summaryrefslogtreecommitdiff
path: root/src/com/android/calculator2/BoundedRational.java
blob: 16fa581775c40bc5555564d9813c7da3d044c750 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.android.calculator2;

import com.hp.creals.CR;

import java.math.BigInteger;
import java.util.Objects;
import java.util.Random;

/**
 * Rational numbers that may turn to null if they get too big.
 * For many operations, if the length of the nuumerator plus the length of the denominator exceeds
 * a maximum size, we simply return null, and rely on our caller do something else.
 * We currently never return null for a pure integer or for a BoundedRational that has just been
 * constructed.
 *
 * We also implement a number of irrational functions.  These return a non-null result only when
 * the result is known to be rational.
 */
public class BoundedRational {
    // TODO: Consider returning null for integers.  With some care, large factorials might become
    // much faster.
    // TODO: Maybe eventually make this extend Number?

    private static final int MAX_SIZE = 10000; // total, in bits

    private final BigInteger mNum;
    private final BigInteger mDen;

    public BoundedRational(BigInteger n, BigInteger d) {
        mNum = n;
        mDen = d;
    }

    public BoundedRational(BigInteger n) {
        mNum = n;
        mDen = BigInteger.ONE;
    }

    public BoundedRational(long n, long d) {
        mNum = BigInteger.valueOf(n);
        mDen = BigInteger.valueOf(d);
    }

    public BoundedRational(long n) {
        mNum = BigInteger.valueOf(n);
        mDen = BigInteger.valueOf(1);
    }

    /**
     * Produce BoundedRational equal to the given double.
     */
    public static BoundedRational valueOf(double x) {
        final long l = Math.round(x);
        if ((double) l == x && Math.abs(l) <= 1000) {
            return valueOf(l);
        }
        final long allBits = Double.doubleToRawLongBits(Math.abs(x));
        long mantissa = (allBits & ((1L << 52) - 1));
        final int biased_exp = (int)(allBits >>> 52);
        if ((biased_exp & 0x7ff) == 0x7ff) {
            throw new ArithmeticException("Infinity or NaN not convertible to BoundedRational");
        }
        final long sign = x < 0.0 ? -1 : 1;
        int exp = biased_exp - 1075;  // 1023 + 52; we treat mantissa as integer.
        if (biased_exp == 0) {
            exp += 1;  // Denormal exponent is 1 greater.
        } else {
            mantissa += (1L << 52);  // Implied leading one.
        }
        BigInteger num = BigInteger.valueOf(sign * mantissa);
        BigInteger den = BigInteger.ONE;
        if (exp >= 0) {
            num = num.shiftLeft(exp);
        } else {
            den = den.shiftLeft(-exp);
        }
        return new BoundedRational(num, den);
    }

    /**
     * Produce BoundedRational equal to the given long.
     */
    public static BoundedRational valueOf(long x) {
        if (x >= -2 && x <= 10) {
            switch((int) x) {
              case -2:
                return MINUS_TWO;
              case -1:
                return MINUS_ONE;
              case 0:
                return ZERO;
              case 1:
                return ONE;
              case 2:
                return TWO;
              case 10:
                return TEN;
            }
        }
        return new BoundedRational(x);
    }

    /**
     * Convert to String reflecting raw representation.
     * Debug or log messages only, not pretty.
     */
    public String toString() {
        return mNum.toString() + "/" + mDen.toString();
    }

    /**
     * Convert to readable String.
     * Intended for output to user.  More expensive, less useful for debugging than
     * toString().  Not internationalized.
     */
    public String toNiceString() {
        final BoundedRational nicer = reduce().positiveDen();
        String result = nicer.mNum.toString();
        if (!nicer.mDen.equals(BigInteger.ONE)) {
            result += "/" + nicer.mDen;
        }
        return result;
    }

    public static String toString(BoundedRational r) {
        if (r == null) {
            return "not a small rational";
        }
        return r.toString();
    }

    /**
     * Returns a truncated (rounded towards 0) representation of the result.
     * Includes n digits to the right of the decimal point.
     * @param n result precision, >= 0
     */
    public String toStringTruncated(int n) {
        String digits = mNum.abs().multiply(BigInteger.TEN.pow(n)).divide(mDen.abs()).toString();
        int len = digits.length();
        if (len < n + 1) {
            digits = StringUtils.repeat('0', n + 1 - len) + digits;
            len = n + 1;
        }
        return (signum() < 0 ? "-" : "") + digits.substring(0, len - n) + "."
                + digits.substring(len - n);
    }

    /**
     * Return a double approximation.
     * The result is correctly rounded to nearest, with ties rounded away from zero.
     * TODO: Should round ties to even.
     */
    public double doubleValue() {
        final int sign = signum();
        if (sign < 0) {
            return -BoundedRational.negate(this).doubleValue();
        }
        // We get the mantissa by dividing the numerator by denominator, after
        // suitably prescaling them so that the integral part of the result contains
        // enough bits. We do the prescaling to avoid any precision loss, so the division result
        // is correctly truncated towards zero.
        final int apprExp = mNum.bitLength() - mDen.bitLength();
        if (apprExp < -1100 || sign == 0) {
            // Bail fast for clearly zero result.
            return 0.0;
        }
        final int neededPrec = apprExp - 80;
        final BigInteger dividend = neededPrec < 0 ? mNum.shiftLeft(-neededPrec) : mNum;
        final BigInteger divisor = neededPrec > 0 ? mDen.shiftLeft(neededPrec) : mDen;
        final BigInteger quotient = dividend.divide(divisor);
        final int qLength = quotient.bitLength();
        int extraBits = qLength - 53;
        int exponent = neededPrec + qLength;  // Exponent assuming leading binary point.
        if (exponent >= -1021) {
            // Binary point is actually to right of leading bit.
            --exponent;
        } else {
            // We're in the gradual underflow range. Drop more bits.
            extraBits += (-1022 - exponent) + 1;
            exponent = -1023;
        }
        final BigInteger bigMantissa =
                quotient.add(BigInteger.ONE.shiftLeft(extraBits - 1)).shiftRight(extraBits);
        if (exponent > 1024) {
            return Double.POSITIVE_INFINITY;
        }
        if (exponent > -1023 && bigMantissa.bitLength() != 53
                || exponent <= -1023 && bigMantissa.bitLength() >= 53) {
            throw new AssertionError("doubleValue internal error");
        }
        final long mantissa = bigMantissa.longValue();
        final long bits = (mantissa & ((1l << 52) - 1)) | (((long) exponent + 1023) << 52);
        return Double.longBitsToDouble(bits);
    }

    public CR crValue() {
        return CR.valueOf(mNum).divide(CR.valueOf(mDen));
    }

    public int intValue() {
        BoundedRational reduced = reduce();
        if (!reduced.mDen.equals(BigInteger.ONE)) {
            throw new ArithmeticException("intValue of non-int");
        }
        return reduced.mNum.intValue();
    }

    // Approximate number of bits to left of binary point.
    // Negative indicates leading zeroes to the right of binary point.
    public int wholeNumberBits() {
        if (mNum.signum() == 0) {
            return Integer.MIN_VALUE;
        } else {
            return mNum.bitLength() - mDen.bitLength();
        }
    }

    /**
     * Is this number too big for us to continue with rational arithmetic?
     * We return fals for integers on the assumption that we have no better fallback.
     */
    private boolean tooBig() {
        if (mDen.equals(BigInteger.ONE)) {
            return false;
        }
        return (mNum.bitLength() + mDen.bitLength() > MAX_SIZE);
    }

    /**
     * Return an equivalent fraction with a positive denominator.
     */
    private BoundedRational positiveDen() {
        if (mDen.signum() > 0) {
            return this;
        }
        return new BoundedRational(mNum.negate(), mDen.negate());
    }

    /**
     * Return an equivalent fraction in lowest terms.
     * Denominator sign may remain negative.
     */
    private BoundedRational reduce() {
        if (mDen.equals(BigInteger.ONE)) {
            return this;  // Optimization only
        }
        final BigInteger divisor = mNum.gcd(mDen);
        return new BoundedRational(mNum.divide(divisor), mDen.divide(divisor));
    }

    static Random sReduceRng = new Random();

    /**
     * Return a possibly reduced version of r that's not tooBig().
     * Return null if none exists.
     */
    private static BoundedRational maybeReduce(BoundedRational r) {
        if (r == null) return null;
        // Reduce randomly, with 1/16 probability, or if the result is too big.
        if (!r.tooBig() && (sReduceRng.nextInt() & 0xf) != 0) {
            return r;
        }
        BoundedRational result = r.positiveDen();
        result = result.reduce();
        if (!result.tooBig()) {
            return result;
        }
        return null;
    }

    public int compareTo(BoundedRational r) {
        // Compare by multiplying both sides by denominators, invert result if denominator product
        // was negative.
        return mNum.multiply(r.mDen).compareTo(r.mNum.multiply(mDen)) * mDen.signum()
                * r.mDen.signum();
    }

    public int signum() {
        return mNum.signum() * mDen.signum();
    }

    @Override
    public int hashCode() {
        // Note that this may be too expensive to be useful.
        BoundedRational reduced = reduce().positiveDen();
        return Objects.hash(reduced.mNum, reduced.mDen);
    }

    @Override
    public boolean equals(Object r) {
        return r != null && r instanceof BoundedRational && compareTo((BoundedRational) r) == 0;
    }

    // We use static methods for arithmetic, so that we can easily handle the null case.  We try
    // to catch domain errors whenever possible, sometimes even when one of the arguments is null,
    // but not relevant.

    /**
     * Returns equivalent BigInteger result if it exists, null if not.
     */
    public static BigInteger asBigInteger(BoundedRational r) {
        if (r == null) {
            return null;
        }
        final BigInteger[] quotAndRem = r.mNum.divideAndRemainder(r.mDen);
        if (quotAndRem[1].signum() == 0) {
            return quotAndRem[0];
        } else {
            return null;
        }
    }
    public static BoundedRational add(BoundedRational r1, BoundedRational r2) {
        if (r1 == null || r2 == null) {
            return null;
        }
        final BigInteger den = r1.mDen.multiply(r2.mDen);
        final BigInteger num = r1.mNum.multiply(r2.mDen).add(r2.mNum.multiply(r1.mDen));
        return maybeReduce(new BoundedRational(num,den));
    }

    /**
     * Return the argument, but with the opposite sign.
     * Returns null only for a null argument.
     */
    public static BoundedRational negate(BoundedRational r) {
        if (r == null) {
            return null;
        }
        return new BoundedRational(r.mNum.negate(), r.mDen);
    }

    public static BoundedRational subtract(BoundedRational r1, BoundedRational r2) {
        return add(r1, negate(r2));
    }

    /**
     * Return product of r1 and r2 without reducing the result.
     */
    private static BoundedRational rawMultiply(BoundedRational r1, BoundedRational r2) {
        // It's tempting but marginally unsound to reduce 0 * null to 0.  The null could represent
        // an infinite value, for which we failed to throw an exception because it was too big.
        if (r1 == null || r2 == null) {
            return null;
        }
        // Optimize the case of our special ONE constant, since that's cheap and somewhat frequent.
        if (r1 == ONE) {
            return r2;
        }
        if (r2 == ONE) {
            return r1;
        }
        final BigInteger num = r1.mNum.multiply(r2.mNum);
        final BigInteger den = r1.mDen.multiply(r2.mDen);
        return new BoundedRational(num,den);
    }

    public static BoundedRational multiply(BoundedRational r1, BoundedRational r2) {
        return maybeReduce(rawMultiply(r1, r2));
    }

    public static class ZeroDivisionException extends ArithmeticException {
        public ZeroDivisionException() {
            super("Division by zero");
        }
    }

    /**
     * Return the reciprocal of r (or null if the argument was null).
     */
    public static BoundedRational inverse(BoundedRational r) {
        if (r == null) {
            return null;
        }
        if (r.mNum.signum() == 0) {
            throw new ZeroDivisionException();
        }
        return new BoundedRational(r.mDen, r.mNum);
    }

    public static BoundedRational divide(BoundedRational r1, BoundedRational r2) {
        return multiply(r1, inverse(r2));
    }

    public static BoundedRational sqrt(BoundedRational r) {
        // Return non-null if numerator and denominator are small perfect squares.
        if (r == null) {
            return null;
        }
        r = r.positiveDen().reduce();
        if (r.mNum.signum() < 0) {
            throw new ArithmeticException("sqrt(negative)");
        }
        final BigInteger num_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mNum.doubleValue())));
        if (!num_sqrt.multiply(num_sqrt).equals(r.mNum)) {
            return null;
        }
        final BigInteger den_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mDen.doubleValue())));
        if (!den_sqrt.multiply(den_sqrt).equals(r.mDen)) {
            return null;
        }
        return new BoundedRational(num_sqrt, den_sqrt);
    }

    public final static BoundedRational ZERO = new BoundedRational(0);
    public final static BoundedRational HALF = new BoundedRational(1,2);
    public final static BoundedRational MINUS_HALF = new BoundedRational(-1,2);
    public final static BoundedRational THIRD = new BoundedRational(1,3);
    public final static BoundedRational QUARTER = new BoundedRational(1,4);
    public final static BoundedRational SIXTH = new BoundedRational(1,6);
    public final static BoundedRational ONE = new BoundedRational(1);
    public final static BoundedRational MINUS_ONE = new BoundedRational(-1);
    public final static BoundedRational TWO = new BoundedRational(2);
    public final static BoundedRational MINUS_TWO = new BoundedRational(-2);
    public final static BoundedRational TEN = new BoundedRational(10);
    public final static BoundedRational TWELVE = new BoundedRational(12);
    public final static BoundedRational THIRTY = new BoundedRational(30);
    public final static BoundedRational MINUS_THIRTY = new BoundedRational(-30);
    public final static BoundedRational FORTY_FIVE = new BoundedRational(45);
    public final static BoundedRational MINUS_FORTY_FIVE = new BoundedRational(-45);
    public final static BoundedRational NINETY = new BoundedRational(90);
    public final static BoundedRational MINUS_NINETY = new BoundedRational(-90);

    private static final BigInteger BIG_TWO = BigInteger.valueOf(2);
    private static final BigInteger BIG_MINUS_ONE = BigInteger.valueOf(-1);

    /**
     * Compute integral power of this, assuming this has been reduced and exp is >= 0.
     */
    private BoundedRational rawPow(BigInteger exp) {
        if (exp.equals(BigInteger.ONE)) {
            return this;
        }
        if (exp.and(BigInteger.ONE).intValue() == 1) {
            return rawMultiply(rawPow(exp.subtract(BigInteger.ONE)), this);
        }
        if (exp.signum() == 0) {
            return ONE;
        }
        BoundedRational tmp = rawPow(exp.shiftRight(1));
        if (Thread.interrupted()) {
            throw new CR.AbortedException();
        }
        BoundedRational result = rawMultiply(tmp, tmp);
        if (result == null || result.tooBig()) {
            return null;
        }
        return result;
    }

    /**
     * Compute an integral power of this.
     */
    public BoundedRational pow(BigInteger exp) {
        int expSign = exp.signum();
        if (expSign == 0) {
            // Questionable if base has undefined or zero value.
            // java.lang.Math.pow() returns 1 anyway, so we do the same.
            return BoundedRational.ONE;
        }
        if (exp.equals(BigInteger.ONE)) {
            return this;
        }
        // Reducing once at the beginning means there's no point in reducing later.
        BoundedRational reduced = reduce().positiveDen();
        // First handle cases in which huge exponents could give compact results.
        if (reduced.mDen.equals(BigInteger.ONE)) {
            if (reduced.mNum.equals(BigInteger.ZERO)) {
                return ZERO;
            }
            if (reduced.mNum.equals(BigInteger.ONE)) {
                return ONE;
            }
            if (reduced.mNum.equals(BIG_MINUS_ONE)) {
                if (exp.testBit(0)) {
                    return MINUS_ONE;
                } else {
                    return ONE;
                }
            }
        }
        if (exp.bitLength() > 1000) {
            // Stack overflow is likely; a useful rational result is not.
            return null;
        }
        if (expSign < 0) {
            return inverse(reduced).rawPow(exp.negate());
        } else {
            return reduced.rawPow(exp);
        }
    }

    public static BoundedRational pow(BoundedRational base, BoundedRational exp) {
        if (exp == null) {
            return null;
        }
        if (base == null) {
            return null;
        }
        exp = exp.reduce().positiveDen();
        if (!exp.mDen.equals(BigInteger.ONE)) {
            return null;
        }
        return base.pow(exp.mNum);
    }


    private static final BigInteger BIG_FIVE = BigInteger.valueOf(5);

    /**
     * Return the number of decimal digits to the right of the decimal point required to represent
     * the argument exactly.
     * Return Integer.MAX_VALUE if that's not possible.  Never returns a value less than zero, even
     * if r is a power of ten.
     */
    public static int digitsRequired(BoundedRational r) {
        if (r == null) {
            return Integer.MAX_VALUE;
        }
        int powersOfTwo = 0;  // Max power of 2 that divides denominator
        int powersOfFive = 0;  // Max power of 5 that divides denominator
        // Try the easy case first to speed things up.
        if (r.mDen.equals(BigInteger.ONE)) {
            return 0;
        }
        r = r.reduce();
        BigInteger den = r.mDen;
        if (den.bitLength() > MAX_SIZE) {
            return Integer.MAX_VALUE;
        }
        while (!den.testBit(0)) {
            ++powersOfTwo;
            den = den.shiftRight(1);
        }
        while (den.mod(BIG_FIVE).signum() == 0) {
            ++powersOfFive;
            den = den.divide(BIG_FIVE);
        }
        // If the denominator has a factor of other than 2 or 5 (the divisors of 10), the decimal
        // expansion does not terminate.  Multiplying the fraction by any number of powers of 10
        // will not cancel the demoniator.  (Recall the fraction was in lowest terms to start
        // with.) Otherwise the powers of 10 we need to cancel the denominator is the larger of
        // powersOfTwo and powersOfFive.
        if (!den.equals(BigInteger.ONE) && !den.equals(BIG_MINUS_ONE)) {
            return Integer.MAX_VALUE;
        }
        return Math.max(powersOfTwo, powersOfFive);
    }
}