/* * Copyright (C) 2010 The Android Open Source Project * Copyright (C) 2012-2013, The Linux Foundation. All rights reserved. * * Not a Contribution, Apache license notifications and license are retained * for attribution purposes only. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL) #include #include #include #include #include #include #include #include #include #include #include #include "hwc_utils.h" #include "hwc_fbupdate.h" #include "hwc_mdpcomp.h" #include "hwc_dump_layers.h" #include "external.h" #include "hwc_copybit.h" #include "hwc_ad.h" #include "profiler.h" #include "hwc_vpuclient.h" using namespace qhwc; using namespace overlay; #define VSYNC_DEBUG 0 #define BLANK_DEBUG 1 static int hwc_device_open(const struct hw_module_t* module, const char* name, struct hw_device_t** device); static struct hw_module_methods_t hwc_module_methods = { open: hwc_device_open }; static void reset_panel(struct hwc_composer_device_1* dev); hwc_module_t HAL_MODULE_INFO_SYM = { common: { tag: HARDWARE_MODULE_TAG, version_major: 2, version_minor: 0, id: HWC_HARDWARE_MODULE_ID, name: "Qualcomm Hardware Composer Module", author: "CodeAurora Forum", methods: &hwc_module_methods, dso: 0, reserved: {0}, } }; /* In case of non-hybrid WFD session, we are fooling SF by piggybacking on * HDMI display ID for virtual. This helper is needed to differentiate their * paths in HAL. * TODO: Not needed once we have WFD client working on top of Google API's */ static int getDpyforExternalDisplay(hwc_context_t *ctx, int dpy) { if(dpy == HWC_DISPLAY_EXTERNAL && ctx->mVirtualonExtActive) return HWC_DISPLAY_VIRTUAL; return dpy; } /* * Save callback functions registered to HWC */ static void hwc_registerProcs(struct hwc_composer_device_1* dev, hwc_procs_t const* procs) { ALOGI("%s", __FUNCTION__); hwc_context_t* ctx = (hwc_context_t*)(dev); if(!ctx) { ALOGE("%s: Invalid context", __FUNCTION__); return; } ctx->proc = procs; // Now that we have the functions needed, kick off // the uevent & vsync threads init_uevent_thread(ctx); init_vsync_thread(ctx); } //Helper static void reset(hwc_context_t *ctx, int numDisplays, hwc_display_contents_1_t** displays) { for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) { hwc_display_contents_1_t *list = displays[i]; // XXX:SurfaceFlinger no longer guarantees that this // value is reset on every prepare. However, for the layer // cache we need to reset it. // We can probably rethink that later on if (LIKELY(list && list->numHwLayers > 1)) { for(uint32_t j = 0; j < list->numHwLayers; j++) { if(list->hwLayers[j].compositionType != HWC_FRAMEBUFFER_TARGET) list->hwLayers[j].compositionType = HWC_FRAMEBUFFER; } } if(ctx->mFBUpdate[i]) ctx->mFBUpdate[i]->reset(); if(ctx->mCopyBit[i]) ctx->mCopyBit[i]->reset(); if(ctx->mLayerRotMap[i]) ctx->mLayerRotMap[i]->reset(); } ctx->mAD->reset(); MDPComp::reset(); } //clear prev layer prop flags and realloc for current frame static void reset_layer_prop(hwc_context_t* ctx, int dpy, int numAppLayers) { if(ctx->layerProp[dpy]) { delete[] ctx->layerProp[dpy]; ctx->layerProp[dpy] = NULL; } ctx->layerProp[dpy] = new LayerProp[numAppLayers]; } static void handleGeomChange(hwc_context_t *ctx, int dpy, hwc_display_contents_1_t *list) { /* No point to calling overlay_set on MDP3 */ if(list->flags & HWC_GEOMETRY_CHANGED && ctx->mMDP.version >= qdutils::MDP_V4_0) { ctx->mOverlay->forceSet(dpy); } } static int hwc_prepare_primary(hwc_composer_device_1 *dev, hwc_display_contents_1_t *list) { ATRACE_CALL(); hwc_context_t* ctx = (hwc_context_t*)(dev); const int dpy = HWC_DISPLAY_PRIMARY; if (LIKELY(list && list->numHwLayers > 1) && ctx->dpyAttr[dpy].isActive) { reset_layer_prop(ctx, dpy, list->numHwLayers - 1); handleGeomChange(ctx, dpy, list); uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; if(fbLayer->handle) { setListStats(ctx, list, dpy); #ifdef VPU_TARGET ctx->mVPUClient->prepare(ctx, list); #endif if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) { const int fbZ = 0; ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ); } if (ctx->mMDP.version < qdutils::MDP_V4_0) { if(ctx->mCopyBit[dpy]) ctx->mCopyBit[dpy]->prepare(ctx, list, dpy); } } } return 0; } static int hwc_prepare_external(hwc_composer_device_1 *dev, hwc_display_contents_1_t *list) { ATRACE_CALL(); hwc_context_t* ctx = (hwc_context_t*)(dev); const int dpy = HWC_DISPLAY_EXTERNAL; if (LIKELY(list && list->numHwLayers > 1) && ctx->dpyAttr[dpy].isActive && ctx->dpyAttr[dpy].connected) { reset_layer_prop(ctx, dpy, list->numHwLayers - 1); handleGeomChange(ctx, dpy, list); uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; if(!ctx->dpyAttr[dpy].isPause) { if(fbLayer->handle) { ctx->dpyAttr[dpy].isConfiguring = false; setListStats(ctx, list, dpy); if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) { const int fbZ = 0; ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ); } if(ctx->listStats[dpy].isDisplayAnimating) { // Mark all app layers as HWC_OVERLAY for external during // animation, so that SF doesnt draw it on FB for(int i = 0 ;i < ctx->listStats[dpy].numAppLayers; i++) { hwc_layer_1_t *layer = &list->hwLayers[i]; layer->compositionType = HWC_OVERLAY; } } } } else { // External Display is in Pause state. // ToDo: // Mark all application layers as OVERLAY so that // GPU will not compose. This is done for power // optimization } } return 0; } static int hwc_prepare_virtual(hwc_composer_device_1 *dev, hwc_display_contents_1_t *list) { ATRACE_CALL(); hwc_context_t* ctx = (hwc_context_t*)(dev); const int dpy = HWC_DISPLAY_VIRTUAL; if (LIKELY(list && list->numHwLayers > 1) && ctx->dpyAttr[dpy].isActive && ctx->dpyAttr[dpy].connected) { reset_layer_prop(ctx, dpy, list->numHwLayers - 1); handleGeomChange(ctx, dpy, list); uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; if(!ctx->dpyAttr[dpy].isPause) { if(fbLayer->handle) { ctx->dpyAttr[dpy].isConfiguring = false; setListStats(ctx, list, dpy); if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) { const int fbZ = 0; ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ); } if(ctx->listStats[dpy].isDisplayAnimating) { // Mark all app layers as HWC_OVERLAY for virtual during // animation, so that SF doesnt draw it on FB for(int i = 0 ;i < ctx->listStats[dpy].numAppLayers; i++) { hwc_layer_1_t *layer = &list->hwLayers[i]; layer->compositionType = HWC_OVERLAY; } } } } else { // Virtual Display is in Pause state. // ToDo: // Mark all application layers as OVERLAY so that // GPU will not compose. This is done for power // optimization } } return 0; } static int hwc_prepare(hwc_composer_device_1 *dev, size_t numDisplays, hwc_display_contents_1_t** displays) { int ret = 0; hwc_context_t* ctx = (hwc_context_t*)(dev); if (ctx->mPanelResetStatus) { ALOGW("%s: panel is in bad state. reset the panel", __FUNCTION__); reset_panel(dev); } //Will be unlocked at the end of set ctx->mDrawLock.lock(); reset(ctx, numDisplays, displays); ctx->mOverlay->configBegin(); ctx->mRotMgr->configBegin(); overlay::Writeback::configBegin(); for (int32_t i = numDisplays; i >= 0; i--) { hwc_display_contents_1_t *list = displays[i]; int dpy = getDpyforExternalDisplay(ctx, i); switch(dpy) { case HWC_DISPLAY_PRIMARY: ret = hwc_prepare_primary(dev, list); break; case HWC_DISPLAY_EXTERNAL: ret = hwc_prepare_external(dev, list); break; case HWC_DISPLAY_VIRTUAL: ret = hwc_prepare_virtual(dev, list); break; default: ret = -EINVAL; } } ctx->mOverlay->configDone(); ctx->mRotMgr->configDone(); overlay::Writeback::configDone(); return ret; } static int hwc_eventControl(struct hwc_composer_device_1* dev, int dpy, int event, int enable) { ATRACE_CALL(); int ret = 0; hwc_context_t* ctx = (hwc_context_t*)(dev); switch(event) { case HWC_EVENT_VSYNC: if (ctx->vstate.enable == enable) break; ret = hwc_vsync_control(ctx, dpy, enable); if(ret == 0) ctx->vstate.enable = !!enable; ALOGD_IF (VSYNC_DEBUG, "VSYNC state changed to %s", (enable)?"ENABLED":"DISABLED"); break; #ifdef QCOM_BSP case HWC_EVENT_ORIENTATION: if(dpy == HWC_DISPLAY_PRIMARY) { Locker::Autolock _l(ctx->mDrawLock); // store the primary display orientation // will be used in hwc_video::configure to disable // rotation animation on external display ctx->deviceOrientation = enable; } break; #endif default: ret = -EINVAL; } return ret; } static int hwc_blank(struct hwc_composer_device_1* dev, int dpy, int blank) { ATRACE_CALL(); hwc_context_t* ctx = (hwc_context_t*)(dev); Locker::Autolock _l(ctx->mDrawLock); int ret = 0, value = 0; /* In case of non-hybrid WFD session, we are fooling SF by * piggybacking on HDMI display ID for virtual. * TODO: Not needed once we have WFD client working on top * of Google API's. */ dpy = getDpyforExternalDisplay(ctx,dpy); ALOGD_IF(BLANK_DEBUG, "%s: %s display: %d", __FUNCTION__, blank==1 ? "Blanking":"Unblanking", dpy); if(blank) { // free up all the overlay pipes in use // when we get a blank for either display // makes sure that all pipes are freed ctx->mOverlay->configBegin(); ctx->mOverlay->configDone(); ctx->mRotMgr->clear(); overlay::Writeback::clear(); } switch(dpy) { case HWC_DISPLAY_PRIMARY: value = blank ? FB_BLANK_POWERDOWN : FB_BLANK_UNBLANK; if(ioctl(ctx->dpyAttr[dpy].fd, FBIOBLANK, value) < 0 ) { ALOGE("%s: Failed to handle blank event(%d) for Primary!!", __FUNCTION__, blank ); return -1; } if(!blank) { // Enable HPD here, as during bootup unblank is called // when SF is completely initialized ctx->mExtDisplay->setHPD(1); } ctx->dpyAttr[dpy].isActive = !blank; if(ctx->mVirtualonExtActive) { /* if mVirtualonExtActive is true, display hal will * receive unblank calls for non-hybrid WFD solution * since we piggyback on HDMI. * TODO: Not needed once we have WFD client working on top of Google API's */ break; } case HWC_DISPLAY_VIRTUAL: /* There are two ways to reach this block of code. * Display hal has received unblank call on HWC_DISPLAY_EXTERNAL and ctx->mVirtualonExtActive is true. In this case, non-hybrid WFD is active. If so, getDpyforExternalDisplay will return dpy as HWC_DISPLAY_VIRTUAL. * Display hal has received unblank call on HWC_DISPLAY_PRIMARY and since SF is not aware of VIRTUAL DISPLAY being handle by HWC, it wont send blank / unblank events for it. We piggyback on PRIMARY DISPLAY events to release mdp pipes and activate/deactivate VIRTUAL DISPLAY. * TODO: This separate case statement is not needed once we have WFD client working on top of Google API's. */ if(ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected) { if(blank and (!ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isPause)) { int dpy = HWC_DISPLAY_VIRTUAL; if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit fail for virtual!", __FUNCTION__); ret = -1; } } ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isActive = !blank; } break; case HWC_DISPLAY_EXTERNAL: if(blank) { if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit fail for external!", __FUNCTION__); ret = -1; } } ctx->dpyAttr[dpy].isActive = !blank; break; default: return -EINVAL; } ALOGD_IF(BLANK_DEBUG, "%s: Done %s display: %d", __FUNCTION__, blank ? "blanking":"unblanking", dpy); return ret; } static void reset_panel(struct hwc_composer_device_1* dev) { int ret = 0; hwc_context_t* ctx = (hwc_context_t*)(dev); if (!ctx->mPanelResetStatus) return; ALOGD("%s: calling BLANK DISPLAY", __FUNCTION__); ret = hwc_blank(dev, HWC_DISPLAY_PRIMARY, 1); if (ret < 0) { ALOGE("%s: FBIOBLANK failed to BLANK: %s", __FUNCTION__, strerror(errno)); } ALOGD("%s: calling UNBLANK DISPLAY and enabling vsync", __FUNCTION__); ret = hwc_blank(dev, HWC_DISPLAY_PRIMARY, 0); if (ret < 0) { ALOGE("%s: FBIOBLANK failed to UNBLANK : %s", __FUNCTION__, strerror(errno)); } hwc_vsync_control(ctx, HWC_DISPLAY_PRIMARY, 1); ctx->mPanelResetStatus = false; } static int hwc_query(struct hwc_composer_device_1* dev, int param, int* value) { hwc_context_t* ctx = (hwc_context_t*)(dev); int supported = HWC_DISPLAY_PRIMARY_BIT; switch (param) { case HWC_BACKGROUND_LAYER_SUPPORTED: // Not supported for now value[0] = 0; break; case HWC_DISPLAY_TYPES_SUPPORTED: if(ctx->mMDP.hasOverlay) supported |= HWC_DISPLAY_EXTERNAL_BIT; value[0] = supported; break; case HWC_FORMAT_RB_SWAP: value[0] = 1; break; default: return -EINVAL; } return 0; } static int hwc_set_primary(hwc_context_t *ctx, hwc_display_contents_1_t* list) { ATRACE_CALL(); int ret = 0; const int dpy = HWC_DISPLAY_PRIMARY; if (LIKELY(list) && ctx->dpyAttr[dpy].isActive) { uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; int fd = -1; //FenceFD from the Copybit(valid in async mode) bool copybitDone = false; if(ctx->mCopyBit[dpy]) copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd); if(list->numHwLayers > 1) hwc_sync(ctx, list, dpy, fd); // Dump the layers for primary if(ctx->mHwcDebug[dpy]) ctx->mHwcDebug[dpy]->dumpLayers(list); if (!ctx->mMDPComp[dpy]->draw(ctx, list)) { ALOGE("%s: MDPComp draw failed", __FUNCTION__); ret = -1; } #ifdef VPU_TARGET ctx->mVPUClient->draw(ctx, list); #endif //TODO We dont check for SKIP flag on this layer because we need PAN //always. Last layer is always FB private_handle_t *hnd = (private_handle_t *)fbLayer->handle; if(copybitDone) { hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer(); } if(hnd) { if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) { ALOGE("%s: FBUpdate draw failed", __FUNCTION__); ret = -1; } } if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd, ctx->listStats[dpy].roi)) { ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy); ret = -1; } } closeAcquireFds(list); return ret; } static int hwc_set_external(hwc_context_t *ctx, hwc_display_contents_1_t* list) { ATRACE_CALL(); int ret = 0; const int dpy = HWC_DISPLAY_EXTERNAL; if (LIKELY(list) && ctx->dpyAttr[dpy].isActive && ctx->dpyAttr[dpy].connected && !ctx->dpyAttr[dpy].isPause) { uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; int fd = -1; //FenceFD from the Copybit(valid in async mode) bool copybitDone = false; if(ctx->mCopyBit[dpy]) copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd); if(list->numHwLayers > 1) hwc_sync(ctx, list, dpy, fd); // Dump the layers for external if(ctx->mHwcDebug[dpy]) ctx->mHwcDebug[dpy]->dumpLayers(list); if (!ctx->mMDPComp[dpy]->draw(ctx, list)) { ALOGE("%s: MDPComp draw failed", __FUNCTION__); ret = -1; } int extOnlyLayerIndex = ctx->listStats[dpy].extOnlyLayerIndex; private_handle_t *hnd = (private_handle_t *)fbLayer->handle; if(extOnlyLayerIndex!= -1) { hwc_layer_1_t *extLayer = &list->hwLayers[extOnlyLayerIndex]; hnd = (private_handle_t *)extLayer->handle; } else if(copybitDone) { hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer(); } if(hnd && !isYuvBuffer(hnd)) { if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) { ALOGE("%s: FBUpdate::draw fail!", __FUNCTION__); ret = -1; } } if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy); ret = -1; } } closeAcquireFds(list); return ret; } static int hwc_set_virtual(hwc_context_t *ctx, hwc_display_contents_1_t* list) { ATRACE_CALL(); int ret = 0; const int dpy = HWC_DISPLAY_VIRTUAL; if (LIKELY(list) && ctx->dpyAttr[dpy].isActive && ctx->dpyAttr[dpy].connected && !ctx->dpyAttr[dpy].isPause) { uint32_t last = list->numHwLayers - 1; hwc_layer_1_t *fbLayer = &list->hwLayers[last]; int fd = -1; //FenceFD from the Copybit(valid in async mode) bool copybitDone = false; if(ctx->mCopyBit[dpy]) copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd); if(list->numHwLayers > 1) hwc_sync(ctx, list, dpy, fd); // Dump the layers for virtual if(ctx->mHwcDebug[dpy]) ctx->mHwcDebug[dpy]->dumpLayers(list); if (!ctx->mMDPComp[dpy]->draw(ctx, list)) { ALOGE("%s: MDPComp draw failed", __FUNCTION__); ret = -1; } int extOnlyLayerIndex = ctx->listStats[dpy].extOnlyLayerIndex; private_handle_t *hnd = (private_handle_t *)fbLayer->handle; if(extOnlyLayerIndex!= -1) { hwc_layer_1_t *extLayer = &list->hwLayers[extOnlyLayerIndex]; hnd = (private_handle_t *)extLayer->handle; } else if(copybitDone) { hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer(); } if(hnd && !isYuvBuffer(hnd)) { if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) { ALOGE("%s: FBUpdate::draw fail!", __FUNCTION__); ret = -1; } } if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy); ret = -1; } } closeAcquireFds(list); if (list && !ctx->mVirtualonExtActive && (list->retireFenceFd < 0) ) { // SF assumes HWC waits for the acquire fence and returns a new fence // that signals when we're done. Since we don't wait, and also don't // touch the buffer, we can just handle the acquire fence back to SF // as the retire fence. list->retireFenceFd = list->outbufAcquireFenceFd; } return ret; } static int hwc_set(hwc_composer_device_1 *dev, size_t numDisplays, hwc_display_contents_1_t** displays) { int ret = 0; hwc_context_t* ctx = (hwc_context_t*)(dev); for (uint32_t i = 0; i <= numDisplays; i++) { hwc_display_contents_1_t* list = displays[i]; int dpy = getDpyforExternalDisplay(ctx, i); switch(dpy) { case HWC_DISPLAY_PRIMARY: ret = hwc_set_primary(ctx, list); break; case HWC_DISPLAY_EXTERNAL: ret = hwc_set_external(ctx, list); break; case HWC_DISPLAY_VIRTUAL: ret = hwc_set_virtual(ctx, list); break; default: ret = -EINVAL; } } // This is only indicative of how many times SurfaceFlinger posts // frames to the display. CALC_FPS(); MDPComp::resetIdleFallBack(); ctx->mVideoTransFlag = false; if(ctx->mRotMgr->getNumActiveSessions() == 0) Overlay::setDMAMode(Overlay::DMA_LINE_MODE); //Was locked at the beginning of prepare ctx->mDrawLock.unlock(); return ret; } int hwc_getDisplayConfigs(struct hwc_composer_device_1* dev, int disp, uint32_t* configs, size_t* numConfigs) { int ret = 0; hwc_context_t* ctx = (hwc_context_t*)(dev); disp = getDpyforExternalDisplay(ctx, disp); //in 1.1 there is no way to choose a config, report as config id # 0 //This config is passed to getDisplayAttributes. Ignore for now. switch(disp) { case HWC_DISPLAY_PRIMARY: if(*numConfigs > 0) { configs[0] = 0; *numConfigs = 1; } ret = 0; //NO_ERROR break; case HWC_DISPLAY_EXTERNAL: case HWC_DISPLAY_VIRTUAL: ret = -1; //Not connected if(ctx->dpyAttr[disp].connected) { ret = 0; //NO_ERROR if(*numConfigs > 0) { configs[0] = 0; *numConfigs = 1; } } break; } return ret; } int hwc_getDisplayAttributes(struct hwc_composer_device_1* dev, int disp, uint32_t config, const uint32_t* attributes, int32_t* values) { hwc_context_t* ctx = (hwc_context_t*)(dev); disp = getDpyforExternalDisplay(ctx, disp); //If hotpluggable displays(i.e, HDMI, WFD) are inactive return error if( (disp != HWC_DISPLAY_PRIMARY) && !ctx->dpyAttr[disp].connected) { return -1; } //From HWComposer static const uint32_t DISPLAY_ATTRIBUTES[] = { HWC_DISPLAY_VSYNC_PERIOD, HWC_DISPLAY_WIDTH, HWC_DISPLAY_HEIGHT, HWC_DISPLAY_DPI_X, HWC_DISPLAY_DPI_Y, HWC_DISPLAY_NO_ATTRIBUTE, }; const int NUM_DISPLAY_ATTRIBUTES = (sizeof(DISPLAY_ATTRIBUTES) / sizeof(DISPLAY_ATTRIBUTES)[0]); for (size_t i = 0; i < NUM_DISPLAY_ATTRIBUTES - 1; i++) { switch (attributes[i]) { case HWC_DISPLAY_VSYNC_PERIOD: values[i] = ctx->dpyAttr[disp].vsync_period; break; case HWC_DISPLAY_WIDTH: values[i] = ctx->dpyAttr[disp].xres; ALOGD("%s disp = %d, width = %d",__FUNCTION__, disp, ctx->dpyAttr[disp].xres); break; case HWC_DISPLAY_HEIGHT: values[i] = ctx->dpyAttr[disp].yres; ALOGD("%s disp = %d, height = %d",__FUNCTION__, disp, ctx->dpyAttr[disp].yres); break; case HWC_DISPLAY_DPI_X: values[i] = (int32_t) (ctx->dpyAttr[disp].xdpi*1000.0); break; case HWC_DISPLAY_DPI_Y: values[i] = (int32_t) (ctx->dpyAttr[disp].ydpi*1000.0); break; default: ALOGE("Unknown display attribute %d", attributes[i]); return -EINVAL; } } return 0; } void hwc_dump(struct hwc_composer_device_1* dev, char *buff, int buff_len) { hwc_context_t* ctx = (hwc_context_t*)(dev); Locker::Autolock _l(ctx->mDrawLock); android::String8 aBuf(""); dumpsys_log(aBuf, "Qualcomm HWC state:\n"); dumpsys_log(aBuf, " MDPVersion=%d\n", ctx->mMDP.version); dumpsys_log(aBuf, " DisplayPanel=%c\n", ctx->mMDP.panel); for(int dpy = 0; dpy < HWC_NUM_DISPLAY_TYPES; dpy++) { if(ctx->mMDPComp[dpy]) ctx->mMDPComp[dpy]->dump(aBuf); } char ovDump[2048] = {'\0'}; ctx->mOverlay->getDump(ovDump, 2048); dumpsys_log(aBuf, ovDump); ovDump[0] = '\0'; ctx->mRotMgr->getDump(ovDump, 1024); dumpsys_log(aBuf, ovDump); ovDump[0] = '\0'; if(Writeback::getDump(ovDump, 1024)) { dumpsys_log(aBuf, ovDump); ovDump[0] = '\0'; } strlcpy(buff, aBuf.string(), buff_len); } static int hwc_device_close(struct hw_device_t *dev) { if(!dev) { ALOGE("%s: NULL device pointer", __FUNCTION__); return -1; } closeContext((hwc_context_t*)dev); free(dev); return 0; } static int hwc_device_open(const struct hw_module_t* module, const char* name, struct hw_device_t** device) { int status = -EINVAL; if (!strcmp(name, HWC_HARDWARE_COMPOSER)) { struct hwc_context_t *dev; dev = (hwc_context_t*)malloc(sizeof(*dev)); memset(dev, 0, sizeof(*dev)); //Initialize hwc context initContext(dev); //Setup HWC methods dev->device.common.tag = HARDWARE_DEVICE_TAG; dev->device.common.version = HWC_DEVICE_API_VERSION_1_3; dev->device.common.module = const_cast(module); dev->device.common.close = hwc_device_close; dev->device.prepare = hwc_prepare; dev->device.set = hwc_set; dev->device.eventControl = hwc_eventControl; dev->device.blank = hwc_blank; dev->device.query = hwc_query; dev->device.registerProcs = hwc_registerProcs; dev->device.dump = hwc_dump; dev->device.getDisplayConfigs = hwc_getDisplayConfigs; dev->device.getDisplayAttributes = hwc_getDisplayAttributes; *device = &dev->device.common; status = 0; } return status; }