX_MODELVIEW_OFFSET, 16, &m.m[0], 16*4); } void ProgramVertexState::deinit(Context *rsc) { mDefaultAlloc.clear(); mDefault.clear(); mAllocType.clear(); mLast.clear(); } namespace android { namespace renderscript { RsProgramVertex rsi_ProgramVertexCreate(Context *rsc, bool texMat) { ProgramVertex *pv = new ProgramVertex(rsc, texMat); pv->incUserRef(); return pv; } RsProgramVertex rsi_ProgramVertexCreate2(Context *rsc, const char * shaderText, uint32_t shaderLength, const uint32_t * params, uint32_t paramLength) { ProgramVertex *pv = new ProgramVertex(rsc, shaderText, shaderLength, params, paramLength); pv->incUserRef(); return pv; } } }