summaryrefslogtreecommitdiff
path: root/libsensors_iio/src/SWSensorBase.cpp
blob: 83da79f2f99c17b224d58944901e6594d861c367 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * STMicroelectronics SW Sensor Base Class
 *
 * Copyright 2013-2015 STMicroelectronics Inc.
 * Author: Denis Ciocca - <denis.ciocca@st.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 */

#include <fcntl.h>
#include <assert.h>
#include <string.h>

#include "SWSensorBase.h"

SWSensorBase::SWSensorBase(const char *name, int handle, int sensor_type, int pipe_data_fd,
		bool use_dependency_resolution, bool use_dependency_range, bool use_dependency_delay,
		bool use_dependency_name) : SensorBase(name, handle, sensor_type, pipe_data_fd)
{
	dependency_resolution = use_dependency_resolution;
	dependency_range = use_dependency_range;
	dependency_delay = use_dependency_delay;
	dependency_name = use_dependency_name;

	return;
}

SWSensorBase::~SWSensorBase()
{
	return;
}

int SWSensorBase::AddSensorDependency(SensorBase *p)
{
	struct sensor_t dependecy_data;

	if (sensor_t_data.fifoMaxEventCount == 0)
		sensor_t_data.fifoMaxEventCount = p->GetMaxFifoLenght();
	else {
		if (p->GetMaxFifoLenght() < (int)sensor_t_data.fifoMaxEventCount)
			sensor_t_data.fifoMaxEventCount = p->GetMaxFifoLenght();
	}

	p->FillSensor_tData(&dependecy_data);

	if (dependency_resolution)
		sensor_t_data.resolution = dependecy_data.resolution;

	if (dependency_range)
		sensor_t_data.maxRange = dependecy_data.maxRange;

	if (dependency_delay) {
		if (sensor_t_data.minDelay == 0)
			sensor_t_data.minDelay = dependecy_data.minDelay;
		else {
			if (dependecy_data.minDelay > sensor_t_data.minDelay)
				sensor_t_data.minDelay = dependecy_data.minDelay;
		}

		if (sensor_t_data.maxDelay == 0)
			sensor_t_data.maxDelay = dependecy_data.maxDelay;
		else {
			if (dependecy_data.maxDelay < sensor_t_data.maxDelay)
				sensor_t_data.maxDelay = dependecy_data.maxDelay;
		}
	}

	if (dependency_name) {
		memcpy((char *)sensor_t_data.name, dependecy_data.name, strlen(dependecy_data.name) + 1);
	}

	return SensorBase::AddSensorDependency(p);
}

int SWSensorBase::FlushData(bool /*need_report_event*/)
{
	int err = -1, i;
	bool report_event_at_once = false;

	if (GetStatus() && (GetMinTimeout() > 0)) {
		int64_t flush_timestamp = get_monotonic_time();
		if (flush_timestamp <= real_pollrate) {
			ALOGE("HWSensorBase get flush base timestamp failed");
			return err;
		}
		ALOGD("sw flush timestamp %lld", flush_timestamp);
		if (flush_timestamp > (last_data_timestamp + real_pollrate * 11 / 10)) {
			flush_timestamp -= real_pollrate;
			(SensorBase::timestamp).push_back(flush_timestamp);
		} else
			report_event_at_once = true;

		for (i = 0; i < (int)dependencies_num; i++) {
			err = dependencies[i]->FlushData(false);
			if (err < 0)
				return -EINVAL;
		}

		if (report_event_at_once)
			SensorBase::FlushData(false);

		return 0;
	} else
		return -EINVAL;
}

void SWSensorBase::ThreadTask()
{
	while (true) {
		pthread_mutex_lock(&mutext.trigger_mutex);
		pthread_cond_wait(&mutext.trigger_data_cond, &mutext.trigger_mutex);
		TriggerEventReceived();
		pthread_mutex_unlock(&mutext.trigger_mutex);
	}
}


SWSensorBaseWithPollrate::SWSensorBaseWithPollrate(const char *name, int handle, int sensor_type, int pipe_data_fd,
		bool use_dependency_resolution, bool use_dependency_range, bool use_dependency_delay,
		bool use_dependency_name) : SWSensorBase(name, handle, sensor_type, pipe_data_fd,
		use_dependency_resolution, use_dependency_range, use_dependency_delay, use_dependency_name)
{

}

SWSensorBaseWithPollrate::~SWSensorBaseWithPollrate()
{

}

int SWSensorBaseWithPollrate::SetDelay(int handle, int64_t period_ns, int64_t timeout)
{
	int i, err;
	int64_t temp_real_pollrate = 0;

	err = SWSensorBase::SetDelay(handle, period_ns, timeout);
	if (err < 0)
		return err;

	for (i = 0; i < (int)dependencies_num; i++) {
		if (temp_real_pollrate < GetMinPeriod())
			temp_real_pollrate = GetMinPeriod();
	}

	return 0;
}

void SWSensorBaseWithPollrate::WriteDataToPipe()
{
	int err, retry = 3;
	std::vector<int64_t>::iterator it;

	if (!GetStatusOfHandle(sensor_t_data.handle))
		return;

	if (!(SensorBase::timestamp.empty())) {
		int64_t last_timestamp = 0;
		for (it = SensorBase::timestamp.begin(); it != SensorBase::timestamp.end(); ) {
			/* If two flush event come within 1 odr, there may not have data in hw fifo,
			 * so report corresponding flush complete events here.
			 */
			if ((sensor_event.timestamp >= *it) ||
					(last_timestamp != 0 && (*it - last_timestamp < real_pollrate * 11 / 10))) {
				sensors_event_t flush_event_data;

				flush_event_data.sensor = 0;
				flush_event_data.timestamp = 0;
				flush_event_data.meta_data.sensor = sensor_t_data.handle;
				flush_event_data.meta_data.what = META_DATA_FLUSH_COMPLETE;
				flush_event_data.type = SENSOR_TYPE_META_DATA;
				flush_event_data.version = META_DATA_VERSION;

				while (retry) {
					err = SensorBase::WritePipeWithPoll(&flush_event_data, sizeof(sensor_event),
											POLL_TIMEOUT_FLUSH_EVENT);
					if (err > 0)
						break;

					retry--;
					ALOGI("%s: Retry writing flush event data to pipe, retry_cnt: %d.", android_name, 3-retry);
				}

				if (retry ==  0)
					ALOGE("%s: Failed to write SW flush_complete, err=%d", android_name, err);
				else
					ALOGD("SW flush_complete sent");

				last_timestamp = *it;
				it = SensorBase::timestamp.erase(it);
			} else
				break;
		}
	}

	if (sensor_event.timestamp >= (last_data_timestamp + real_pollrate * 9 / 10)) {
		err = SensorBase::WritePipeWithPoll(&sensor_event, sizeof(sensor_event), POLL_TIMEOUT_DATA_EVENT);
		if (err <= 0) {
			ALOGE("%s: Failed to write sensor data - err=%d.", android_name, err);
			return;
		}

		last_data_timestamp = sensor_event.timestamp;
	}
}