/* * Author: Jon Trulson * Copyright (c) 2015 Intel Corporation. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "uln200xa.h" using namespace upm; using namespace std; ULN200XA::ULN200XA(int stepsPerRev, int i1, int i2, int i3, int i4) { m_stepsPerRev = stepsPerRev; m_currentStep = 0; m_stepDelay = 0; m_stepDirection = 1; // default is forward if ( !(m_stepI1 = mraa_gpio_init(i1)) ) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_gpio_init(i1) failed, invalid pin?"); return; } mraa_gpio_dir(m_stepI1, MRAA_GPIO_OUT); if ( !(m_stepI2 = mraa_gpio_init(i2)) ) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_gpio_init(i2) failed, invalid pin?"); mraa_gpio_close(m_stepI1); return; } mraa_gpio_dir(m_stepI2, MRAA_GPIO_OUT); if ( !(m_stepI3 = mraa_gpio_init(i3)) ) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_gpio_init(i3) failed, invalid pin?"); mraa_gpio_close(m_stepI1); mraa_gpio_close(m_stepI2); return; } mraa_gpio_dir(m_stepI3, MRAA_GPIO_OUT); if ( !(m_stepI4 = mraa_gpio_init(i4)) ) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_gpio_init(i4) failed, invalid pin?"); mraa_gpio_close(m_stepI1); mraa_gpio_close(m_stepI2); mraa_gpio_close(m_stepI3); return; } mraa_gpio_dir(m_stepI4, MRAA_GPIO_OUT); // set default speed to 1 setSpeed(1); } void ULN200XA::initClock() { gettimeofday(&m_startTime, NULL); } uint32_t ULN200XA::getMillis() { struct timeval elapsed, now; uint32_t elapse; // get current time gettimeofday(&now, NULL); // compute the delta since m_startTime if( (elapsed.tv_usec = now.tv_usec - m_startTime.tv_usec) < 0 ) { elapsed.tv_usec += 1000000; elapsed.tv_sec = now.tv_sec - m_startTime.tv_sec - 1; } else { elapsed.tv_sec = now.tv_sec - m_startTime.tv_sec; } elapse = (uint32_t)((elapsed.tv_sec * 1000) + (elapsed.tv_usec / 1000)); // never return 0 if (elapse == 0) elapse = 1; return elapse; } ULN200XA::~ULN200XA() { mraa_gpio_close(m_stepI1); mraa_gpio_close(m_stepI2); mraa_gpio_close(m_stepI3); mraa_gpio_close(m_stepI4); } void ULN200XA::setSpeed(int speed) { m_stepDelay = 60 * 1000 / m_stepsPerRev / speed; } void ULN200XA::setDirection(ULN200XA_DIRECTION_T dir) { switch (dir) { case DIR_CW: m_stepDirection = 1; break; case DIR_CCW: m_stepDirection = -1; break; } } void ULN200XA::stepperStep() { int step = m_currentStep % 8; // This motor requires a different sequencing order in 8-steps than // usual. // Step I0 I1 I2 I3 // 1 0 0 0 1 // 2 0 0 1 1 // 3 0 0 1 0 // 4 0 1 1 0 // 5 0 1 0 0 // 6 1 1 0 0 // 7 1 0 0 0 // 8 1 0 0 1 switch (step) { case 0: // 0001 mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 1); break; case 1: // 0011 mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 1); mraa_gpio_write(m_stepI4, 1); break; case 2: // 0010 mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 1); mraa_gpio_write(m_stepI4, 0); break; case 3: // 0110 mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 1); mraa_gpio_write(m_stepI3, 1); mraa_gpio_write(m_stepI4, 0); break; case 4: // 0100 mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 1); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 0); break; case 5: // 1100 mraa_gpio_write(m_stepI1, 1); mraa_gpio_write(m_stepI2, 1); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 0); break; case 6: // 1000 mraa_gpio_write(m_stepI1, 1); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 0); break; case 7: // 1001 mraa_gpio_write(m_stepI1, 1); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 1); break; } } void ULN200XA::stepperSteps(unsigned int steps) { while (steps > 0) { if (getMillis() >= m_stepDelay) { // reset the clock initClock(); m_currentStep += m_stepDirection; if (m_stepDirection == 1) { if (m_currentStep >= m_stepsPerRev) m_currentStep = 0; } else { if (m_currentStep <= 0) m_currentStep = m_stepsPerRev; } steps--; stepperStep(); } } } void ULN200XA::release() { mraa_gpio_write(m_stepI1, 0); mraa_gpio_write(m_stepI2, 0); mraa_gpio_write(m_stepI3, 0); mraa_gpio_write(m_stepI4, 0); }