summaryrefslogtreecommitdiff
path: root/jni/share/dictbuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'jni/share/dictbuilder.cpp')
-rw-r--r--jni/share/dictbuilder.cpp1070
1 files changed, 1070 insertions, 0 deletions
diff --git a/jni/share/dictbuilder.cpp b/jni/share/dictbuilder.cpp
new file mode 100644
index 0000000..6f0bd4f
--- /dev/null
+++ b/jni/share/dictbuilder.cpp
@@ -0,0 +1,1070 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "../include/dictbuilder.h"
+#include "../include/dicttrie.h"
+#include "../include/mystdlib.h"
+#include "../include/ngram.h"
+#include "../include/searchutility.h"
+#include "../include/spellingtable.h"
+#include "../include/spellingtrie.h"
+#include "../include/splparser.h"
+#include "../include/utf16reader.h"
+
+namespace ime_pinyin {
+
+#ifdef ___BUILD_MODEL___
+
+static const size_t kReadBufLen = 512;
+static const size_t kSplTableHashLen = 2000;
+
+// Compare a SingleCharItem, first by Hanzis, then by spelling ids, then by
+// frequencies.
+int cmp_scis_hz_splid_freq(const void* p1, const void* p2) {
+ const SingleCharItem *s1, *s2;
+ s1 = static_cast<const SingleCharItem*>(p1);
+ s2 = static_cast<const SingleCharItem*>(p2);
+
+ if (s1->hz < s2->hz)
+ return -1;
+ if (s1->hz > s2->hz)
+ return 1;
+
+ if (s1->splid.half_splid < s2->splid.half_splid)
+ return -1;
+ if (s1->splid.half_splid > s2->splid.half_splid)
+ return 1;
+
+ if (s1->splid.full_splid < s2->splid.full_splid)
+ return -1;
+ if (s1->splid.full_splid > s2->splid.full_splid)
+ return 1;
+
+ if (s1->freq > s2->freq)
+ return -1;
+ if (s1->freq < s2->freq)
+ return 1;
+ return 0;
+}
+
+int cmp_scis_hz_splid(const void* p1, const void* p2) {
+ const SingleCharItem *s1, *s2;
+ s1 = static_cast<const SingleCharItem*>(p1);
+ s2 = static_cast<const SingleCharItem*>(p2);
+
+ if (s1->hz < s2->hz)
+ return -1;
+ if (s1->hz > s2->hz)
+ return 1;
+
+ if (s1->splid.half_splid < s2->splid.half_splid)
+ return -1;
+ if (s1->splid.half_splid > s2->splid.half_splid)
+ return 1;
+
+ if (s1->splid.full_splid < s2->splid.full_splid)
+ return -1;
+ if (s1->splid.full_splid > s2->splid.full_splid)
+ return 1;
+
+ return 0;
+}
+
+int cmp_lemma_entry_hzs(const void* p1, const void* p2) {
+ size_t size1 = utf16_strlen(((const LemmaEntry*)p1)->hanzi_str);
+ size_t size2 = utf16_strlen(((const LemmaEntry*)p2)->hanzi_str);
+ if (size1 < size2)
+ return -1;
+ else if (size1 > size2)
+ return 1;
+
+ return utf16_strcmp(((const LemmaEntry*)p1)->hanzi_str,
+ ((const LemmaEntry*)p2)->hanzi_str);
+}
+
+int compare_char16(const void* p1, const void* p2) {
+ if (*((const char16*)p1) < *((const char16*)p2))
+ return -1;
+ if (*((const char16*)p1) > *((const char16*)p2))
+ return 1;
+ return 0;
+}
+
+int compare_py(const void* p1, const void* p2) {
+ int ret = utf16_strcmp(((const LemmaEntry*)p1)->spl_idx_arr,
+ ((const LemmaEntry*)p2)->spl_idx_arr);
+
+ if (0 != ret)
+ return ret;
+
+ return static_cast<int>(((const LemmaEntry*)p2)->freq) -
+ static_cast<int>(((const LemmaEntry*)p1)->freq);
+}
+
+// First hanzi, if the same, then Pinyin
+int cmp_lemma_entry_hzspys(const void* p1, const void* p2) {
+ size_t size1 = utf16_strlen(((const LemmaEntry*)p1)->hanzi_str);
+ size_t size2 = utf16_strlen(((const LemmaEntry*)p2)->hanzi_str);
+ if (size1 < size2)
+ return -1;
+ else if (size1 > size2)
+ return 1;
+ int ret = utf16_strcmp(((const LemmaEntry*)p1)->hanzi_str,
+ ((const LemmaEntry*)p2)->hanzi_str);
+
+ if (0 != ret)
+ return ret;
+
+ ret = utf16_strcmp(((const LemmaEntry*)p1)->spl_idx_arr,
+ ((const LemmaEntry*)p2)->spl_idx_arr);
+ return ret;
+}
+
+int compare_splid2(const void* p1, const void* p2) {
+ int ret = utf16_strcmp(((const LemmaEntry*)p1)->spl_idx_arr,
+ ((const LemmaEntry*)p2)->spl_idx_arr);
+ return ret;
+}
+
+DictBuilder::DictBuilder() {
+ lemma_arr_ = NULL;
+ lemma_num_ = 0;
+
+ scis_ = NULL;
+ scis_num_ = 0;
+
+ lma_nodes_le0_ = NULL;
+ lma_nodes_ge1_ = NULL;
+
+ lma_nds_used_num_le0_ = 0;
+ lma_nds_used_num_ge1_ = 0;
+
+ homo_idx_buf_ = NULL;
+ homo_idx_num_eq1_ = 0;
+ homo_idx_num_gt1_ = 0;
+
+ top_lmas_ = NULL;
+ top_lmas_num_ = 0;
+
+ spl_table_ = NULL;
+ spl_parser_ = NULL;
+}
+
+DictBuilder::~DictBuilder() {
+ free_resource();
+}
+
+bool DictBuilder::alloc_resource(size_t lma_num) {
+ if (0 == lma_num)
+ return false;
+
+ free_resource();
+
+ lemma_num_ = lma_num;
+ lemma_arr_ = new LemmaEntry[lemma_num_];
+
+ top_lmas_num_ = 0;
+ top_lmas_ = new LemmaEntry[kTopScoreLemmaNum];
+
+ // New the scis_ buffer to the possible maximum size.
+ scis_num_ = lemma_num_ * kMaxLemmaSize;
+ scis_ = new SingleCharItem[scis_num_];
+
+ // The root and first level nodes is less than kMaxSpellingNum + 1
+ lma_nds_used_num_le0_ = 0;
+ lma_nodes_le0_ = new LmaNodeLE0[kMaxSpellingNum + 1];
+
+ // Other nodes is less than lemma_num
+ lma_nds_used_num_ge1_ = 0;
+ lma_nodes_ge1_ = new LmaNodeGE1[lemma_num_];
+
+ homo_idx_buf_ = new LemmaIdType[lemma_num_];
+ spl_table_ = new SpellingTable();
+ spl_parser_ = new SpellingParser();
+
+ if (NULL == lemma_arr_ || NULL == top_lmas_ ||
+ NULL == scis_ || NULL == spl_table_ ||
+ NULL == spl_parser_ || NULL == lma_nodes_le0_ ||
+ NULL == lma_nodes_ge1_ || NULL == homo_idx_buf_) {
+ free_resource();
+ return false;
+ }
+
+ memset(lemma_arr_, 0, sizeof(LemmaEntry) * lemma_num_);
+ memset(scis_, 0, sizeof(SingleCharItem) * scis_num_);
+ memset(lma_nodes_le0_, 0, sizeof(LmaNodeLE0) * (kMaxSpellingNum + 1));
+ memset(lma_nodes_ge1_, 0, sizeof(LmaNodeGE1) * lemma_num_);
+ memset(homo_idx_buf_, 0, sizeof(LemmaIdType) * lemma_num_);
+ spl_table_->init_table(kMaxPinyinSize, kSplTableHashLen, true);
+
+ return true;
+}
+
+char16* DictBuilder::read_valid_hanzis(const char *fn_validhzs, size_t *num) {
+ if (NULL == fn_validhzs || NULL == num)
+ return NULL;
+
+ *num = 0;
+ FILE *fp = fopen(fn_validhzs, "rb");
+ if (NULL == fp)
+ return NULL;
+
+ char16 utf16header;
+ if (fread(&utf16header, sizeof(char16), 1, fp) != 1 ||
+ 0xfeff != utf16header) {
+ fclose(fp);
+ return NULL;
+ }
+
+ fseek(fp, 0, SEEK_END);
+ *num = ftell(fp) / sizeof(char16);
+ assert(*num >= 1);
+ *num -= 1;
+
+ char16 *hzs = new char16[*num];
+ if (NULL == hzs) {
+ fclose(fp);
+ return NULL;
+ }
+
+ fseek(fp, 2, SEEK_SET);
+
+ if (fread(hzs, sizeof(char16), *num, fp) != *num) {
+ fclose(fp);
+ delete [] hzs;
+ return NULL;
+ }
+ fclose(fp);
+
+ myqsort(hzs, *num, sizeof(char16), compare_char16);
+ return hzs;
+}
+
+bool DictBuilder::hz_in_hanzis_list(const char16 *hzs, size_t hzs_len,
+ char16 hz) {
+ if (NULL == hzs)
+ return false;
+
+ char16 *found;
+ found = static_cast<char16*>(
+ mybsearch(&hz, hzs, hzs_len, sizeof(char16), compare_char16));
+ if (NULL == found)
+ return false;
+
+ assert(*found == hz);
+ return true;
+}
+
+// The caller makes sure that the parameters are valid.
+bool DictBuilder::str_in_hanzis_list(const char16 *hzs, size_t hzs_len,
+ const char16 *str, size_t str_len) {
+ if (NULL == hzs || NULL == str)
+ return false;
+
+ for (size_t pos = 0; pos < str_len; pos++) {
+ if (!hz_in_hanzis_list(hzs, hzs_len, str[pos]))
+ return false;
+ }
+ return true;
+}
+
+void DictBuilder::get_top_lemmas() {
+ top_lmas_num_ = 0;
+ if (NULL == lemma_arr_)
+ return;
+
+ for (size_t pos = 0; pos < lemma_num_; pos++) {
+ if (0 == top_lmas_num_) {
+ top_lmas_[0] = lemma_arr_[pos];
+ top_lmas_num_ = 1;
+ continue;
+ }
+
+ if (lemma_arr_[pos].freq > top_lmas_[top_lmas_num_ - 1].freq) {
+ if (kTopScoreLemmaNum > top_lmas_num_)
+ top_lmas_num_ += 1;
+
+ size_t move_pos;
+ for (move_pos = top_lmas_num_ - 1; move_pos > 0; move_pos--) {
+ top_lmas_[move_pos] = top_lmas_[move_pos - 1];
+ if (0 == move_pos - 1 ||
+ (move_pos - 1 > 0 &&
+ top_lmas_[move_pos - 2].freq > lemma_arr_[pos].freq)) {
+ break;
+ }
+ }
+ assert(move_pos > 0);
+ top_lmas_[move_pos - 1] = lemma_arr_[pos];
+ } else if (kTopScoreLemmaNum > top_lmas_num_) {
+ top_lmas_[top_lmas_num_] = lemma_arr_[pos];
+ top_lmas_num_ += 1;
+ }
+ }
+
+ if (kPrintDebug0) {
+ printf("\n------Top Lemmas------------------\n");
+ for (size_t pos = 0; pos < top_lmas_num_; pos++) {
+ printf("--%d, idx:%06d, score:%.5f\n", pos, top_lmas_[pos].idx_by_hz,
+ top_lmas_[pos].freq);
+ }
+ }
+}
+
+void DictBuilder::free_resource() {
+ if (NULL != lemma_arr_)
+ delete [] lemma_arr_;
+
+ if (NULL != scis_)
+ delete [] scis_;
+
+ if (NULL != lma_nodes_le0_)
+ delete [] lma_nodes_le0_;
+
+ if (NULL != lma_nodes_ge1_)
+ delete [] lma_nodes_ge1_;
+
+ if (NULL != homo_idx_buf_)
+ delete [] homo_idx_buf_;
+
+ if (NULL != spl_table_)
+ delete spl_table_;
+
+ if (NULL != spl_parser_)
+ delete spl_parser_;
+
+ lemma_arr_ = NULL;
+ scis_ = NULL;
+ lma_nodes_le0_ = NULL;
+ lma_nodes_ge1_ = NULL;
+ homo_idx_buf_ = NULL;
+ spl_table_ = NULL;
+ spl_parser_ = NULL;
+
+ lemma_num_ = 0;
+ lma_nds_used_num_le0_ = 0;
+ lma_nds_used_num_ge1_ = 0;
+ homo_idx_num_eq1_ = 0;
+ homo_idx_num_gt1_ = 0;
+}
+
+size_t DictBuilder::read_raw_dict(const char* fn_raw,
+ const char *fn_validhzs,
+ size_t max_item) {
+ if (NULL == fn_raw) return 0;
+
+ Utf16Reader utf16_reader;
+ if (!utf16_reader.open(fn_raw, kReadBufLen * 10))
+ return false;
+
+ char16 read_buf[kReadBufLen];
+
+ // Read the number of lemmas in the file
+ size_t lemma_num = 240000;
+
+ // allocate resource required
+ if (!alloc_resource(lemma_num)) {
+ utf16_reader.close();
+ }
+
+ // Read the valid Hanzi list.
+ char16 *valid_hzs = NULL;
+ size_t valid_hzs_num = 0;
+ valid_hzs = read_valid_hanzis(fn_validhzs, &valid_hzs_num);
+
+ // Begin reading the lemma entries
+ for (size_t i = 0; i < max_item; i++) {
+ // read next entry
+ if (!utf16_reader.readline(read_buf, kReadBufLen)) {
+ lemma_num = i;
+ break;
+ }
+
+ size_t token_size;
+ char16 *token;
+ char16 *to_tokenize = read_buf;
+
+ // Get the Hanzi string
+ token = utf16_strtok(to_tokenize, &token_size, &to_tokenize);
+ if (NULL == token) {
+ free_resource();
+ utf16_reader.close();
+ return false;
+ }
+
+ size_t lemma_size = utf16_strlen(token);
+
+ if (lemma_size > kMaxLemmaSize) {
+ i--;
+ continue;
+ }
+
+ if (lemma_size > 4) {
+ i--;
+ continue;
+ }
+
+ // Copy to the lemma entry
+ utf16_strcpy(lemma_arr_[i].hanzi_str, token);
+
+ lemma_arr_[i].hz_str_len = token_size;
+
+ // Get the freq string
+ token = utf16_strtok(to_tokenize, &token_size, &to_tokenize);
+ if (NULL == token) {
+ free_resource();
+ utf16_reader.close();
+ return false;
+ }
+ lemma_arr_[i].freq = utf16_atof(token);
+
+ if (lemma_size > 1 && lemma_arr_[i].freq < 60) {
+ i--;
+ continue;
+ }
+
+ // Get GBK mark, if no valid Hanzi list available, all items which contains
+ // GBK characters will be discarded. Otherwise, all items which contains
+ // characters outside of the valid Hanzi list will be discarded.
+ token = utf16_strtok(to_tokenize, &token_size, &to_tokenize);
+ assert(NULL != token);
+ int gbk_flag = utf16_atoi(token);
+ if (NULL == valid_hzs || 0 == valid_hzs_num) {
+ if (0 != gbk_flag) {
+ i--;
+ continue;
+ }
+ } else {
+ if (!str_in_hanzis_list(valid_hzs, valid_hzs_num,
+ lemma_arr_[i].hanzi_str, lemma_arr_[i].hz_str_len)) {
+ i--;
+ continue;
+ }
+ }
+
+ // Get spelling String
+ bool spelling_not_support = false;
+ for (size_t hz_pos = 0; hz_pos < (size_t)lemma_arr_[i].hz_str_len;
+ hz_pos++) {
+ // Get a Pinyin
+ token = utf16_strtok(to_tokenize, &token_size, &to_tokenize);
+ if (NULL == token) {
+ free_resource();
+ utf16_reader.close();
+ return false;
+ }
+
+ assert(utf16_strlen(token) <= kMaxPinyinSize);
+
+ utf16_strcpy_tochar(lemma_arr_[i].pinyin_str[hz_pos], token);
+
+ format_spelling_str(lemma_arr_[i].pinyin_str[hz_pos]);
+
+ // Put the pinyin to the spelling table
+ if (!spl_table_->put_spelling(lemma_arr_[i].pinyin_str[hz_pos],
+ lemma_arr_[i].freq)) {
+ spelling_not_support = true;
+ break;
+ }
+ }
+
+ // The whole line must have been parsed fully, otherwise discard this one.
+ token = utf16_strtok(to_tokenize, &token_size, &to_tokenize);
+ if (spelling_not_support || NULL != token) {
+ i--;
+ continue;
+ }
+ }
+
+ delete [] valid_hzs;
+ utf16_reader.close();
+
+ printf("read succesfully, lemma num: %d\n", lemma_num);
+
+ return lemma_num;
+}
+
+bool DictBuilder::build_dict(const char *fn_raw,
+ const char *fn_validhzs,
+ DictTrie *dict_trie) {
+ if (NULL == fn_raw || NULL == dict_trie)
+ return false;
+
+ lemma_num_ = read_raw_dict(fn_raw, fn_validhzs, 240000);
+ if (0 == lemma_num_)
+ return false;
+
+ // Arrange the spelling table, and build a spelling tree
+ // The size of an spelling. '\0' is included. If the spelling table is
+ // initialized to calculate the spelling scores, the last char in the
+ // spelling string will be score, and it is also included in spl_item_size.
+ size_t spl_item_size;
+ size_t spl_num;
+ const char* spl_buf;
+ spl_buf = spl_table_->arrange(&spl_item_size, &spl_num);
+ if (NULL == spl_buf) {
+ free_resource();
+ return false;
+ }
+
+ SpellingTrie &spl_trie = SpellingTrie::get_instance();
+
+ if (!spl_trie.construct(spl_buf, spl_item_size, spl_num,
+ spl_table_->get_score_amplifier(),
+ spl_table_->get_average_score())) {
+ free_resource();
+ return false;
+ }
+
+ printf("spelling tree construct successfully.\n");
+
+ // Convert the spelling string to idxs
+ for (size_t i = 0; i < lemma_num_; i++) {
+ for (size_t hz_pos = 0; hz_pos < (size_t)lemma_arr_[i].hz_str_len;
+ hz_pos++) {
+ uint16 spl_idxs[2];
+ uint16 spl_start_pos[3];
+ bool is_pre = true;
+ int spl_idx_num =
+ spl_parser_->splstr_to_idxs(lemma_arr_[i].pinyin_str[hz_pos],
+ strlen(lemma_arr_[i].pinyin_str[hz_pos]),
+ spl_idxs, spl_start_pos, 2, is_pre);
+ assert(1 == spl_idx_num);
+
+ if (spl_trie.is_half_id(spl_idxs[0])) {
+ uint16 num = spl_trie.half_to_full(spl_idxs[0], spl_idxs);
+ assert(0 != num);
+ }
+ lemma_arr_[i].spl_idx_arr[hz_pos] = spl_idxs[0];
+ }
+ }
+
+ // Sort the lemma items according to the hanzi, and give each unique item a
+ // id
+ sort_lemmas_by_hz();
+
+ scis_num_ = build_scis();
+
+ // Construct the dict list
+ dict_trie->dict_list_ = new DictList();
+ bool dl_success = dict_trie->dict_list_->init_list(scis_, scis_num_,
+ lemma_arr_, lemma_num_);
+ assert(dl_success);
+
+ // Construct the NGram information
+ NGram& ngram = NGram::get_instance();
+ ngram.build_unigram(lemma_arr_, lemma_num_,
+ lemma_arr_[lemma_num_ - 1].idx_by_hz + 1);
+
+ // sort the lemma items according to the spelling idx string
+ myqsort(lemma_arr_, lemma_num_, sizeof(LemmaEntry), compare_py);
+
+ get_top_lemmas();
+
+#ifdef ___DO_STATISTICS___
+ stat_init();
+#endif
+
+ lma_nds_used_num_le0_ = 1; // The root node
+ bool dt_success = construct_subset(static_cast<void*>(lma_nodes_le0_),
+ lemma_arr_, 0, lemma_num_, 0);
+ if (!dt_success) {
+ free_resource();
+ return false;
+ }
+
+#ifdef ___DO_STATISTICS___
+ stat_print();
+#endif
+
+ // Move the node data and homo data to the DictTrie
+ dict_trie->root_ = new LmaNodeLE0[lma_nds_used_num_le0_];
+ dict_trie->nodes_ge1_ = new LmaNodeGE1[lma_nds_used_num_ge1_];
+ size_t lma_idx_num = homo_idx_num_eq1_ + homo_idx_num_gt1_ + top_lmas_num_;
+ dict_trie->lma_idx_buf_ = new unsigned char[lma_idx_num * kLemmaIdSize];
+ assert(NULL != dict_trie->root_);
+ assert(NULL != dict_trie->lma_idx_buf_);
+ dict_trie->lma_node_num_le0_ = lma_nds_used_num_le0_;
+ dict_trie->lma_node_num_ge1_ = lma_nds_used_num_ge1_;
+ dict_trie->lma_idx_buf_len_ = lma_idx_num * kLemmaIdSize;
+ dict_trie->top_lmas_num_ = top_lmas_num_;
+
+ memcpy(dict_trie->root_, lma_nodes_le0_,
+ sizeof(LmaNodeLE0) * lma_nds_used_num_le0_);
+ memcpy(dict_trie->nodes_ge1_, lma_nodes_ge1_,
+ sizeof(LmaNodeGE1) * lma_nds_used_num_ge1_);
+
+ for (size_t pos = 0; pos < homo_idx_num_eq1_ + homo_idx_num_gt1_; pos++) {
+ id_to_charbuf(dict_trie->lma_idx_buf_ + pos * kLemmaIdSize,
+ homo_idx_buf_[pos]);
+ }
+
+ for (size_t pos = homo_idx_num_eq1_ + homo_idx_num_gt1_;
+ pos < lma_idx_num; pos++) {
+ LemmaIdType idx =
+ top_lmas_[pos - homo_idx_num_eq1_ - homo_idx_num_gt1_].idx_by_hz;
+ id_to_charbuf(dict_trie->lma_idx_buf_ + pos * kLemmaIdSize, idx);
+ }
+
+ if (kPrintDebug0) {
+ printf("homo_idx_num_eq1_: %d\n", homo_idx_num_eq1_);
+ printf("homo_idx_num_gt1_: %d\n", homo_idx_num_gt1_);
+ printf("top_lmas_num_: %d\n", top_lmas_num_);
+ }
+
+ free_resource();
+
+ if (kPrintDebug0) {
+ printf("Building dict succeds\n");
+ }
+ return dt_success;
+}
+
+void DictBuilder::id_to_charbuf(unsigned char *buf, LemmaIdType id) {
+ if (NULL == buf) return;
+ for (size_t pos = 0; pos < kLemmaIdSize; pos++) {
+ (buf)[pos] = (unsigned char)(id >> (pos * 8));
+ }
+}
+
+void DictBuilder::set_son_offset(LmaNodeGE1 *node, size_t offset) {
+ node->son_1st_off_l = static_cast<uint16>(offset);
+ node->son_1st_off_h = static_cast<unsigned char>(offset >> 16);
+}
+
+void DictBuilder:: set_homo_id_buf_offset(LmaNodeGE1 *node, size_t offset) {
+ node->homo_idx_buf_off_l = static_cast<uint16>(offset);
+ node->homo_idx_buf_off_h = static_cast<unsigned char>(offset >> 16);
+
+}
+
+// All spelling strings will be converted to upper case, except that
+// spellings started with "ZH"/"CH"/"SH" will be converted to
+// "Zh"/"Ch"/"Sh"
+void DictBuilder::format_spelling_str(char *spl_str) {
+ if (NULL == spl_str)
+ return;
+
+ uint16 pos = 0;
+ while ('\0' != spl_str[pos]) {
+ if (spl_str[pos] >= 'a' && spl_str[pos] <= 'z')
+ spl_str[pos] = spl_str[pos] - 'a' + 'A';
+
+ if (1 == pos && 'H' == spl_str[pos]) {
+ if ('C' == spl_str[0] || 'S' == spl_str[0] || 'Z' == spl_str[0]) {
+ spl_str[pos] = 'h';
+ }
+ }
+ pos++;
+ }
+}
+
+LemmaIdType DictBuilder::sort_lemmas_by_hz() {
+ if (NULL == lemma_arr_ || 0 == lemma_num_)
+ return 0;
+
+ myqsort(lemma_arr_, lemma_num_, sizeof(LemmaEntry), cmp_lemma_entry_hzs);
+
+ lemma_arr_[0].idx_by_hz = 1;
+ LemmaIdType idx_max = 1;
+ for (size_t i = 1; i < lemma_num_; i++) {
+ if (utf16_strcmp(lemma_arr_[i].hanzi_str, lemma_arr_[i-1].hanzi_str)) {
+ idx_max++;
+ lemma_arr_[i].idx_by_hz = idx_max;
+ } else {
+ idx_max++;
+ lemma_arr_[i].idx_by_hz = idx_max;
+ }
+ }
+ return idx_max + 1;
+}
+
+size_t DictBuilder::build_scis() {
+ if (NULL == scis_ || lemma_num_ * kMaxLemmaSize > scis_num_)
+ return 0;
+
+ SpellingTrie &spl_trie = SpellingTrie::get_instance();
+
+ // This first one is blank, because id 0 is invalid.
+ scis_[0].freq = 0;
+ scis_[0].hz = 0;
+ scis_[0].splid.full_splid = 0;
+ scis_[0].splid.half_splid = 0;
+ scis_num_ = 1;
+
+ // Copy the hanzis to the buffer
+ for (size_t pos = 0; pos < lemma_num_; pos++) {
+ size_t hz_num = lemma_arr_[pos].hz_str_len;
+ for (size_t hzpos = 0; hzpos < hz_num; hzpos++) {
+ scis_[scis_num_].hz = lemma_arr_[pos].hanzi_str[hzpos];
+ scis_[scis_num_].splid.full_splid = lemma_arr_[pos].spl_idx_arr[hzpos];
+ scis_[scis_num_].splid.half_splid =
+ spl_trie.full_to_half(scis_[scis_num_].splid.full_splid);
+ if (1 == hz_num)
+ scis_[scis_num_].freq = lemma_arr_[pos].freq;
+ else
+ scis_[scis_num_].freq = 0.000001;
+ scis_num_++;
+ }
+ }
+
+ myqsort(scis_, scis_num_, sizeof(SingleCharItem), cmp_scis_hz_splid_freq);
+
+ // Remove repeated items
+ size_t unique_scis_num = 1;
+ for (size_t pos = 1; pos < scis_num_; pos++) {
+ if (scis_[pos].hz == scis_[pos - 1].hz &&
+ scis_[pos].splid.full_splid == scis_[pos - 1].splid.full_splid)
+ continue;
+ scis_[unique_scis_num] = scis_[pos];
+ scis_[unique_scis_num].splid.half_splid =
+ spl_trie.full_to_half(scis_[pos].splid.full_splid);
+ unique_scis_num++;
+ }
+
+ scis_num_ = unique_scis_num;
+
+ // Update the lemma list.
+ for (size_t pos = 0; pos < lemma_num_; pos++) {
+ size_t hz_num = lemma_arr_[pos].hz_str_len;
+ for (size_t hzpos = 0; hzpos < hz_num; hzpos++) {
+ SingleCharItem key;
+ key.hz = lemma_arr_[pos].hanzi_str[hzpos];
+ key.splid.full_splid = lemma_arr_[pos].spl_idx_arr[hzpos];
+ key.splid.half_splid = spl_trie.full_to_half(key.splid.full_splid);
+
+ SingleCharItem *found;
+ found = static_cast<SingleCharItem*>(mybsearch(&key, scis_,
+ unique_scis_num,
+ sizeof(SingleCharItem),
+ cmp_scis_hz_splid));
+
+ assert(found);
+
+ lemma_arr_[pos].hanzi_scis_ids[hzpos] =
+ static_cast<uint16>(found - scis_);
+ lemma_arr_[pos].spl_idx_arr[hzpos] = found->splid.full_splid;
+ }
+ }
+
+ return scis_num_;
+}
+
+bool DictBuilder::construct_subset(void* parent, LemmaEntry* lemma_arr,
+ size_t item_start, size_t item_end,
+ size_t level) {
+ if (level >= kMaxLemmaSize || item_end <= item_start)
+ return false;
+
+ // 1. Scan for how many sons
+ size_t parent_son_num = 0;
+ // LemmaNode *son_1st = NULL;
+ // parent.num_of_son = 0;
+
+ LemmaEntry *lma_last_start = lemma_arr_ + item_start;
+ uint16 spl_idx_node = lma_last_start->spl_idx_arr[level];
+
+ // Scan for how many sons to be allocaed
+ for (size_t i = item_start + 1; i< item_end; i++) {
+ LemmaEntry *lma_current = lemma_arr + i;
+ uint16 spl_idx_current = lma_current->spl_idx_arr[level];
+ if (spl_idx_current != spl_idx_node) {
+ parent_son_num++;
+ spl_idx_node = spl_idx_current;
+ }
+ }
+ parent_son_num++;
+
+#ifdef ___DO_STATISTICS___
+ // Use to indicate whether all nodes of this layer have no son.
+ bool allson_noson = true;
+
+ assert(level < kMaxLemmaSize);
+ if (parent_son_num > max_sonbuf_len_[level])
+ max_sonbuf_len_[level] = parent_son_num;
+
+ total_son_num_[level] += parent_son_num;
+ total_sonbuf_num_[level] += 1;
+
+ if (parent_son_num == 1)
+ sonbufs_num1_++;
+ else
+ sonbufs_numgt1_++;
+ total_lma_node_num_ += parent_son_num;
+#endif
+
+ // 2. Update the parent's information
+ // Update the parent's son list;
+ LmaNodeLE0 *son_1st_le0 = NULL; // only one of le0 or ge1 is used
+ LmaNodeGE1 *son_1st_ge1 = NULL; // only one of le0 or ge1 is used.
+ if (0 == level) { // the parent is root
+ (static_cast<LmaNodeLE0*>(parent))->son_1st_off =
+ lma_nds_used_num_le0_;
+ son_1st_le0 = lma_nodes_le0_ + lma_nds_used_num_le0_;
+ lma_nds_used_num_le0_ += parent_son_num;
+
+ assert(parent_son_num <= 65535);
+ (static_cast<LmaNodeLE0*>(parent))->num_of_son =
+ static_cast<uint16>(parent_son_num);
+ } else if (1 == level) { // the parent is a son of root
+ (static_cast<LmaNodeLE0*>(parent))->son_1st_off =
+ lma_nds_used_num_ge1_;
+ son_1st_ge1 = lma_nodes_ge1_ + lma_nds_used_num_ge1_;
+ lma_nds_used_num_ge1_ += parent_son_num;
+
+ assert(parent_son_num <= 65535);
+ (static_cast<LmaNodeLE0*>(parent))->num_of_son =
+ static_cast<uint16>(parent_son_num);
+ } else {
+ set_son_offset((static_cast<LmaNodeGE1*>(parent)),
+ lma_nds_used_num_ge1_);
+ son_1st_ge1 = lma_nodes_ge1_ + lma_nds_used_num_ge1_;
+ lma_nds_used_num_ge1_ += parent_son_num;
+
+ assert(parent_son_num <= 255);
+ (static_cast<LmaNodeGE1*>(parent))->num_of_son =
+ (unsigned char)parent_son_num;
+ }
+
+ // 3. Now begin to construct the son one by one
+ size_t son_pos = 0;
+
+ lma_last_start = lemma_arr_ + item_start;
+ spl_idx_node = lma_last_start->spl_idx_arr[level];
+
+ size_t homo_num = 0;
+ if (lma_last_start->spl_idx_arr[level + 1] == 0)
+ homo_num = 1;
+
+ size_t item_start_next = item_start;
+
+ for (size_t i = item_start + 1; i < item_end; i++) {
+ LemmaEntry* lma_current = lemma_arr_ + i;
+ uint16 spl_idx_current = lma_current->spl_idx_arr[level];
+
+ if (spl_idx_current == spl_idx_node) {
+ if (lma_current->spl_idx_arr[level + 1] == 0)
+ homo_num++;
+ } else {
+ // Construct a node
+ LmaNodeLE0 *node_cur_le0 = NULL; // only one of them is valid
+ LmaNodeGE1 *node_cur_ge1 = NULL;
+ if (0 == level) {
+ node_cur_le0 = son_1st_le0 + son_pos;
+ node_cur_le0->spl_idx = spl_idx_node;
+ node_cur_le0->homo_idx_buf_off = homo_idx_num_eq1_ + homo_idx_num_gt1_;
+ node_cur_le0->son_1st_off = 0;
+ homo_idx_num_eq1_ += homo_num;
+ } else {
+ node_cur_ge1 = son_1st_ge1 + son_pos;
+ node_cur_ge1->spl_idx = spl_idx_node;
+
+ set_homo_id_buf_offset(node_cur_ge1,
+ (homo_idx_num_eq1_ + homo_idx_num_gt1_));
+ set_son_offset(node_cur_ge1, 0);
+ homo_idx_num_gt1_ += homo_num;
+ }
+
+ if (homo_num > 0) {
+ LemmaIdType* idx_buf = homo_idx_buf_ + homo_idx_num_eq1_ +
+ homo_idx_num_gt1_ - homo_num;
+ if (0 == level) {
+ assert(homo_num <= 65535);
+ node_cur_le0->num_of_homo = static_cast<uint16>(homo_num);
+ } else {
+ assert(homo_num <= 255);
+ node_cur_ge1->num_of_homo = (unsigned char)homo_num;
+ }
+
+ for (size_t homo_pos = 0; homo_pos < homo_num; homo_pos++) {
+ idx_buf[homo_pos] = lemma_arr_[item_start_next + homo_pos].idx_by_hz;
+ }
+
+#ifdef ___DO_STATISTICS___
+ if (homo_num > max_homobuf_len_[level])
+ max_homobuf_len_[level] = homo_num;
+
+ total_homo_num_[level] += homo_num;
+#endif
+ }
+
+ if (i - item_start_next > homo_num) {
+ void *next_parent;
+ if (0 == level)
+ next_parent = static_cast<void*>(node_cur_le0);
+ else
+ next_parent = static_cast<void*>(node_cur_ge1);
+ construct_subset(next_parent, lemma_arr,
+ item_start_next + homo_num, i, level + 1);
+#ifdef ___DO_STATISTICS___
+
+ total_node_hasson_[level] += 1;
+ allson_noson = false;
+#endif
+ }
+
+ // for the next son
+ lma_last_start = lma_current;
+ spl_idx_node = spl_idx_current;
+ item_start_next = i;
+ homo_num = 0;
+ if (lma_current->spl_idx_arr[level + 1] == 0)
+ homo_num = 1;
+
+ son_pos++;
+ }
+ }
+
+ // 4. The last one to construct
+ LmaNodeLE0 *node_cur_le0 = NULL; // only one of them is valid
+ LmaNodeGE1 *node_cur_ge1 = NULL;
+ if (0 == level) {
+ node_cur_le0 = son_1st_le0 + son_pos;
+ node_cur_le0->spl_idx = spl_idx_node;
+ node_cur_le0->homo_idx_buf_off = homo_idx_num_eq1_ + homo_idx_num_gt1_;
+ node_cur_le0->son_1st_off = 0;
+ homo_idx_num_eq1_ += homo_num;
+ } else {
+ node_cur_ge1 = son_1st_ge1 + son_pos;
+ node_cur_ge1->spl_idx = spl_idx_node;
+
+ set_homo_id_buf_offset(node_cur_ge1,
+ (homo_idx_num_eq1_ + homo_idx_num_gt1_));
+ set_son_offset(node_cur_ge1, 0);
+ homo_idx_num_gt1_ += homo_num;
+ }
+
+ if (homo_num > 0) {
+ LemmaIdType* idx_buf = homo_idx_buf_ + homo_idx_num_eq1_ +
+ homo_idx_num_gt1_ - homo_num;
+ if (0 == level) {
+ assert(homo_num <= 65535);
+ node_cur_le0->num_of_homo = static_cast<uint16>(homo_num);
+ } else {
+ assert(homo_num <= 255);
+ node_cur_ge1->num_of_homo = (unsigned char)homo_num;
+ }
+
+ for (size_t homo_pos = 0; homo_pos < homo_num; homo_pos++) {
+ idx_buf[homo_pos] = lemma_arr[item_start_next + homo_pos].idx_by_hz;
+ }
+
+#ifdef ___DO_STATISTICS___
+ if (homo_num > max_homobuf_len_[level])
+ max_homobuf_len_[level] = homo_num;
+
+ total_homo_num_[level] += homo_num;
+#endif
+ }
+
+ if (item_end - item_start_next > homo_num) {
+ void *next_parent;
+ if (0 == level)
+ next_parent = static_cast<void*>(node_cur_le0);
+ else
+ next_parent = static_cast<void*>(node_cur_ge1);
+ construct_subset(next_parent, lemma_arr,
+ item_start_next + homo_num, item_end, level + 1);
+#ifdef ___DO_STATISTICS___
+
+ total_node_hasson_[level] += 1;
+ allson_noson = false;
+#endif
+ }
+
+#ifdef ___DO_STATISTICS___
+ if (allson_noson) {
+ total_sonbuf_allnoson_[level] += 1;
+ total_node_in_sonbuf_allnoson_[level] += parent_son_num;
+ }
+#endif
+
+ assert(son_pos + 1 == parent_son_num);
+ return true;
+}
+
+#ifdef ___DO_STATISTICS___
+void DictBuilder::stat_init() {
+ memset(max_sonbuf_len_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(max_homobuf_len_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_son_num_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_node_hasson_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_sonbuf_num_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_sonbuf_allnoson_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_node_in_sonbuf_allnoson_, 0, sizeof(size_t) * kMaxLemmaSize);
+ memset(total_homo_num_, 0, sizeof(size_t) * kMaxLemmaSize);
+
+ sonbufs_num1_ = 0;
+ sonbufs_numgt1_ = 0;
+ total_lma_node_num_ = 0;
+}
+
+void DictBuilder::stat_print() {
+ printf("\n------------STAT INFO-------------\n");
+ printf("[root is layer -1]\n");
+ printf(".. max_sonbuf_len per layer(from layer 0):\n ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", max_sonbuf_len_[i]);
+ printf("-, \n");
+
+ printf(".. max_homobuf_len per layer:\n -, ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", max_homobuf_len_[i]);
+ printf("\n");
+
+ printf(".. total_son_num per layer:\n ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_son_num_[i]);
+ printf("-, \n");
+
+ printf(".. total_node_hasson per layer:\n 1, ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_node_hasson_[i]);
+ printf("\n");
+
+ printf(".. total_sonbuf_num per layer:\n ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_sonbuf_num_[i]);
+ printf("-, \n");
+
+ printf(".. total_sonbuf_allnoson per layer:\n ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_sonbuf_allnoson_[i]);
+ printf("-, \n");
+
+ printf(".. total_node_in_sonbuf_allnoson per layer:\n ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_node_in_sonbuf_allnoson_[i]);
+ printf("-, \n");
+
+ printf(".. total_homo_num per layer:\n 0, ");
+ for (size_t i = 0; i < kMaxLemmaSize; i++)
+ printf("%d, ", total_homo_num_[i]);
+ printf("\n");
+
+ printf(".. son buf allocation number with only 1 son: %d\n", sonbufs_num1_);
+ printf(".. son buf allocation number with more than 1 son: %d\n",
+ sonbufs_numgt1_);
+ printf(".. total lemma node number: %d\n", total_lma_node_num_ + 1);
+}
+#endif // ___DO_STATISTICS___
+
+#endif // ___BUILD_MODEL___
+} // namespace ime_pinyin