summaryrefslogtreecommitdiff
path: root/v5/apf_interpreter_source.c
blob: 4db7aa65f1567a24e9f901e2a79f708ce34d20e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
 * Copyright 2024, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "apf_interpreter.h"

#include <string.h>  // For memcmp, memcpy, memset

#if __GNUC__ >= 7 || __clang__
#define FALLTHROUGH __attribute__((fallthrough))
#else
#define FALLTHROUGH
#endif

#undef bool
#undef true
#undef false
typedef enum { False, True } Boolean;
#define bool Boolean
#define true True
#define false False

#include "apf_defs.h"
#include "apf.h"
#include "apf_utils.h"
#include "apf_dns.h"
#include "apf_checksum.h"

// User hook for interpreter debug tracing.
#ifdef APF_TRACE_HOOK
extern void APF_TRACE_HOOK(u32 pc, const u32* regs, const u8* program,
                           u32 program_len, const u8 *packet, u32 packet_len,
                           const u32* memory, u32 ram_len);
#else
#define APF_TRACE_HOOK(pc, regs, program, program_len, packet, packet_len, memory, memory_len) \
    do { /* nop*/                                                                              \
    } while (0)
#endif

// Return code indicating "packet" should accepted.
#define PASS 1
// Return code indicating "packet" should be accepted (and something unexpected happened).
#define EXCEPTION 2
// Return code indicating "packet" should be dropped.
#define DROP 0
// Verify an internal condition and accept packet if it fails.
#define ASSERT_RETURN(c) if (!(c)) return EXCEPTION
// If "c" is of an unsigned type, generate a compile warning that gets promoted to an error.
// This makes bounds checking simpler because ">= 0" can be avoided. Otherwise adding
// superfluous ">= 0" with unsigned expressions generates compile warnings.
#define ENFORCE_UNSIGNED(c) ((c)==(u32)(c))

u32 apf_version(void) {
    return 20240401;
}

typedef struct {
    // Note: the following 4 fields take up exactly 8 bytes.
    u16 except_buf_sz; // Length of the exception buffer (at program_len offset)
    u8 ptr_size;       // sizeof(void*)
    u8 v6;             // Set to 1 by first jmpdata (APFv6+) instruction
    u32 pc;            // Program counter.
    // All the pointers should be next to each other for better struct packing.
    // We are at offset 8, so even 64-bit pointers will not need extra padding.
    void *caller_ctx;  // Passed in to interpreter, passed through to alloc/transmit.
    u8* tx_buf;        // The output buffer pointer
    u8* program;       // Pointer to program/data buffer
    const u8* packet;  // Pointer to input packet buffer
    // Order fields in order of decreasing size
    u32 tx_buf_len;    // The length of the output buffer
    u32 program_len;   // Length of the program
    u32 ram_len;       // Length of the entire apf program/data region
    u32 packet_len;    // Length of the input packet buffer
    u32 R[2];          // Register values.
    memory_type mem;   // Memory slot values.  (array of u32s)
    // Note: any extra u16s go here, then u8s
} apf_context;

FUNC(int do_transmit_buffer(apf_context* ctx, u32 pkt_len, u8 dscp)) {
    int ret = apf_transmit_buffer(ctx->caller_ctx, ctx->tx_buf, pkt_len, dscp);
    ctx->tx_buf = NULL;
    ctx->tx_buf_len = 0;
    return ret;
}

static int do_discard_buffer(apf_context* ctx) {
    return do_transmit_buffer(ctx, 0 /* pkt_len */, 0 /* dscp */);
}

// Decode an immediate, lengths [0..4] all work, does not do range checking.
// But note that program is at least 20 bytes shorter than ram, so first few
// immediates can always be safely decoded without exceeding ram buffer.
static u32 decode_imm(apf_context* ctx, u32 length) {
    u32 i, v = 0;
    for (i = 0; i < length; ++i) v = (v << 8) | ctx->program[ctx->pc++];
    return v;
}

#define DECODE_U8() (ctx->program[ctx->pc++])

static u16 decode_be16(apf_context* ctx) {
    u16 v = ctx->program[ctx->pc++];
    v <<= 8;
    v |= ctx->program[ctx->pc++];
    return v;
}

static int do_apf_run(apf_context* ctx) {
// Is offset within ram bounds?
#define IN_RAM_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->ram_len)
// Is offset within packet bounds?
#define IN_PACKET_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->packet_len)
// Is access to offset |p| length |size| within data bounds?
#define IN_DATA_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
                                 ENFORCE_UNSIGNED(size) && \
                                 (p) + (size) <= ctx->ram_len && \
                                 (p) + (size) >= (p))  // catch wraparounds
// Accept packet if not within ram bounds
#define ASSERT_IN_RAM_BOUNDS(p) ASSERT_RETURN(IN_RAM_BOUNDS(p))
// Accept packet if not within packet bounds
#define ASSERT_IN_PACKET_BOUNDS(p) ASSERT_RETURN(IN_PACKET_BOUNDS(p))
// Accept packet if not within data bounds
#define ASSERT_IN_DATA_BOUNDS(p, size) ASSERT_RETURN(IN_DATA_BOUNDS(p, size))

    // Counters start at end of RAM and count *backwards* so this array takes negative integers.
    u32 *counter = (u32*)(ctx->program + ctx->ram_len);

    // Count of instructions remaining to execute. This is done to ensure an
    // upper bound on execution time. It should never be hit and is only for
    // safety. Initialize to the number of bytes in the program which is an
    // upper bound on the number of instructions in the program.
    u32 instructions_remaining = ctx->program_len;

    // APFv6 requires at least 5 u32 counters at the end of ram, this makes counter[-5]++ valid
    // This cannot wrap due to previous check, that enforced program_len & ram_len < 2GiB.
    if (ctx->program_len + 20 > ctx->ram_len) return EXCEPTION;

    // Only populate if packet long enough, and IP version is IPv4.
    // Note: this doesn't actually check the ethertype...
    if ((ctx->packet_len >= ETH_HLEN + IPV4_HLEN) && ((ctx->packet[ETH_HLEN] & 0xf0) == 0x40)) {
        ctx->mem.named.ipv4_header_size = (ctx->packet[ETH_HLEN] & 15) * 4;
    }

// Is access to offset |p| length |size| within output buffer bounds?
#define IN_OUTPUT_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
                                 ENFORCE_UNSIGNED(size) && \
                                 (p) + (size) <= ctx->tx_buf_len && \
                                 (p) + (size) >= (p))
// Accept packet if not write within allocated output buffer
#define ASSERT_IN_OUTPUT_BOUNDS(p, size) ASSERT_RETURN(IN_OUTPUT_BOUNDS(p, size))

    do {
      APF_TRACE_HOOK(ctx->pc, ctx->R, ctx->program, ctx->program_len,
                     ctx->packet, ctx->packet_len, ctx->mem.slot, ctx->ram_len);
      if (ctx->pc == ctx->program_len + 1) return DROP;
      if (ctx->pc == ctx->program_len) return PASS;
      if (ctx->pc > ctx->program_len) return EXCEPTION;

      {  // half indent to avoid needless line length...

        const u8 bytecode = ctx->program[ctx->pc++];
        const u8 opcode = EXTRACT_OPCODE(bytecode);
        const u8 reg_num = EXTRACT_REGISTER(bytecode);
#define REG (ctx->R[reg_num])
#define OTHER_REG (ctx->R[reg_num ^ 1])
        // All instructions have immediate fields, so load them now.
        const u8 len_field = EXTRACT_IMM_LENGTH(bytecode);
        const u8 imm_len = ((len_field + 1u) >> 2) + len_field; // 0,1,2,3 -> 0,1,2,4
        u32 pktcopy_src_offset = 0;  // used for various pktdatacopy opcodes
        u32 imm = 0;
        s32 signed_imm = 0;
        u32 arith_imm;
        s32 arith_signed_imm;
        if (len_field != 0) {
            imm = decode_imm(ctx, imm_len); // 1st imm, at worst bytes 1-4 past opcode/program_len
            // Sign extend imm into signed_imm.
            signed_imm = (s32)(imm << ((4 - imm_len) * 8));
            signed_imm >>= (4 - imm_len) * 8;
        }

        // See comment at ADD_OPCODE for the reason for ARITH_REG/arith_imm/arith_signed_imm.
#define ARITH_REG (ctx->R[reg_num & ctx->v6])
        arith_imm = (ctx->v6) ? (len_field ? imm : OTHER_REG) : (reg_num ? ctx->R[1] : imm);
        arith_signed_imm = (ctx->v6) ? (len_field ? signed_imm : (s32)OTHER_REG) : (reg_num ? (s32)ctx->R[1] : signed_imm);

        switch (opcode) {
          case PASSDROP_OPCODE: {  // APFv6+
            if (len_field > 2) return EXCEPTION;  // max 64K counters (ie. imm < 64K)
            if (imm) {
                if (4 * imm > ctx->ram_len) return EXCEPTION;
                counter[-(s32)imm]++;
            }
            return reg_num ? DROP : PASS;
          }
          case LDB_OPCODE:
          case LDH_OPCODE:
          case LDW_OPCODE:
          case LDBX_OPCODE:
          case LDHX_OPCODE:
          case LDWX_OPCODE: {
            u32 load_size = 0;
            u32 offs = imm;
            // Note: this can overflow and actually decrease offs.
            if (opcode >= LDBX_OPCODE) offs += ctx->R[1];
            ASSERT_IN_PACKET_BOUNDS(offs);
            switch (opcode) {
              case LDB_OPCODE:
              case LDBX_OPCODE:
                load_size = 1;
                break;
              case LDH_OPCODE:
              case LDHX_OPCODE:
                load_size = 2;
                break;
              case LDW_OPCODE:
              case LDWX_OPCODE:
                load_size = 4;
                break;
              // Immediately enclosing switch statement guarantees
              // opcode cannot be any other value.
            }
            {
                const u32 end_offs = offs + (load_size - 1);
                u32 val = 0;
                // Catch overflow/wrap-around.
                ASSERT_RETURN(end_offs >= offs);
                ASSERT_IN_PACKET_BOUNDS(end_offs);
                while (load_size--) val = (val << 8) | ctx->packet[offs++];
                REG = val;
            }
            break;
          }
          case JMP_OPCODE:
            if (reg_num && !ctx->v6) {  // APFv6+
                // First invocation of APFv6 jmpdata instruction
                counter[-1] = 0x12345678;  // endianness marker
                counter[-2]++;  // total packets ++
                ctx->v6 = (u8)true;
            }
            // This can jump backwards. Infinite looping prevented by instructions_remaining.
            ctx->pc += imm;
            break;
          case JEQ_OPCODE:
          case JNE_OPCODE:
          case JGT_OPCODE:
          case JLT_OPCODE:
          case JSET_OPCODE: {
            u32 cmp_imm = 0;
            // Load second immediate field.
            if (reg_num == 1) {
                cmp_imm = ctx->R[1];
            } else {
                cmp_imm = decode_imm(ctx, imm_len); // 2nd imm, at worst 8 bytes past prog_len
            }
            switch (opcode) {
              case JEQ_OPCODE:  if (ctx->R[0] == cmp_imm) ctx->pc += imm; break;
              case JNE_OPCODE:  if (ctx->R[0] != cmp_imm) ctx->pc += imm; break;
              case JGT_OPCODE:  if (ctx->R[0] >  cmp_imm) ctx->pc += imm; break;
              case JLT_OPCODE:  if (ctx->R[0] <  cmp_imm) ctx->pc += imm; break;
              case JSET_OPCODE: if (ctx->R[0] &  cmp_imm) ctx->pc += imm; break;
            }
            break;
          }
          case JBSMATCH_OPCODE: {
            // Load second immediate field.
            u32 cmp_imm = decode_imm(ctx, imm_len); // 2nd imm, at worst 8 bytes past prog_len
            u32 cnt = (cmp_imm >> 11) + 1; // 1+, up to 32 fits in u16
            u32 len = cmp_imm & 2047; // 0..2047
            u32 bytes = cnt * len;
            const u32 last_packet_offs = ctx->R[0] + len - 1;
            bool do_jump = !reg_num;
            // bytes = cnt * len is size in bytes of data to compare.
            // pc is offset of program bytes to compare.
            // imm is jump target offset.
            // R0 is offset of packet bytes to compare.
            if (bytes > 0xFFFF) return EXCEPTION;
            // pc < program_len < ram_len < 2GiB, thus pc + bytes cannot wrap
            if (!IN_RAM_BOUNDS(ctx->pc + bytes - 1)) return EXCEPTION;
            ASSERT_IN_PACKET_BOUNDS(ctx->R[0]);
            ASSERT_RETURN(last_packet_offs >= ctx->R[0]);
            ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
            while (cnt--) {
                do_jump ^= !memcmp(ctx->program + ctx->pc, ctx->packet + ctx->R[0], len);
                // skip past comparison bytes
                ctx->pc += len;
            }
            if (do_jump) ctx->pc += imm;
            break;
          }
          // There is a difference in APFv4 and APFv6 arithmetic behaviour!
          // APFv4:  R[0] op= Rbit ? R[1] : imm;  (and it thus doesn't make sense to have R=1 && len_field>0)
          // APFv6+: REG  op= len_field ? imm : OTHER_REG;  (note: this is *DIFFERENT* with R=1 len_field==0)
          // Furthermore APFv4 uses unsigned imm (except SH), while APFv6 uses signed_imm for ADD/AND/SH.
          case ADD_OPCODE: ARITH_REG += (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
          case MUL_OPCODE: ARITH_REG *= arith_imm; break;
          case AND_OPCODE: ARITH_REG &= (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
          case OR_OPCODE:  ARITH_REG |= arith_imm; break;
          case DIV_OPCODE: {  // see above comment!
            const u32 div_operand = arith_imm;
            ASSERT_RETURN(div_operand);
            ARITH_REG /= div_operand;
            break;
          }
          case SH_OPCODE: {  // see above comment!
            if (arith_signed_imm >= 0)
                ARITH_REG <<= arith_signed_imm;
            else
                ARITH_REG >>= -arith_signed_imm;
            break;
          }
          case LI_OPCODE:
            REG = (u32)signed_imm;
            break;
          case PKTDATACOPY_OPCODE:
            pktcopy_src_offset = imm;
            imm = PKTDATACOPYIMM_EXT_OPCODE;
            FALLTHROUGH;
          case EXT_OPCODE:
            if (// imm >= LDM_EXT_OPCODE &&  -- but note imm is u32 and LDM_EXT_OPCODE is 0
                imm < (LDM_EXT_OPCODE + MEMORY_ITEMS)) {
                REG = ctx->mem.slot[imm - LDM_EXT_OPCODE];
            } else if (imm >= STM_EXT_OPCODE && imm < (STM_EXT_OPCODE + MEMORY_ITEMS)) {
                ctx->mem.slot[imm - STM_EXT_OPCODE] = REG;
            } else switch (imm) {
              case NOT_EXT_OPCODE: REG = ~REG;      break;
              case NEG_EXT_OPCODE: REG = -REG;      break;
              case MOV_EXT_OPCODE: REG = OTHER_REG; break;
              case SWAP_EXT_OPCODE: {
                u32 tmp = REG;
                REG = OTHER_REG;
                OTHER_REG = tmp;
                break;
              }
              case ALLOCATE_EXT_OPCODE:
                ASSERT_RETURN(ctx->tx_buf == NULL);
                if (reg_num == 0) {
                    ctx->tx_buf_len = REG;
                } else {
                    ctx->tx_buf_len = decode_be16(ctx); // 2nd imm, at worst 6 B past prog_len
                }
                // checksumming functions requires minimum 266 byte buffer for correctness
                if (ctx->tx_buf_len < 266) ctx->tx_buf_len = 266;
                ctx->tx_buf = apf_allocate_buffer(ctx->caller_ctx, ctx->tx_buf_len);
                if (!ctx->tx_buf) {  // allocate failure
                    ctx->tx_buf_len = 0;
                    counter[-3]++;
                    return EXCEPTION;
                }
                memset(ctx->tx_buf, 0, ctx->tx_buf_len);
                ctx->mem.named.tx_buf_offset = 0;
                break;
              case TRANSMIT_EXT_OPCODE: {
                // tx_buf_len cannot be large because we'd run out of RAM,
                // so the above unsigned comparison effectively guarantees casting pkt_len
                // to a signed value does not result in it going negative.
                u8 ip_ofs = DECODE_U8();              // 2nd imm, at worst 5 B past prog_len
                u8 csum_ofs = DECODE_U8();            // 3rd imm, at worst 6 B past prog_len
                u8 csum_start = 0;
                u16 partial_csum = 0;
                u32 pkt_len = ctx->mem.named.tx_buf_offset;
                ASSERT_RETURN(ctx->tx_buf);
                // If pkt_len > allocate_buffer_len, it means sth. wrong
                // happened and the tx_buf should be deallocated.
                if (pkt_len > ctx->tx_buf_len) {
                    do_discard_buffer(ctx);
                    return EXCEPTION;
                }
                if (csum_ofs < 255) {
                    csum_start = DECODE_U8();         // 4th imm, at worst 7 B past prog_len
                    partial_csum = decode_be16(ctx);  // 5th imm, at worst 9 B past prog_len
                }
                {
                    int dscp = csum_and_return_dscp(ctx->tx_buf, (s32)pkt_len, ip_ofs,
                                                    partial_csum, csum_start, csum_ofs,
                                                    (bool)reg_num);
                    int ret = do_transmit_buffer(ctx, pkt_len, dscp);
                    if (ret) { counter[-4]++; return EXCEPTION; } // transmit failure
                }
                break;
              }
              case EPKTDATACOPYIMM_EXT_OPCODE:  // 41
              case EPKTDATACOPYR1_EXT_OPCODE:   // 42
                pktcopy_src_offset = ctx->R[0];
                FALLTHROUGH;
              case PKTDATACOPYIMM_EXT_OPCODE: { // 65536
                u32 dst_offs = ctx->mem.named.tx_buf_offset;
                u32 copy_len = ctx->R[1];
                if (imm != EPKTDATACOPYR1_EXT_OPCODE) {
                    copy_len = DECODE_U8();  // 2nd imm, at worst 8 bytes past prog_len
                }
                ASSERT_RETURN(ctx->tx_buf);
                ASSERT_IN_OUTPUT_BOUNDS(dst_offs, copy_len);
                if (reg_num == 0) {  // copy from packet
                    const u32 last_packet_offs = pktcopy_src_offset + copy_len - 1;
                    ASSERT_IN_PACKET_BOUNDS(pktcopy_src_offset);
                    ASSERT_RETURN(last_packet_offs >= pktcopy_src_offset);
                    ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
                    memcpy(ctx->tx_buf + dst_offs, ctx->packet + pktcopy_src_offset, copy_len);
                } else {  // copy from data
                    ASSERT_IN_RAM_BOUNDS(pktcopy_src_offset + copy_len - 1);
                    memcpy(ctx->tx_buf + dst_offs, ctx->program + pktcopy_src_offset, copy_len);
                }
                dst_offs += copy_len;
                ctx->mem.named.tx_buf_offset = dst_offs;
                break;
              }
              case JDNSQMATCH_EXT_OPCODE:       // 43
              case JDNSAMATCH_EXT_OPCODE:       // 44
              case JDNSQMATCHSAFE_EXT_OPCODE:   // 45
              case JDNSAMATCHSAFE_EXT_OPCODE: { // 46
                u32 jump_offs = decode_imm(ctx, imm_len); // 2nd imm, at worst 8 B past prog_len
                int qtype = -1;
                if (imm & 1) { // JDNSQMATCH & JDNSQMATCHSAFE are *odd* extended opcodes
                    qtype = DECODE_U8();  // 3rd imm, at worst 9 bytes past prog_len
                }
                {
                    u32 udp_payload_offset = ctx->R[0];
                    match_result_type match_rst = match_names(ctx->program + ctx->pc,
                                                              ctx->program + ctx->program_len,
                                                              ctx->packet + udp_payload_offset,
                                                              ctx->packet_len - udp_payload_offset,
                                                              qtype);
                    if (match_rst == error_program) return EXCEPTION;
                    if (match_rst == error_packet) {
                        counter[-5]++; // increment error dns packet counter
                        return (imm >= JDNSQMATCHSAFE_EXT_OPCODE) ? PASS : DROP;
                    }
                    while (ctx->pc + 1 < ctx->program_len &&
                           (ctx->program[ctx->pc] || ctx->program[ctx->pc + 1])) {
                        ctx->pc++;
                    }
                    ctx->pc += 2;  // skip the final double 0 needle end
                    // relies on reg_num in {0,1} and match_rst being {false=0, true=1}
                    if (!(reg_num ^ (u32)match_rst)) ctx->pc += jump_offs;
                }
                break;
              }
              case EWRITE1_EXT_OPCODE:
              case EWRITE2_EXT_OPCODE:
              case EWRITE4_EXT_OPCODE: {
                const u32 write_len = 1 << (imm - EWRITE1_EXT_OPCODE);
                u32 i;
                ASSERT_RETURN(ctx->tx_buf);
                ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
                for (i = 0; i < write_len; ++i) {
                    ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
                        (u8)(REG >> (write_len - 1 - i) * 8);
                }
                break;
              }
              case JONEOF_EXT_OPCODE: {
                u32 jump_offs = decode_imm(ctx, imm_len); // 2nd imm, at worst 8 B past prog_len
                u8 imm3 = DECODE_U8();  // 3rd imm, at worst 9 bytes past prog_len
                bool jmp = imm3 & 1;  // =0 jmp on match, =1 jmp on no match
                u8 len = ((imm3 >> 1) & 3) + 1;  // size [1..4] in bytes of an element
                u8 cnt = (imm3 >> 3) + 2;  // number [2..33] of elements in set
                if (ctx->pc + cnt * len > ctx->program_len) return EXCEPTION;
                while (cnt--) {
                    u32 v = 0;
                    int i;
                    for (i = 0; i < len; ++i) v = (v << 8) | DECODE_U8();
                    if (REG == v) jmp ^= true;
                }
                if (jmp) ctx->pc += jump_offs;
                break;
              }
              case EXCEPTIONBUFFER_EXT_OPCODE: {
                ctx->except_buf_sz = decode_be16(ctx);
                break;
              }
              default:  // Unknown extended opcode
                return EXCEPTION;  // Bail out
            }
            break;
          case LDDW_OPCODE:
          case STDW_OPCODE:
            if (ctx->v6) {
                if (!imm) return EXCEPTION;
                if (imm > 0xFFFF) return EXCEPTION;
                if (imm * 4 > ctx->ram_len) return EXCEPTION;
                if (opcode == LDDW_OPCODE) {
                    REG = counter[-(s32)imm];
                } else {
                    counter[-(s32)imm] = REG;
                }
            } else {
                u32 size = 4;
                u32 offs = OTHER_REG + (u32)signed_imm;
                // Negative offsets wrap around the end of the address space.
                // This allows us to efficiently access the end of the
                // address space with one-byte immediates without using %=.
                if (offs & 0x80000000) offs += ctx->ram_len;  // unsigned overflow intended
                ASSERT_IN_DATA_BOUNDS(offs, size);
                if (opcode == LDDW_OPCODE) {
                    u32 val = 0;
                    while (size--) val = (val << 8) | ctx->program[offs++];
                    REG = val;
                } else {
                    u32 val = REG;
                    while (size--) {
                        ctx->program[offs++] = (val >> 24);
                        val <<= 8;
                    }
                }
            }
            break;
          case WRITE_OPCODE: {
            ASSERT_RETURN(ctx->tx_buf);
            ASSERT_RETURN(len_field);
            {
                const u32 write_len = 1 << (len_field - 1);
                u32 i;
                ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
                for (i = 0; i < write_len; ++i) {
                    ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
                        (u8)(imm >> (write_len - 1 - i) * 8);
                }
            }
            break;
          }
          default:  // Unknown opcode
            return EXCEPTION;  // Bail out
        }
      }
    } while (instructions_remaining--);
    return EXCEPTION;
}

static int apf_runner(void* ctx, u32* const program, const u32 program_len,
                      const u32 ram_len, const u8* const packet,
                      const u32 packet_len, const u32 filter_age_16384ths) {
    // Due to direct 32-bit read/write access to counters at end of ram
    // APFv6 interpreter requires program & ram_len to be 4 byte aligned.
    if (3 & (uintptr_t)program) return EXCEPTION;
    if (3 & ram_len) return EXCEPTION;

    // We rely on ram_len + 65536 not overflowing, so require ram_len < 2GiB
    // Similarly LDDW/STDW have special meaning for negative ram offsets.
    // We also don't want garbage like program_len == 0xFFFFFFFF
    if ((program_len | ram_len) >> 31) return EXCEPTION;

    {
        apf_context apf_ctx = { 0 };
        int ret;

        apf_ctx.ptr_size = sizeof(void*);
        apf_ctx.caller_ctx = ctx;
        apf_ctx.program = (u8*)program;
        apf_ctx.program_len = program_len;
        apf_ctx.ram_len = ram_len;
        apf_ctx.packet = packet;
        apf_ctx.packet_len = packet_len;
        // Fill in pre-filled memory slot values.
        apf_ctx.mem.named.program_size = program_len;
        apf_ctx.mem.named.ram_len = ram_len;
        apf_ctx.mem.named.packet_size = packet_len;
        apf_ctx.mem.named.apf_version = apf_version();
        apf_ctx.mem.named.filter_age = filter_age_16384ths >> 14;
        apf_ctx.mem.named.filter_age_16384ths = filter_age_16384ths;

        ret = do_apf_run(&apf_ctx);
        if (apf_ctx.tx_buf) do_discard_buffer(&apf_ctx);
        // Convert any exceptions internal to the program to just normal 'PASS'
        if (ret >= EXCEPTION) {
            u16 buf_size = apf_ctx.except_buf_sz;
            if (buf_size >= sizeof(apf_ctx) && apf_ctx.program_len + buf_size <= apf_ctx.ram_len) {
                u8* buf = apf_ctx.program + apf_ctx.program_len;
                memcpy(buf, &apf_ctx, sizeof(apf_ctx));
                buf_size -= sizeof(apf_ctx);
                buf += sizeof(apf_ctx);
                if (buf_size > apf_ctx.packet_len) buf_size = apf_ctx.packet_len;
                memcpy(buf, apf_ctx.packet, buf_size);
            }
            ret = PASS;
        }
        return ret;
    }
}

int apf_run(void* ctx, u32* const program, const u32 program_len,
            const u32 ram_len, const u8* const packet,
            const u32 packet_len, const u32 filter_age_16384ths) {
    // Any valid ethernet packet should be at least ETH_HLEN long...
    if (!packet) return EXCEPTION;
    if (packet_len < ETH_HLEN) return EXCEPTION;

    return apf_runner(ctx, program, program_len, ram_len, packet, packet_len, filter_age_16384ths);
}