summaryrefslogtreecommitdiff
path: root/libsensors_iio/src/SWAccelMagnFusion6X.cpp
blob: 4822256137051112c8f7e657c9c464d117a801f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
 * STMicroelectronics Accel-Magn Fusion 6X Sensor Class
 *
 * Copyright 2013-2015 STMicroelectronics Inc.
 * Author: Denis Ciocca - <denis.ciocca@st.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 */

#include <fcntl.h>
#include <assert.h>
#include <signal.h>

#include "SWAccelMagnFusion6X.h"

extern "C" {
	#include "iNemoEngineGeoMagAPI.h"
}

SWAccelMagnFusion6X::SWAccelMagnFusion6X(const char *name, int handle, int pipe_data_fd) :
		SWSensorBaseWithPollrate(name, handle, SENSOR_TYPE_ST_ACCEL_MAGN_FUSION6X,
			pipe_data_fd, false, false, true, false)
{
	sensor_t_data.flags = SENSOR_FLAG_CONTINUOUS_MODE;

	sensor_t_data.resolution = ST_SENSOR_FUSION_RESOLUTION(1.0f);
	sensor_t_data.maxRange = 1.0f;

	type_dependencies[SENSOR_BASE_DEPENDENCY_0] = SENSOR_TYPE_ACCELEROMETER;
	type_dependencies[SENSOR_BASE_DEPENDENCY_1] = SENSOR_TYPE_MAGNETIC_FIELD;
	type_sensor_need_trigger = SENSOR_TYPE_MAGNETIC_FIELD;
}

SWAccelMagnFusion6X::~SWAccelMagnFusion6X()
{

}

int SWAccelMagnFusion6X::Enable(int handle, bool enable)
{
	int err;
	bool old_status;

	old_status = GetStatus();

	err = SWSensorBaseWithPollrate::Enable(handle, enable);
	if (err < 0)
		return err;

	if (GetStatus() && !old_status) {
		sensor_event.timestamp = 0;
		iNemoEngine_GeoMag_API_Initialization();
	}

	return 0;
}

int SWAccelMagnFusion6X::SetDelay(int handle, int64_t period_ns, int64_t timeout)
{
	int err;

	if ((period_ns > FREQUENCY_TO_NS(CONFIG_ST_HAL_MIN_FUSION_POLLRATE) && period_ns != INT64_MAX))
		period_ns = FREQUENCY_TO_NS(CONFIG_ST_HAL_MIN_FUSION_POLLRATE);

	err = SWSensorBaseWithPollrate::SetDelay(handle, period_ns, timeout);
	if (err < 0)
		return err;

	real_pollrate = dependencies[SENSOR_BASE_DEPENDENCY_1]->GetRealPollrate();

	return 0;
}

void SWAccelMagnFusion6X::SplitAndProcessData(SensorBaseData data[ST_GEOMAG_MAX_OUT_ID])
{
	int i, id, sensor_type;
	trigger_mutex *dep_mutex;

	for (i = 0; i < (int)sensors_to_push_data_num; i++) {
		if (sensors_to_push_data[i]->GetStatus()) {
			switch (sensors_to_push_data_type[i]) {
			case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
				id = ST_GEOMAG_ROTATION_VECTOR_OUT_ID;
				break;
			case SENSOR_TYPE_ORIENTATION:
				id = ST_GEOMAG_ORIENTATION_OUT_ID;
				break;
			case SENSOR_TYPE_LINEAR_ACCELERATION:
				id = ST_GEOMAG_LINEAR_ACCEL_OUT_ID;
				break;
			case SENSOR_TYPE_GRAVITY:
				id = ST_GEOMAG_GRAVITY_OUT_ID;
				break;
			default:
				continue;
			}

			sensors_to_push_data[i]->ReceiveDataFromDependency(sensor_t_data.handle, &data[id]);
		}
	}

	for (i = 0; i < (int)sensors_to_trigger_num; i++) {
		if (sensors_to_trigger[i]->GetStatus()) {
			dep_mutex = sensors_to_trigger[i]->GetMutexForTrigger();
			pthread_mutex_lock(&dep_mutex->trigger_mutex);
			pthread_cond_signal(&dep_mutex->trigger_data_cond);
			pthread_mutex_unlock(&dep_mutex->trigger_mutex);
		}
	}
}

void SWAccelMagnFusion6X::TriggerEventReceived()
{
	int deltatime;
	int64_t time_diff = 0;
	SensorBaseData accel_data, magn_data;
	int err, data_remaining_magn, nomaxdata = 10;

	do {
		data_remaining_magn = GetLatestValidDataFromDependency(SENSOR_BASE_DEPENDENCY_1, &magn_data);
		if (data_remaining_magn < 0)
			return;

		do {
			err = GetLatestValidDataFromDependency(SENSOR_BASE_DEPENDENCY_0, &accel_data);
			if (err < 0) {
				nomaxdata--;
				usleep(200);
				continue;
			}

			time_diff = magn_data.timestamp - accel_data.timestamp;

		} while ((time_diff >= GetRealPollrate()) && (nomaxdata > 0));

		if ((err >= 0) && (sensor_event.timestamp > 0)) {
			deltatime = (int)NS_TO_MS((uint64_t)(magn_data.timestamp - sensor_event.timestamp));
			iNemoEngine_GeoMag_API_Run(accel_data.raw, magn_data.processed, deltatime);
		}

		sensor_event.timestamp = magn_data.timestamp;

		err = iNemoEngine_GeoMag_API_Get_Quaternion(outdata[ST_GEOMAG_ROTATION_VECTOR_OUT_ID].processed);
		if (err < 0)
			return;

		err = iNemoEngine_GeoMag_API_Get_Hpr(outdata[ST_GEOMAG_ORIENTATION_OUT_ID].processed);
		if (err < 0)
			return;

		err = iNemoEngine_GeoMag_API_Get_LinAcc(outdata[ST_GEOMAG_LINEAR_ACCEL_OUT_ID].processed);
		if (err < 0)
			return;

		err = iNemoEngine_GeoMag_API_Get_Gravity(outdata[ST_GEOMAG_GRAVITY_OUT_ID].processed);
		if (err < 0)
			return;

		outdata[ST_GEOMAG_ROTATION_VECTOR_OUT_ID].timestamp = sensor_event.timestamp;
		outdata[ST_GEOMAG_ORIENTATION_OUT_ID].timestamp = sensor_event.timestamp;
		outdata[ST_GEOMAG_LINEAR_ACCEL_OUT_ID].timestamp = sensor_event.timestamp;
		outdata[ST_GEOMAG_GRAVITY_OUT_ID].timestamp = sensor_event.timestamp;

		SplitAndProcessData(outdata);
	} while (data_remaining_magn > 0);
}