/* $License: Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved. See included License.txt for License information. $ */ /** * @defgroup HAL_Outputs hal_outputs * @brief Motion Library - HAL Outputs * Sets up common outputs for HAL * * @{ * @file hal_outputs.c * @brief HAL Outputs. */ #include #include "hal_outputs.h" #include "log.h" #include "ml_math_func.h" #include "mlmath.h" #include "start_manager.h" #include "data_builder.h" #include "results_holder.h" struct hal_output_t { int accuracy_mag; /**< Compass accuracy */ // int accuracy_gyro; /**< Gyro Accuracy */ // int accuracy_accel; /**< Accel Accuracy */ int accuracy_quat; /**< quat Accuracy */ inv_time_t nav_timestamp; inv_time_t gam_timestamp; // inv_time_t accel_timestamp; inv_time_t mag_timestamp; long nav_quat[4]; int gyro_status; int accel_status; int compass_status; int nine_axis_status; inv_biquad_filter_t lp_filter[3]; float compass_float[3]; }; static struct hal_output_t hal_out; /** Acceleration (m/s^2) in body frame. * @param[out] values Acceleration in m/s^2 includes gravity. So while not in motion, it * should return a vector of magnitude near 9.81 m/s^2 * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to * inv_build_accel(). * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_accelerometer(float *values, int8_t *accuracy, inv_time_t * timestamp) { int status; /* Converts fixed point to m/s^2. Fixed point has 1g = 2^16. * So this 9.80665 / 2^16 */ #define ACCEL_CONVERSION 0.000149637603759766f long accel[3]; inv_get_accel_set(accel, accuracy, timestamp); values[0] = accel[0] * ACCEL_CONVERSION; values[1] = accel[1] * ACCEL_CONVERSION; values[2] = accel[2] * ACCEL_CONVERSION; if (hal_out.accel_status & INV_NEW_DATA) status = 1; else status = 0; return status; } /** Linear Acceleration (m/s^2) in Body Frame. * @param[out] values Linear Acceleration in body frame, length 3, (m/s^2). May show * accel biases while at rest. * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to * inv_build_accel(). * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_linear_acceleration(float *values, int8_t *accuracy, inv_time_t * timestamp) { long gravity[3], accel[3]; inv_get_accel_set(accel, accuracy, timestamp); inv_get_gravity(gravity); accel[0] -= gravity[0] >> 14; accel[1] -= gravity[1] >> 14; accel[2] -= gravity[2] >> 14; values[0] = accel[0] * ACCEL_CONVERSION; values[1] = accel[1] * ACCEL_CONVERSION; values[2] = accel[2] * ACCEL_CONVERSION; return hal_out.nine_axis_status; } /** Gravity vector (m/s^2) in Body Frame. * @param[out] values Gravity vector in body frame, length 3, (m/s^2) * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to * inv_build_accel(). * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_gravity(float *values, int8_t *accuracy, inv_time_t * timestamp) { long gravity[3]; int status; *accuracy = (int8_t) hal_out.accuracy_quat; *timestamp = hal_out.nav_timestamp; inv_get_gravity(gravity); values[0] = (gravity[0] >> 14) * ACCEL_CONVERSION; values[1] = (gravity[1] >> 14) * ACCEL_CONVERSION; values[2] = (gravity[2] >> 14) * ACCEL_CONVERSION; if ((hal_out.accel_status & INV_NEW_DATA) || (hal_out.gyro_status & INV_NEW_DATA)) status = 1; else status = 0; return status; } /* Converts fixed point to rad/sec. Fixed point has 1 dps = 2^16. * So this is: pi / 2^16 / 180 */ #define GYRO_CONVERSION 2.66316109007924e-007f /** Gyroscope calibrated data (rad/s) in body frame. * @param[out] values Rotation Rate in rad/sec. * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to * inv_build_gyro(). * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_gyroscope(float *values, int8_t *accuracy, inv_time_t * timestamp) { long gyro[3]; int status; inv_get_gyro_set(gyro, accuracy, timestamp); values[0] = gyro[0] * GYRO_CONVERSION; values[1] = gyro[1] * GYRO_CONVERSION; values[2] = gyro[2] * GYRO_CONVERSION; if (hal_out.gyro_status & INV_NEW_DATA) status = 1; else status = 0; return status; } /** Gyroscope raw data (rad/s) in body frame. * @param[out] values Rotation Rate in rad/sec. * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. Derived from the timestamp sent to * inv_build_gyro(). * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_gyroscope_raw(float *values, int8_t *accuracy, inv_time_t * timestamp) { long gyro[3]; int status; inv_get_gyro_set_raw(gyro, accuracy, timestamp); values[0] = gyro[0] * GYRO_CONVERSION; values[1] = gyro[1] * GYRO_CONVERSION; values[2] = gyro[2] * GYRO_CONVERSION; if (hal_out.gyro_status & INV_NEW_DATA) status = 1; else status = 0; return status; } /** * This corresponds to Sensor.TYPE_ROTATION_VECTOR. * The rotation vector represents the orientation of the device as a combination * of an angle and an axis, in which the device has rotated through an angle @f$\theta@f$ * around an axis {x, y, z}.
* The three elements of the rotation vector are * {x*sin(@f$\theta@f$/2), y*sin(@f$\theta@f$/2), z*sin(@f$\theta@f$/2)}, such that the magnitude of the rotation * vector is equal to sin(@f$\theta@f$/2), and the direction of the rotation vector is * equal to the direction of the axis of rotation. * * The three elements of the rotation vector are equal to the last three components of a unit quaternion * {x*sin(@f$\theta@f$/2), y*sin(@f$\theta@f$/2), z*sin(@f$\theta@f$/2)>. The 4th element is cos(@f$\theta@f$/2). * * Elements of the rotation vector are unitless. The x,y and z axis are defined in the same way as the acceleration sensor. * The reference coordinate system is defined as a direct orthonormal basis, where: -X is defined as the vector product Y.Z (It is tangential to the ground at the device's current location and roughly points East). -Y is tangential to the ground at the device's current location and points towards the magnetic North Pole. -Z points towards the sky and is perpendicular to the ground. * @param[out] values Length 4. * @param[out] accuracy Accuracy 0 to 3, 3 = most accurate * @param[out] timestamp Timestamp. In (ns) for Android. * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_rotation_vector(float *values, int8_t *accuracy, inv_time_t * timestamp) { *accuracy = (int8_t) hal_out.accuracy_quat; *timestamp = hal_out.nav_timestamp; if (hal_out.nav_quat[0] >= 0) { values[0] = hal_out.nav_quat[1] * INV_TWO_POWER_NEG_30; values[1] = hal_out.nav_quat[2] * INV_TWO_POWER_NEG_30; values[2] = hal_out.nav_quat[3] * INV_TWO_POWER_NEG_30; values[3] = hal_out.nav_quat[0] * INV_TWO_POWER_NEG_30; } else { values[0] = -hal_out.nav_quat[1] * INV_TWO_POWER_NEG_30; values[1] = -hal_out.nav_quat[2] * INV_TWO_POWER_NEG_30; values[2] = -hal_out.nav_quat[3] * INV_TWO_POWER_NEG_30; values[3] = -hal_out.nav_quat[0] * INV_TWO_POWER_NEG_30; } values[4] = inv_get_heading_confidence_interval(); return hal_out.nine_axis_status; } /** Compass data (uT) in body frame. * @param[out] values Compass data in (uT), length 3. May be calibrated by having * biases removed and sensitivity adjusted * @param[out] accuracy Accuracy 0 to 3, 3 = most accurate * @param[out] timestamp Timestamp. In (ns) for Android. * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_magnetic_field(float *values, int8_t *accuracy, inv_time_t * timestamp) { int status; /* Converts fixed point to uT. Fixed point has 1 uT = 2^16. * So this is: 1 / 2^16*/ //#define COMPASS_CONVERSION 1.52587890625e-005f int i; *timestamp = hal_out.mag_timestamp; *accuracy = (int8_t) hal_out.accuracy_mag; for (i=0; i<3; i++) { values[i] = hal_out.compass_float[i]; } if (hal_out.compass_status & INV_NEW_DATA) status = 1; else status = 0; return status; } static void inv_get_rotation(float r[3][3]) { long rot[9]; float conv = 1.f / (1L<<30); inv_quaternion_to_rotation(hal_out.nav_quat, rot); r[0][0] = rot[0]*conv; r[0][1] = rot[1]*conv; r[0][2] = rot[2]*conv; r[1][0] = rot[3]*conv; r[1][1] = rot[4]*conv; r[1][2] = rot[5]*conv; r[2][0] = rot[6]*conv; r[2][1] = rot[7]*conv; r[2][2] = rot[8]*conv; } static void google_orientation(float *g) { float rad2deg = (float)(180.0 / M_PI); float R[3][3]; inv_get_rotation(R); g[0] = atan2f(-R[1][0], R[0][0]) * rad2deg; g[1] = atan2f(-R[2][1], R[2][2]) * rad2deg; g[2] = asinf ( R[2][0]) * rad2deg; if (g[0] < 0) g[0] += 360; } /** This corresponds to Sensor.TYPE_ORIENTATION. All values are angles in degrees. * @param[out] values Length 3, Degrees.
* - values[0]: Azimuth, angle between the magnetic north direction * and the y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South, 270=West
* - values[1]: Pitch, rotation around x-axis (-180 to 180), with positive values * when the z-axis moves toward the y-axis.
* - values[2]: Roll, rotation around y-axis (-90 to 90), with positive * values when the x-axis moves toward the z-axis.
* * @note This definition is different from yaw, pitch and roll used in aviation * where the X axis is along the long side of the plane (tail to nose). * Note: This sensor type exists for legacy reasons, please use getRotationMatrix() * in conjunction with remapCoordinateSystem() and getOrientation() to compute * these values instead. * Important note: For historical reasons the roll angle is positive in the * clockwise direction (mathematically speaking, it should be positive in * the counter-clockwise direction). * @param[out] accuracy Accuracy of the measurment, 0 is least accurate, while 3 is most accurate. * @param[out] timestamp The timestamp for this sensor. * @return Returns 1 if the data was updated or 0 if it was not updated. */ int inv_get_sensor_type_orientation(float *values, int8_t *accuracy, inv_time_t * timestamp) { *accuracy = (int8_t) hal_out.accuracy_quat; *timestamp = hal_out.nav_timestamp; google_orientation(values); return hal_out.nine_axis_status; } /** Main callback to generate HAL outputs. Typically not called by library users. * @param[in] sensor_cal Input variable to take sensor data whenever there is new * sensor data. * @return Returns INV_SUCCESS if successful or an error code if not. */ inv_error_t inv_generate_hal_outputs(struct inv_sensor_cal_t *sensor_cal) { int use_sensor = 0; long sr = 1000; long compass[3]; int8_t accuracy; int i; (void) sensor_cal; inv_get_quaternion_set(hal_out.nav_quat, &hal_out.accuracy_quat, &hal_out.nav_timestamp); hal_out.gyro_status = sensor_cal->gyro.status; hal_out.accel_status = sensor_cal->accel.status; hal_out.compass_status = sensor_cal->compass.status; // Find the highest sample rate and tie generating 9-axis to that one. if (sensor_cal->gyro.status & INV_SENSOR_ON) { sr = sensor_cal->gyro.sample_rate_ms; use_sensor = 0; } if ((sensor_cal->accel.status & INV_SENSOR_ON) && (sr > sensor_cal->accel.sample_rate_ms)) { sr = sensor_cal->accel.sample_rate_ms; use_sensor = 1; } if ((sensor_cal->compass.status & INV_SENSOR_ON) && (sr > sensor_cal->compass.sample_rate_ms)) { sr = sensor_cal->compass.sample_rate_ms; use_sensor = 2; } if ((sensor_cal->quat.status & INV_SENSOR_ON) && (sr > sensor_cal->quat.sample_rate_ms)) { sr = sensor_cal->quat.sample_rate_ms; use_sensor = 3; } // Only output 9-axis if all 9 sensors are on. if (sensor_cal->quat.status & INV_SENSOR_ON) { // If quaternion sensor is on, gyros are not required as quaternion already has that part if ((sensor_cal->accel.status & sensor_cal->compass.status & INV_SENSOR_ON) == 0) { use_sensor = -1; } } else { if ((sensor_cal->gyro.status & sensor_cal->accel.status & sensor_cal->compass.status & INV_SENSOR_ON) == 0) { use_sensor = -1; } } switch (use_sensor) { case 0: hal_out.nine_axis_status = (sensor_cal->gyro.status & INV_NEW_DATA) ? 1 : 0; hal_out.nav_timestamp = sensor_cal->gyro.timestamp; break; case 1: hal_out.nine_axis_status = (sensor_cal->accel.status & INV_NEW_DATA) ? 1 : 0; hal_out.nav_timestamp = sensor_cal->accel.timestamp; break; case 2: hal_out.nine_axis_status = (sensor_cal->compass.status & INV_NEW_DATA) ? 1 : 0; hal_out.nav_timestamp = sensor_cal->compass.timestamp; break; case 3: hal_out.nine_axis_status = (sensor_cal->quat.status & INV_NEW_DATA) ? 1 : 0; hal_out.nav_timestamp = sensor_cal->quat.timestamp; break; default: hal_out.nine_axis_status = 0; // Don't output quaternion related info break; } /* Converts fixed point to uT. Fixed point has 1 uT = 2^16. * So this is: 1 / 2^16*/ #define COMPASS_CONVERSION 1.52587890625e-005f inv_get_compass_set(compass, &accuracy, &(hal_out.mag_timestamp) ); hal_out.accuracy_mag = (int ) accuracy; for (i=0; i<3; i++) { if ((sensor_cal->compass.status & (INV_NEW_DATA | INV_CONTIGUOUS)) == INV_NEW_DATA ) { // set the state variables to match output with input inv_calc_state_to_match_output(&hal_out.lp_filter[i], (float ) compass[i]); } if ((sensor_cal->compass.status & (INV_NEW_DATA | INV_RAW_DATA)) == (INV_NEW_DATA | INV_RAW_DATA) ) { hal_out.compass_float[i] = inv_biquad_filter_process(&hal_out.lp_filter[i], (float ) compass[i]) * COMPASS_CONVERSION; } else if ((sensor_cal->compass.status & INV_NEW_DATA) == INV_NEW_DATA ) { hal_out.compass_float[i] = (float ) compass[i] * COMPASS_CONVERSION; } } return INV_SUCCESS; } /** Turns off generation of HAL outputs. * @return Returns INV_SUCCESS if successful or an error code if not. */ inv_error_t inv_stop_hal_outputs(void) { inv_error_t result; result = inv_unregister_data_cb(inv_generate_hal_outputs); return result; } /** Turns on generation of HAL outputs. This should be called after inv_stop_hal_outputs() * to turn generation of HAL outputs back on. It is automatically called by inv_enable_hal_outputs(). * @return Returns INV_SUCCESS if successful or an error code if not. */ inv_error_t inv_start_hal_outputs(void) { inv_error_t result; result = inv_register_data_cb(inv_generate_hal_outputs, INV_PRIORITY_HAL_OUTPUTS, INV_GYRO_NEW | INV_ACCEL_NEW | INV_MAG_NEW); return result; } /* file name: lowPassFilterCoeff_1_6.c */ float compass_low_pass_filter_coeff[5] = {+2.000000000000f, +1.000000000000f, -1.279632424998f, +0.477592250073f, +0.049489956269f}; /** Initializes hal outputs class. This is called automatically by the * enable function. It may be called any time the feature is enabled, but * is typically not needed to be called by outside callers. * @return Returns INV_SUCCESS if successful or an error code if not. */ inv_error_t inv_init_hal_outputs(void) { int i; memset(&hal_out, 0, sizeof(hal_out)); for (i=0; i<3; i++) { inv_init_biquad_filter(&hal_out.lp_filter[i], compass_low_pass_filter_coeff); } return INV_SUCCESS; } /** Turns on creation and storage of HAL type results. * @return Returns INV_SUCCESS if successful or an error code if not. */ inv_error_t inv_enable_hal_outputs(void) { inv_error_t result; // don't need to check the result for inv_init_hal_outputs // since it's always INV_SUCCESS inv_init_hal_outputs(); result = inv_register_mpl_start_notification(inv_start_hal_outputs); return result; } /** Turns off creation and storage of HAL type results. */ inv_error_t inv_disable_hal_outputs(void) { inv_error_t result; inv_stop_hal_outputs(); // Ignore error if we have already stopped this result = inv_unregister_mpl_start_notification(inv_start_hal_outputs); return result; } /** * @} */