summaryrefslogtreecommitdiff
path: root/6515/libsensors_iio/software/simple_apps/playback/linux/main.c
blob: 3eb64f08ad00d82faed1aeb44ee21b87be7b99ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*******************************************************************************
 * Copyright (c) 2012 InvenSense Corporation, All Rights Reserved.
 ******************************************************************************/

/*******************************************************************************
 *
 * $Id: main.c 6146 2011-10-04 18:33:51Z jcalizo $
 *
 ******************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "invensense.h"
#include "invensense_adv.h"
#include "and_constructor.h"
#include "ml_math_func.h"
#include "datalogger_outputs.h"

#include "console_helper.h"

#include "mlos.h"
#include "mlsl.h"

#include "testsupport.h"

#include "log.h"
#undef MPL_LOG_TAG
#define MPL_LOG_TAG "MPL-playback"

/*
    Defines & Macros
*/
#define UNPACK_3ELM_ARRAY(a)    (a)[0], (a)[1], (a)[2]
#define UNPACK_4ELM_ARRAY(a)    UNPACK_3ELM_ARRAY(a), (a)[3]
#define COMPONENT_NAME_MAX_LEN  (30)
#define DEF_NAME(x)             (#x)

#define PRINT_ON_CONSOLE(...)                   \
    if (print_on_screen)                        \
        printf(__VA_ARGS__)
#define PRINT_ON_FILE(...)                      \
    if(stream_file)                             \
        fprintf(stream_file, __VA_ARGS__)

#define PRINT(...)                              \
    PRINT_ON_CONSOLE(__VA_ARGS__);              \
    PRINT_ON_FILE(__VA_ARGS__)
#define PRINT_FLOAT(width, prec, data)          \
    PRINT_ON_CONSOLE("%+*.*f",                  \
                     width, prec, data);        \
    PRINT_ON_FILE("%+f", data)
#define PRINT_INT(width, data)                  \
    PRINT_ON_CONSOLE("%+*d", width, data);      \
    PRINT_ON_FILE("%+d", data);
#define PRINT_LONG(width, data)                 \
    PRINT_ON_CONSOLE("%+*ld", width, data);     \
    PRINT_ON_FILE("%+ld", data);

#define PRINT_3ELM_ARRAY_FLOAT(w, p, data)      \
    PRINT_FLOAT(w, p, data[0]);                 \
    PRINT(", ");                                \
    PRINT_FLOAT(w, p, data[1]);                 \
    PRINT(", ");                                \
    PRINT_FLOAT(w, p, data[2]);                 \
    PRINT(", ");
#define PRINT_4ELM_ARRAY_FLOAT(w, p, data)      \
    PRINT_3ELM_ARRAY_FLOAT(w, p, data);         \
    PRINT_FLOAT(w, p, data[3]);                 \
    PRINT(", ");

#define PRINT_3ELM_ARRAY_LONG(w, data)          \
    PRINT_LONG(w, data[0]);                     \
    PRINT(", ");                                \
    PRINT_LONG(w, data[1]);                     \
    PRINT(", ");                                \
    PRINT_LONG(w, data[2]);                     \
    PRINT(", ");
#define PRINT_4ELM_ARRAY_LONG(w, data)          \
    PRINT_3ELM_ARRAY_LONG(w, data);             \
    PRINT_LONG(w, data[3]);                     \
    PRINT(", ");

#define PRINT_3ELM_ARRAY_INT(w, data)           \
    PRINT_INT(w, data[0]);                      \
    PRINT(", ");                                \
    PRINT_INT(w, data[1]);                      \
    PRINT(", ");                                \
    PRINT_INT(w, data[2]);                      \
    PRINT(", ");
#define PRINT_4ELM_ARRAY_INT(w, data)           \
    PRINT_3ELM_ARRAY_LONG(w, data);             \
    PRINT_INT(w, data[3]);                      \
    PRINT(", ");


#define CASE_NAME(CODE)                         \
    case CODE:                                  \
        return #CODE

#define CALL_CHECK_N_PRINT(f) {                                     \
    MPL_LOGI("\n");                                                 \
    MPL_LOGI("################################################\n"); \
    MPL_LOGI("# %s\n", #f);                                         \
    MPL_LOGI("################################################\n"); \
    MPL_LOGI("\n");                                                 \
    CALL_N_CHECK(f);                                                \
}

/*
    Types
*/
/* A badly named enum type to track state of user input for tracker menu. */
typedef enum {
    STATE_SELECT_A_TRACKER,
    STATE_SET_TRACKER_STATE,    /* I'm running out of ideas here. */
    STATE_COUNT
} user_state_t;

/* bias trackers. */
typedef enum {
    BIAS_FROM_NO_MOTION,
    FAST_NO_MOTION,
    BIAS_FROM_GRAVITY,
    BIAS_FROM_TEMPERATURE,
    BIAS_FROM_LPF,
    DEAD_ZONE,
    NUM_TRACKERS
} bias_t;

enum comp_ids {
    TIME = 0,
    CALIBRATED_GYROSCOPE,
    CALIBRATED_ACCELEROMETER,
    CALIBRATED_COMPASS,
    RAW_GYROSCOPE,
    RAW_GYROSCOPE_BODY,
    RAW_ACCELEROMETER,
    RAW_COMPASS,
    QUATERNION_9_AXIS,
    QUATERNION_6_AXIS,
    GRAVITY,
    HEADING,
    COMPASS_BIAS_ERROR,
    COMPASS_STATE,
    TEMPERATURE,
    TEMP_COMP_SLOPE,
    LINEAR_ACCELERATION,
    ROTATION_VECTOR,
    MOTION_STATE,

    NUM_OF_IDS
};

struct component_list {
    char name[COMPONENT_NAME_MAX_LEN];
    int order;
};

/*
    Globals
*/
static int print_on_screen = true;
static int one_time_print = true;
static FILE *stream_file = NULL;
static unsigned long sample_count = 0;
static int enabled_9x = true;

signed char g_gyro_orientation[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
signed char g_accel_orientation[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
signed char g_compass_orientation[9] = {-1, 0, 0, 0, 1, 0, 0, 0, -1};

#ifdef WIN32
static double pc_freq;
static __int64 counter_start;
#else
static inv_time_t counter_start;
#endif

struct component_list components[NUM_OF_IDS];

/*
    Prototypes
*/
void print_tracker_states(bias_t tracker);

/*
    Callbacks
*/
/*--- motion / no motion callback function ---*/
void check_motion_event(void)
{
    long msg = inv_get_message_level_0(1);
    if (msg) {
        if (msg & INV_MSG_MOTION_EVENT) {
            MPL_LOGI("################################################\n");
            MPL_LOGI("## Motion\n");
            MPL_LOGI("################################################\n");
        }
        if (msg & INV_MSG_NO_MOTION_EVENT) {
            MPL_LOGI("################################################\n");
            MPL_LOGI("## No Motion\n");
            MPL_LOGI("################################################\n");
        }
    }
}

/* number to string coversion */
char *compass_state_name(char* out, int state)
{
    switch(state) {
        CASE_NAME(SF_NORMAL);
        CASE_NAME(SF_DISTURBANCE);
        CASE_NAME(SF_FAST_SETTLE);
        CASE_NAME(SF_SLOW_SETTLE);
        CASE_NAME(SF_STARTUP_SETTLE);
        CASE_NAME(SF_UNCALIBRATED);
    }

    #define UNKNOWN_ERROR_CODE 1234
    return ERROR_NAME(UNKNOWN_ERROR_CODE);
}

/* component ID to name convertion */
char *component_name(char *out, int comp_id)
{
    switch (comp_id) {
    CASE_NAME(TIME);
    CASE_NAME(CALIBRATED_GYROSCOPE);
    CASE_NAME(CALIBRATED_ACCELEROMETER);
    CASE_NAME(CALIBRATED_COMPASS);
    CASE_NAME(RAW_GYROSCOPE);
    CASE_NAME(RAW_GYROSCOPE_BODY);
    CASE_NAME(RAW_ACCELEROMETER);
    CASE_NAME(RAW_COMPASS);
    CASE_NAME(QUATERNION_9_AXIS);
    CASE_NAME(QUATERNION_6_AXIS);
    CASE_NAME(GRAVITY);
    CASE_NAME(HEADING);
    CASE_NAME(COMPASS_BIAS_ERROR);
    CASE_NAME(COMPASS_STATE);
    CASE_NAME(TEMPERATURE);
    CASE_NAME(TEMP_COMP_SLOPE);
    CASE_NAME(LINEAR_ACCELERATION);
    CASE_NAME(ROTATION_VECTOR);
    CASE_NAME(MOTION_STATE);
    }

    return "UNKNOWN";
}


#ifdef WIN32

/*
  Karthik Implementation.
  http://stackoverflow.com/questions/1739259/how-to-use-queryperformancecounter
*/
double get_counter(__int64 *counter_start, double *pc_freq)
{
    LARGE_INTEGER li;
    double x;
    QueryPerformanceCounter(&li);
    x = (double) (li.QuadPart - (*counter_start));
    x = x / (*pc_freq);
    return(x);
}

void start_counter(double *pc_freq, __int64 *counter_start)
{
    LARGE_INTEGER li;
    double x;
    if(!QueryPerformanceFrequency(&li))
        printf("QueryPerformanceFrequency failed!\n");
    x = (double)(li.QuadPart);
    *pc_freq = x / 1000.0;
    QueryPerformanceCounter(&li);
    *counter_start = li.QuadPart;
}

#else

unsigned long get_counter(void)
{
    return (inv_get_tick_count() - counter_start);
}

void start_counter(void)
{
    counter_start = inv_get_tick_count();
}

#endif

/* processed data callback */
void fifo_callback(void)
{
    int print_on_screen_saved = print_on_screen;
    int i;

    /* one_time_print causes the data labels to be printed on screen */
    if (one_time_print) {
        print_on_screen = true;
    }
    for (i = 0; i < NUM_OF_IDS; i++) {
        if (components[TIME].order == i) {
            if (one_time_print) {
                PRINT("TIME,");
            } else {
#ifdef WIN32
                double time_ms;
                static int first_value = 0;
                if(first_value == 0){
                    first_value = 1;
                    start_counter(&pc_freq, &counter_start);
                    time_ms = 0;
                } else {
                    time_ms = get_counter(&counter_start, &pc_freq);
                }
                PRINT("%6.0f,   ", time_ms);
#else
                unsigned long time_ms;
                static int first_value = 0;
                if(first_value == 0){
                    first_value = 1;
                    start_counter();
                    time_ms = 0;
                } else {
                    time_ms = get_counter();
                }
                PRINT("%6ld,   ", time_ms);
#endif
            }
        } else if (components[CALIBRATED_GYROSCOPE].order == i) {
            if (one_time_print) {
                PRINT("CALIBRATED_GYROSCOPE_X,"
                      "CALIBRATED_GYROSCOPE_Y,"
                      "CALIBRATED_GYROSCOPE_Z,");
                /*
                PRINT("CALIBRATED_GYROSCOPE_X_AVERAGE,"
                      "CALIBRATED_GYROSCOPE_Y_AVERAGE,"
                      "CALIBRATED_GYROSCOPE_Z_AVERAGE,");
                */
            } else {
                /*
                #define window 20
                static int cnt = 0;
                static int valid = 0;
                static float gyro_keep[window][3];
                int kk, jj;
                float avg[3];
                */
                float gyro[3];
                inv_get_gyro_float(gyro);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, gyro);
                PRINT("  ");
                /*
                memcpy(gyro_keep[cnt], gyro, sizeof(float) * 3);
                cnt= (cnt + 1) % window;
                if (cnt == window - 1)
                    valid = 1;
                if (valid) {
                    memset(avg, 0, sizeof(float) * 3);
                    jj = (cnt + 1) % window;
                    for (kk = 0; kk < window; kk++) {
                        avg[0] += gyro_keep[jj][0] / window;
                        avg[1] += gyro_keep[jj][1] / window;
                        avg[2] += gyro_keep[jj][2] / window;
                        jj = (jj + 1) % window;
                    }
                    PRINT("%+f, %+f, %+f,   ",
                          UNPACK_3ELM_ARRAY(avg));
                    PRINT_3ELM_ARRAY_FLOAT(10, 5, avg);
                    PRINT("  ");
                }
                */
            }
        } else if (components[CALIBRATED_ACCELEROMETER].order == i) {
            if (one_time_print) {
                PRINT("CALIBRATED_ACCELEROMETER_X,"
                      "CALIBRATED_ACCELEROMETER_Y,"
                      "CALIBRATED_ACCELEROMETER_Z,");
            } else {
                float accel[3];
                inv_get_accel_float(accel);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, accel);
                PRINT("  ");
            }
        } else if (components[CALIBRATED_COMPASS].order == i) {
            if (one_time_print) {
                PRINT("CALIBRATED_COMPASS_X,"
                      "CALIBRATED_COMPASS_Y,"
                      "CALIBRATED_COMPASS_Z,");
            } else {
                long lcompass[3];
                float compass[3];
                inv_get_compass_set(lcompass, 0, 0);
                compass[0] = inv_q16_to_float(lcompass[0]);
                compass[1] = inv_q16_to_float(lcompass[1]);
                compass[2] = inv_q16_to_float(lcompass[2]);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, compass);
                PRINT("  ");
            }
        } else if (components[RAW_GYROSCOPE].order == i) {
            if (one_time_print) {
                PRINT("RAW_GYROSCOPE_X,"
                      "RAW_GYROSCOPE_Y,"
                      "RAW_GYROSCOPE_Z,");
            } else {
                short raw[3];
                inv_get_sensor_type_gyro_raw_short(raw, NULL);
                PRINT_3ELM_ARRAY_INT(6, raw);
                PRINT("  ");
            }
        } else if (components[RAW_GYROSCOPE_BODY].order == i) {
            if (one_time_print) {
                PRINT("RAW_GYROSCOPE_BODY_X,"
                      "RAW_GYROSCOPE_BODY_Y,"
                      "RAW_GYROSCOPE_BODY_Z,");
            } else {
                float raw_body[3];
                inv_get_sensor_type_gyro_raw_body_float(raw_body, NULL);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, raw_body);
                PRINT("  ");
            }
        } else if (components[RAW_ACCELEROMETER].order == i) {
            if (one_time_print) {
                PRINT("RAW_ACCELEROMETER_X,"
                      "RAW_ACCELEROMETER_Y,"
                      "RAW_ACCELEROMETER_Z,");
            } else {
                short raw[3];
                inv_get_sensor_type_accel_raw_short(raw, NULL);
                PRINT_3ELM_ARRAY_INT(6, raw);
                PRINT("  ");
            }
        } else if (components[RAW_COMPASS].order == i) {
            if (one_time_print) {
                PRINT("RAW_COMPASS_X,"
                      "RAW_COMPASS_Y,"
                      "RAW_COMPASS_Z,");
            } else {
                short raw[3];
                inv_get_sensor_type_compass_raw_short(raw, NULL);
                PRINT_3ELM_ARRAY_INT(6, raw);
                PRINT("  ");
            }
        } else if (components[QUATERNION_9_AXIS].order == i) {
            if (one_time_print) {
                PRINT("QUATERNION_9_AXIS_X,"
                      "QUATERNION_9_AXIS_Y,"
                      "QUATERNION_9_AXIS_Z,"
                      "QUATERNION_9_AXIS_w,");
            } else {
                float quat[4];
                inv_get_quaternion_float(quat);
                PRINT_4ELM_ARRAY_FLOAT(10, 5, quat);
                PRINT("  ");
            }
        } else if (components[QUATERNION_6_AXIS].order == i) {
            if (one_time_print) {
                PRINT("QUATERNION_6_AXIS_X,"
                      "QUATERNION_6_AXIS_Y,"
                      "QUATERNION_6_AXIS_Z,"
                      "QUATERNION_6_AXIS_w,");
            } else {
                float quat[4];
                long temp[4];
                int j;
                inv_time_t timestamp;
                inv_get_6axis_quaternion(temp, &timestamp);
                for (j = 0; j < 4; j++)
                    quat[j] = (float)temp[j] / (1 << 30);
                PRINT_4ELM_ARRAY_FLOAT(10, 5, quat);
                PRINT("  ");
            }
        } else if (components[HEADING].order == i) {
            if (one_time_print) {
                PRINT("HEADING,");
            } else {
                float heading[1];
                inv_get_sensor_type_compass_float(heading, NULL, NULL,
                                                  NULL, NULL);
                PRINT_FLOAT(10, 5, heading[0]);
                PRINT(",   ");
            }
        } else if (components[GRAVITY].order == i) {
            if (one_time_print) {
                PRINT("GRAVITY_X,"
                      "GRAVITY_Y,"
                      "GRAVITY_Z,");
            } else {
                float gravity[3];
                inv_get_sensor_type_gravity_float(gravity, NULL, NULL);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, gravity);
                PRINT("  ");
            }
        } else if (components[COMPASS_STATE].order == i) {
            if (one_time_print) {
                PRINT("COMPASS_STATE,"
                      "GOT_COARSE_HEADING,");
            } else {
                PRINT_INT(1, inv_get_compass_state());
                PRINT(", ");
                PRINT_INT(1, inv_got_compass_bias());
                PRINT(", ");
            }
        } else if (components[COMPASS_BIAS_ERROR].order == i) {
            if (one_time_print) {
                PRINT("COMPASS_BIAS_ERROR_X,"
                      "COMPASS_BIAS_ERROR_Y,"
                      "COMPASS_BIAS_ERROR_Z,");
            } else {
                long mbe[3];
                inv_get_compass_bias_error(mbe);
                PRINT_3ELM_ARRAY_LONG(6, mbe);
            }
        } else if (components[TEMPERATURE].order == i) {
            if (one_time_print) {
                PRINT("TEMPERATURE,");
            } else {
                float temp;
                inv_get_sensor_type_temperature_float(&temp, NULL);
                PRINT_FLOAT(8, 4, temp);
                PRINT(",   ");
            }
        } else if (components[TEMP_COMP_SLOPE].order == i) {
            if (one_time_print) {
                PRINT("TEMP_COMP_SLOPE_X,"
                      "TEMP_COMP_SLOPE_Y,"
                      "TEMP_COMP_SLOPE_Z,");
            } else {
                long temp_slope[3];
                float temp_slope_f[3];
                (void)inv_get_gyro_ts(temp_slope);
                temp_slope_f[0] = inv_q16_to_float(temp_slope[0]);
                temp_slope_f[1] = inv_q16_to_float(temp_slope[1]);
                temp_slope_f[2] = inv_q16_to_float(temp_slope[2]);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, temp_slope_f);
                PRINT("  ");
            }
        } else if (components[LINEAR_ACCELERATION].order == i) {
            if (one_time_print) {
                PRINT("LINEAR_ACCELERATION_X,"
                      "LINEAR_ACCELERATION_Y,"
                      "LINEAR_ACCELERATION_Z,");
            } else {
                float lin_acc[3];
                inv_get_linear_accel_float(lin_acc);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, lin_acc);
                PRINT("  ");
            }
        } else if (components[ROTATION_VECTOR].order == i) {
            if (one_time_print) {
                PRINT("ROTATION_VECTOR_X,"
                      "ROTATION_VECTOR_Y,"
                      "ROTATION_VECTOR_Z,");
            } else {
                float rot_vec[3];
                inv_get_sensor_type_rotation_vector_float(rot_vec, NULL, NULL);
                PRINT_3ELM_ARRAY_FLOAT(10, 5, rot_vec);
                PRINT("  ");
            }
        } else if (components[MOTION_STATE].order == i) {
            if (one_time_print) {
                PRINT("MOTION_STATE,");
            } else {
                unsigned int counter;
                PRINT_INT(1, inv_get_motion_state(&counter));
                PRINT(",   ");
            }
        } else {
            ;
        }
    }
    PRINT("\n");

    if (one_time_print) {
        one_time_print = false;
        print_on_screen = print_on_screen_saved;
    }
    sample_count++;
}

void print_help(char *exename)
{
    printf(
        "\n"
        "Usage:\n"
        "\t%s [options]\n"
        "\n"
        "Options:\n"
        "        [-h|--help]          = shows this help\n"
        "        [-o|--output PREFIX] = to dump data on csv file whose file\n"
        "                               prefix is specified by the parameter,\n"
        "                               e.g. '<PREFIX>-<timestamp>.csv'\n"
        "        [-i|--input NAME]    = to read the provided playback.bin file\n"
        "        [-c|--comp C]        = enable the following components in the\n"
        "                               given order:\n"
        "                                 t = TIME\n"
        "                                 T = TEMPERATURE,\n"
        "                                 s = TEMP_COMP_SLOPE,\n"
        "                                 G = CALIBRATED_GYROSCOPE,\n"
        "                                 A = CALIBRATED_ACCELEROMETER,\n"
        "                                 C = CALIBRATED_COMPASS,\n"
        "                                 g = RAW_GYROSCOPE,\n"
        "                                 b = RAW_GYROSCOPE_BODY,\n"
        "                                 a = RAW_ACCELEROMETER,\n"
        "                                 c = RAW_COMPASS,\n"
        "                                 Q = QUATERNION_9_AXIS,\n"
        "                                 6 = QUATERNION_6_AXIS,\n"
        "                                 V = GRAVITY,\n"
        "                                 L = LINEAR_ACCELERATION,\n"
        "                                 R = ROTATION_VECTOR,\n"
        "                                 H = HEADING,\n"
        "                                 E = COMPASS_BIAS_ERROR,\n"
        "                                 S = COMPASS_STATE,\n"
        "                                 M = MOTION_STATE.\n"
        "\n"
        "Note on compass state values:\n"
        "    SF_NORMAL         = 0\n"
        "    SF_DISTURBANCE    = 1\n"
        "    SF_FAST_SETTLE    = 2\n"
        "    SF_SLOW_SETTLE    = 3\n"
        "    SF_STARTUP_SETTLE = 4\n"
        "    SF_UNCALIBRATED   = 5\n"
        "\n",
        exename);
}

char *output_filename_datetimestamp(char *out)
{
    time_t t;
    struct tm *now;
    t = time(NULL);
    now = localtime(&t);

    sprintf(out,
            "%02d%02d%02d_%02d%02d%02d.csv",
            now->tm_year - 100, now->tm_mon + 1, now->tm_mday,
            now->tm_hour, now->tm_min, now->tm_sec);
    return out;
}

int components_parser(char pname[], char requested[], int length)
{
    int j;

    /* forcibly disable all */
    for (j = 0; j < NUM_OF_IDS; j++)
        components[j].order = -1;

    /* parse each character one a time */
    for (j = 0; j < length; j++) {
        switch (requested[j]) {
        case 'T':
            components[TEMPERATURE].order = j;
            break;
        case 'G':
            components[CALIBRATED_GYROSCOPE].order = j;
            break;
        case 'A':
            components[CALIBRATED_ACCELEROMETER].order = j;
            break;
        case 'g':
            components[RAW_GYROSCOPE].order = j;
            break;
        case 'b':
            components[RAW_GYROSCOPE_BODY].order = j;
            break;
        case 'a':
            components[RAW_ACCELEROMETER].order = j;
            break;
        case 'Q':
            components[QUATERNION_9_AXIS].order = j;
            break;
        case '6':
            components[QUATERNION_6_AXIS].order = j;
            break;
        case 'V':
            components[GRAVITY].order = j;
            break;
        case 'L':
            components[LINEAR_ACCELERATION].order = j;
            break;
        case 'R':
            components[ROTATION_VECTOR].order = j;
            break;

        /* these components don't need to be enabled */
        case 't':
            components[TIME].order = j;
            break;
        case 'C':
            components[CALIBRATED_COMPASS].order = j;
            break;
        case 'c':
            components[RAW_COMPASS].order = j;
            break;
        case 'H':
            components[HEADING].order = j;
            break;
        case 'E':
            components[COMPASS_BIAS_ERROR].order = j;
            break;
        case 'S':
            components[COMPASS_STATE].order = j;
            break;
        case 'M':
            components[MOTION_STATE].order = j;
            break;

        default:
            MPL_LOGI("Error : unrecognized component '%c'\n",
                     requested[j]);
            print_help(pname);
            return 1;
            break;
        }
    }
    return 0;
}

int main(int argc, char *argv[])
{
#ifndef INV_PLAYBACK_DBG
    MPL_LOGI("Error : this application was not compiled with the "
             "INV_PLAYBACK_DBG define and cannot work.\n");
    MPL_LOGI("        Recompile the libmllite libraries with #define "
             "INV_PLAYBACK_DBG uncommented\n");
    MPL_LOGI("        in 'software/core/mllite/data_builder.h'.\n");
    return INV_ERROR;
#endif

    inv_time_t start_time;
    double total_time;
    char req_component_list[50] = "tQGACH";
    char input_filename[101] = "/data/playback.bin";
    int i = 0;
    char *ver_str;
    /* flags */
    int use_nm_detection = true;

    /* make sure there is no buffering of the print messages */
    setvbuf(stdout, NULL, _IONBF, 0);

    /* forcibly disable all and populate the names */
    for (i = 0; i < NUM_OF_IDS; i++) {
        char str_tmp[COMPONENT_NAME_MAX_LEN];
        strcpy(components[i].name, component_name(str_tmp, i));
        components[i].order = -1;
    }

    CALL_N_CHECK( inv_get_version(&ver_str) );
    MPL_LOGI("\n");
    MPL_LOGI("%s\n", ver_str);
    MPL_LOGI("\n");

    for (i = 1; i < argc; i++) {
        if(strcmp(argv[i], "-h") == 0
            || strcmp(argv[i], "--help") == 0) {
            print_help(argv[0]);
            return INV_SUCCESS;

        } else if(strcmp(argv[i], "-o") == 0
            || strcmp(argv[i], "--output") == 0) {
            char output_filename[200];
            char end[50] = "";
            i++;

            snprintf(output_filename, sizeof(output_filename), "%s-%s",
                    argv[i], output_filename_datetimestamp(end));
            stream_file = fopen(output_filename, "w+");
            if (!stream_file) {
                printf("Unable to open file '%s'\n", output_filename);
                return INV_ERROR;
            }
            MPL_LOGI("-- Output on file '%s'\n", output_filename);

        } else if(strcmp(argv[i], "-i") == 0
            || strcmp(argv[i], "--input") == 0) {
            i++;
            strncpy(input_filename, argv[i], sizeof(input_filename));
            MPL_LOGI("-- Playing back file '%s'\n", input_filename);

        } else if(strcmp(argv[i], "-n") == 0
            || strcmp(argv[i], "--nm") == 0) {
            i++;
            if (!strcmp(argv[i], "none")) {
                use_nm_detection = 0;
            } else if (!strcmp(argv[i], "regular")) {
                use_nm_detection = 1;
            } else if (!strcmp(argv[i], "fast")) {
                use_nm_detection = 2;
            } else {
                MPL_LOGI("Error : unrecognized no-motion type '%s'\n",
                         argv[i]);
                return INV_ERROR_INVALID_PARAMETER;
            }
            MPL_LOGI("-- No motion algorithm : '%s', %d\n",
                     argv[i], use_nm_detection);

        } else if(strcmp(argv[i], "-9") == 0
            || strcmp(argv[i], "--nine") == 0) {
            MPL_LOGI("-- using 9 axis sensor fusion by default\n");
            enabled_9x = true;

        } else if(strcmp(argv[i], "-c") == 0
            || strcmp(argv[i], "--comp") == 0) {
            i++;
            strcpy(req_component_list, argv[i]);

        } else {
            MPL_LOGI("Unrecognized command-line parameter '%s'\n", argv[i]);
            return INV_ERROR_INVALID_PARAMETER;
        }
    }

    CALL_CHECK_N_RETURN_ERROR(
        components_parser(
            argv[0],
            req_component_list, strlen(req_component_list)));

    /* set up callbacks */
    CALL_N_CHECK(inv_set_fifo_processed_callback(fifo_callback));

    /* algorithm init */
    CALL_N_CHECK(inv_enable_quaternion());
    if (use_nm_detection == 1) {
        CALL_N_CHECK(inv_enable_motion_no_motion());
    } else if (use_nm_detection == 2) {
        CALL_N_CHECK(inv_enable_fast_nomot());
    }
    CALL_N_CHECK(inv_enable_gyro_tc());
    CALL_N_CHECK(inv_enable_in_use_auto_calibration());
    CALL_N_CHECK(inv_enable_no_gyro_fusion());
    CALL_N_CHECK(inv_enable_results_holder());
    if (enabled_9x) {
        CALL_N_CHECK(inv_enable_heading_from_gyro());
        CALL_N_CHECK(inv_enable_compass_bias_w_gyro());
        CALL_N_CHECK(inv_enable_vector_compass_cal());
        CALL_N_CHECK(inv_enable_9x_sensor_fusion());
    }

    CALL_CHECK_N_RETURN_ERROR(inv_enable_datalogger_outputs());
    CALL_CHECK_N_RETURN_ERROR(inv_constructor_start());

    /* load persistent data */
    {
        FILE *fc = fopen("invcal.bin", "rb");
        if (fc != NULL) {
            size_t sz, rd;
            inv_error_t result = 0;
            // Read amount of memory we need to hold data
            rd = fread(&sz, sizeof(size_t), 1, fc);
            if (rd == sizeof(size_t)) {
                unsigned char *cal_data = (unsigned char *)malloc(sizeof(sz));
                unsigned char *cal_ptr;
                cal_ptr = cal_data;
                *(size_t *)cal_ptr = sz;
                cal_ptr += sizeof(sz);
                /* read rest of the file */
                fread(cal_ptr, sz - sizeof(size_t), 1, fc);
                //result = inv_load_mpl_states(cal_data, sz);
                if (result) {
                    MPL_LOGE("Cal Load error\n");
                }
                MPL_LOGI("inv_load_mpl_states()\n");
                free(cal_data);
            } else {
                MPL_LOGE("Cal Load error with size read\n");
            }
            fclose(fc);
        }
    }

    sample_count = 0;
    start_time = inv_get_tick_count();

    /* playback data that was recorded */
    inv_set_playback_filename(input_filename, strlen(input_filename) + 1);
    inv_set_debug_mode(RD_PLAYBACK);
    CALL_N_CHECK(inv_playback());

    total_time = (1.0 * inv_get_tick_count() - start_time) / 1000;
    if (total_time > 0) {
        MPL_LOGI("\nPlayed back %ld samples in %.2f s (%.1f Hz)\n",
                 sample_count, total_time , 1.0 * sample_count / total_time);
    }

    if (stream_file)
        fclose(stream_file);

    return INV_SUCCESS;
}