/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "sysdeps.h" #include "client/usb.h" #include #include #if defined(__linux__) #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adb.h" #include "adb_utils.h" #include "fdevent/fdevent.h" #include "transfer_id.h" #include "transport.h" using namespace std::chrono_literals; using android::base::ScopedLockAssertion; using android::base::StringPrintf; #define LOG_ERR(out, fmt, ...) \ do { \ std::string __err = android::base::StringPrintf(fmt, ##__VA_ARGS__); \ LOG(ERROR) << __err; \ *out = std::move(__err); \ } while (0) // RAII wrappers for libusb. struct ConfigDescriptorDeleter { void operator()(libusb_config_descriptor* desc) { libusb_free_config_descriptor(desc); } }; using unique_config_descriptor = std::unique_ptr; struct DeviceDeleter { void operator()(libusb_device* d) { libusb_unref_device(d); } }; using unique_device = std::unique_ptr; struct DeviceHandleDeleter { void operator()(libusb_device_handle* h) { libusb_close(h); } }; using unique_device_handle = std::unique_ptr; static void process_device(libusb_device* device_raw); static std::string get_device_address(libusb_device* device) { uint8_t ports[7]; int port_count = libusb_get_port_numbers(device, ports, 7); if (port_count < 0) return ""; std::string address = StringPrintf("%d-%d", libusb_get_bus_number(device), ports[0]); for (int port = 1; port < port_count; ++port) { address += StringPrintf(".%d", ports[port]); } return address; } #if defined(__linux__) static std::string get_device_serial_path(libusb_device* device) { std::string address = get_device_address(device); std::string path = StringPrintf("/sys/bus/usb/devices/%s/serial", address.c_str()); return path; } #endif static bool endpoint_is_output(uint8_t endpoint) { return (endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_OUT; } static bool should_perform_zero_transfer(size_t write_length, uint16_t zero_mask) { return write_length != 0 && zero_mask != 0 && (write_length & zero_mask) == 0; } struct LibusbConnection : public Connection { struct ReadBlock { LibusbConnection* self = nullptr; libusb_transfer* transfer = nullptr; Block block; bool active = false; }; struct WriteBlock { LibusbConnection* self; libusb_transfer* transfer; Block block; TransferId id; }; explicit LibusbConnection(unique_device device) : device_(std::move(device)), device_address_(get_device_address(device_.get())) {} ~LibusbConnection() { Stop(); } void HandlePacket(amessage& msg, std::optional payload) { auto packet = std::make_unique(); packet->msg = msg; if (payload) { packet->payload = std::move(*payload); } transport_->HandleRead(std::move(packet)); } void Cleanup(ReadBlock* read_block) REQUIRES(read_mutex_) { libusb_free_transfer(read_block->transfer); read_block->active = false; read_block->transfer = nullptr; if (terminated_) { destruction_cv_.notify_one(); } } bool MaybeCleanup(ReadBlock* read_block) REQUIRES(read_mutex_) { CHECK(read_block); CHECK(read_block->transfer); if (terminated_) { Cleanup(read_block); return true; } return false; } static void LIBUSB_CALL header_read_cb(libusb_transfer* transfer) { auto read_block = static_cast(transfer->user_data); auto self = read_block->self; std::lock_guard lock(self->read_mutex_); CHECK_EQ(read_block, &self->header_read_); if (self->MaybeCleanup(read_block)) { return; } if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { std::string msg = StringPrintf("usb read failed: status = %d", transfer->status); LOG(ERROR) << msg; if (!self->detached_) { self->OnError(msg); } self->Cleanup(read_block); return; } if (transfer->actual_length != sizeof(amessage)) { std::string msg = StringPrintf("usb read: invalid length for header: %d", transfer->actual_length); LOG(ERROR) << msg; self->OnError(msg); self->Cleanup(read_block); return; } CHECK(!self->incoming_header_); amessage& amsg = self->incoming_header_.emplace(); memcpy(&amsg, transfer->buffer, sizeof(amsg)); if (amsg.data_length > MAX_PAYLOAD) { std::string msg = StringPrintf("usb read: payload length too long: %d", amsg.data_length); LOG(ERROR) << msg; self->OnError(msg); self->Cleanup(&self->header_read_); return; } else if (amsg.data_length == 0) { self->HandlePacket(amsg, std::nullopt); self->incoming_header_.reset(); self->SubmitRead(read_block, sizeof(amessage)); } else { read_block->active = false; self->SubmitRead(&self->payload_read_, amsg.data_length); } } static void LIBUSB_CALL payload_read_cb(libusb_transfer* transfer) { auto read_block = static_cast(transfer->user_data); auto self = read_block->self; std::lock_guard lock(self->read_mutex_); if (self->MaybeCleanup(&self->payload_read_)) { return; } if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { std::string msg = StringPrintf("usb read failed: status = %d", transfer->status); LOG(ERROR) << msg; if (!self->detached_) { self->OnError(msg); } self->Cleanup(&self->payload_read_); return; } if (transfer->actual_length != transfer->length) { std::string msg = StringPrintf("usb read: unexpected length for payload: wanted %d, got %d", transfer->length, transfer->actual_length); LOG(ERROR) << msg; self->OnError(msg); self->Cleanup(&self->payload_read_); return; } CHECK(self->incoming_header_.has_value()); self->HandlePacket(*self->incoming_header_, std::move(read_block->block)); self->incoming_header_.reset(); read_block->active = false; self->SubmitRead(&self->header_read_, sizeof(amessage)); } static void LIBUSB_CALL write_cb(libusb_transfer* transfer) { auto write_block = static_cast(transfer->user_data); auto self = write_block->self; bool succeeded = transfer->status == LIBUSB_TRANSFER_COMPLETED; { std::lock_guard lock(self->write_mutex_); libusb_free_transfer(transfer); self->writes_.erase(write_block->id); if (self->terminated_ && self->writes_.empty()) { self->destruction_cv_.notify_one(); } } if (!succeeded && !self->detached_) { self->OnError("libusb write failed"); } } bool DoTlsHandshake(RSA*, std::string*) final { LOG(FATAL) << "tls not supported"; return false; } void CreateRead(ReadBlock* read, bool header) { read->self = this; read->transfer = libusb_alloc_transfer(0); if (!read->transfer) { LOG(FATAL) << "failed to allocate libusb_transfer for read"; } libusb_fill_bulk_transfer(read->transfer, device_handle_.get(), read_endpoint_, nullptr, 0, header ? header_read_cb : payload_read_cb, read, 0); } void SubmitRead(ReadBlock* read, size_t length) { read->block.resize(length); read->transfer->buffer = reinterpret_cast(read->block.data()); read->transfer->length = length; read->active = true; int rc = libusb_submit_transfer(read->transfer); if (rc != 0) { LOG(ERROR) << "libusb_submit_transfer failed: " << libusb_strerror(rc); } } void SubmitWrite(Block&& block) REQUIRES(write_mutex_) { // TODO: Reuse write blocks. auto write = std::make_unique(); write->self = this; write->id = TransferId::write(next_write_id_++); write->block = std::move(block); write->transfer = libusb_alloc_transfer(0); if (!write->transfer) { LOG(FATAL) << "failed to allocate libusb_transfer for write"; } libusb_fill_bulk_transfer(write->transfer, device_handle_.get(), write_endpoint_, reinterpret_cast(write->block.data()), write->block.size(), &write_cb, write.get(), 0); int rc = libusb_submit_transfer(write->transfer); if (rc == 0) { writes_[write->id] = std::move(write); } else { LOG(ERROR) << "libusb_submit_transfer failed: " << libusb_strerror(rc); libusb_free_transfer(write->transfer); } } bool Write(std::unique_ptr packet) final { VLOG(USB) << "USB write: " << dump_header(&packet->msg); Block header; header.resize(sizeof(packet->msg)); memcpy(header.data(), &packet->msg, sizeof(packet->msg)); std::lock_guard lock(write_mutex_); if (terminated_) { return false; } if (detached_) { return true; } SubmitWrite(std::move(header)); if (!packet->payload.empty()) { size_t payload_length = packet->payload.size(); SubmitWrite(std::move(packet->payload)); // If the payload is a multiple of the endpoint packet size, we // need an explicit zero-sized transfer. if (should_perform_zero_transfer(payload_length, zero_mask_)) { VLOG(USB) << "submitting zero transfer for payload length " << payload_length; Block empty; SubmitWrite(std::move(empty)); } } return true; } std::optional GetDeviceDescriptor() { libusb_device_descriptor device_desc; int rc = libusb_get_device_descriptor(device_.get(), &device_desc); if (rc != 0) { LOG(WARNING) << "failed to get device descriptor for device at " << device_address_ << ": " << libusb_error_name(rc); return {}; } return device_desc; } bool FindInterface(libusb_device_descriptor* device_desc) { if (device_desc->bDeviceClass != LIBUSB_CLASS_PER_INTERFACE) { // Assume that all Android devices have the device class set to per interface. // TODO: Is this assumption valid? VLOG(USB) << "skipping device with incorrect class at " << device_address_; return false; } libusb_config_descriptor* config_raw; int rc = libusb_get_active_config_descriptor(device_.get(), &config_raw); if (rc != 0) { LOG(WARNING) << "failed to get active config descriptor for device at " << device_address_ << ": " << libusb_error_name(rc); return false; } const unique_config_descriptor config(config_raw); // Use size_t for interface_num so s don't mangle it. size_t interface_num; uint16_t zero_mask = 0; uint8_t bulk_in = 0, bulk_out = 0; size_t packet_size = 0; bool found_adb = false; for (interface_num = 0; interface_num < config->bNumInterfaces; ++interface_num) { const libusb_interface& interface = config->interface[interface_num]; if (interface.num_altsetting == 0) { continue; } const libusb_interface_descriptor& interface_desc = interface.altsetting[0]; if (!is_adb_interface(interface_desc.bInterfaceClass, interface_desc.bInterfaceSubClass, interface_desc.bInterfaceProtocol)) { VLOG(USB) << "skipping non-adb interface at " << device_address_ << " (interface " << interface_num << ")"; continue; } if (interface.num_altsetting != 1) { // Assume that interfaces with alternate settings aren't adb interfaces. // TODO: Is this assumption valid? LOG(WARNING) << "skipping interface with unexpected num_altsetting at " << device_address_ << " (interface " << interface_num << ")"; continue; } VLOG(USB) << "found potential adb interface at " << device_address_ << " (interface " << interface_num << ")"; bool found_in = false; bool found_out = false; for (size_t endpoint_num = 0; endpoint_num < interface_desc.bNumEndpoints; ++endpoint_num) { const auto& endpoint_desc = interface_desc.endpoint[endpoint_num]; const uint8_t endpoint_addr = endpoint_desc.bEndpointAddress; const uint8_t endpoint_attr = endpoint_desc.bmAttributes; const uint8_t transfer_type = endpoint_attr & LIBUSB_TRANSFER_TYPE_MASK; if (transfer_type != LIBUSB_TRANSFER_TYPE_BULK) { continue; } if (endpoint_is_output(endpoint_addr) && !found_out) { found_out = true; bulk_out = endpoint_addr; zero_mask = endpoint_desc.wMaxPacketSize - 1; } else if (!endpoint_is_output(endpoint_addr) && !found_in) { found_in = true; bulk_in = endpoint_addr; } size_t endpoint_packet_size = endpoint_desc.wMaxPacketSize; CHECK(endpoint_packet_size != 0); if (packet_size == 0) { packet_size = endpoint_packet_size; } else { CHECK(packet_size == endpoint_packet_size); } } if (found_in && found_out) { found_adb = true; break; } else { VLOG(USB) << "rejecting potential adb interface at " << device_address_ << "(interface " << interface_num << "): missing bulk endpoints " << "(found_in = " << found_in << ", found_out = " << found_out << ")"; } } if (!found_adb) { return false; } interface_num_ = interface_num; write_endpoint_ = bulk_out; read_endpoint_ = bulk_in; zero_mask_ = zero_mask; return true; } std::string GetUsbDeviceAddress() const { return std::string("usb:") + device_address_; } std::string GetSerial() { std::string serial; auto device_desc = GetDeviceDescriptor(); serial.resize(255); int rc = libusb_get_string_descriptor_ascii( device_handle_.get(), device_desc->iSerialNumber, reinterpret_cast(&serial[0]), serial.length()); if (rc == 0) { LOG(WARNING) << "received empty serial from device at " << device_address_; return {}; } else if (rc < 0) { LOG(WARNING) << "failed to get serial from device at " << device_address_ << libusb_error_name(rc); return {}; } serial.resize(rc); return serial; } // libusb gives us an int which is a value from 'enum libusb_speed' static ConnectionSpeed ToConnectionSpeed(int speed) { switch (speed) { case LIBUSB_SPEED_LOW: return USB1_0; case LIBUSB_SPEED_FULL: return USB2_0_FULL; case LIBUSB_SPEED_HIGH: return USB2_0_HIGH; case LIBUSB_SPEED_SUPER: return USB3_0; case LIBUSB_SPEED_SUPER_PLUS: return USB3_1; case LIBUSB_SPEED_UNKNOWN: default: return UNKNOWN; } } // libusb gives us a bitfield made of 'enum libusb_supported_speed' values static ConnectionSpeed ExtractMaxSpeed(uint16_t wSpeedSupported) { if (wSpeedSupported == 0) { return UNKNOWN; } int msb = 0; while (wSpeedSupported >>= 1) { msb++; } switch (1 << msb) { case LIBUSB_LOW_SPEED_OPERATION: return USB1_0; case LIBUSB_FULL_SPEED_OPERATION: return USB2_0_FULL; case LIBUSB_HIGH_SPEED_OPERATION: return USB2_0_HIGH; case LIBUSB_SUPER_SPEED_OPERATION: return USB3_0; default: return UNKNOWN; } } void RetrieveSpeeds() { negotiated_speed_ = ToConnectionSpeed(libusb_get_device_speed(device_.get())); // The set of supported speed is in a SuperSpeed capability struct libusb_bos_descriptor* bos = nullptr; if (!libusb_get_bos_descriptor(device_handle_.get(), &bos)) { for (int i = 0; i < bos->bNumDeviceCaps; i++) { if (bos->dev_capability[i]->bDevCapabilityType != LIBUSB_BT_SS_USB_DEVICE_CAPABILITY) { continue; } libusb_ss_usb_device_capability_descriptor* ss_usb_device_cap = nullptr; int r = libusb_get_ss_usb_device_capability_descriptor( nullptr, bos->dev_capability[i], &ss_usb_device_cap); if (!r) { max_speed_ = ExtractMaxSpeed(ss_usb_device_cap->wSpeedSupported); libusb_free_ss_usb_device_capability_descriptor(ss_usb_device_cap); } } libusb_free_bos_descriptor(bos); } } bool OpenDevice(std::string* error) { if (device_handle_) { LOG_ERR(error, "device already open"); return false; } libusb_device_handle* handle_raw; int rc = libusb_open(device_.get(), &handle_raw); if (rc != 0) { // TODO: Handle no permissions. LOG_ERR(error, "failed to open device: %s", libusb_strerror(rc)); return false; } unique_device_handle handle(handle_raw); device_handle_ = std::move(handle); auto device_desc = GetDeviceDescriptor(); if (!device_desc) { LOG_ERR(error, "failed to get device descriptor"); device_handle_.reset(); return false; } if (!FindInterface(&device_desc.value())) { LOG_ERR(error, "failed to find adb interface"); device_handle_.reset(); return false; } serial_ = GetSerial(); VLOG(USB) << "successfully opened adb device at " << device_address_ << ", " << StringPrintf("bulk_in = %#x, bulk_out = %#x", read_endpoint_, write_endpoint_); // WARNING: this isn't released via RAII. rc = libusb_claim_interface(device_handle_.get(), interface_num_); if (rc != 0) { LOG_ERR(error, "failed to claim adb interface for device '%s': %s", serial_.c_str(), libusb_error_name(rc)); device_handle_.reset(); return false; } for (uint8_t endpoint : {read_endpoint_, write_endpoint_}) { rc = libusb_clear_halt(device_handle_.get(), endpoint); if (rc != 0) { LOG_ERR(error, "failed to clear halt on device '%s' endpoint %#02x: %s", serial_.c_str(), endpoint, libusb_error_name(rc)); libusb_release_interface(device_handle_.get(), interface_num_); device_handle_.reset(); return false; } } RetrieveSpeeds(); return true; } void CancelReadTransfer(ReadBlock* read_block) REQUIRES(read_mutex_) { if (!read_block->transfer) { return; } if (!read_block->active) { // There is no read_cb pending. Clean it up right now. Cleanup(read_block); return; } int rc = libusb_cancel_transfer(read_block->transfer); if (rc != 0) { LOG(WARNING) << "libusb_cancel_transfer failed: " << libusb_error_name(rc); // There is no read_cb pending. Clean it up right now. Cleanup(read_block); return; } } void CloseDevice() { // This is rather messy, because of the lifecyle of libusb_transfers. // // We can't call libusb_free_transfer for a submitted transfer, we have to cancel it // and free it in the callback. Complicating things more, it's possible for us to be in // the callback for a transfer as the destructor is being called, at which point cancelling // the transfer won't do anything (and it's possible that we'll submit the transfer again // in the callback). // // Resolve this by setting an atomic flag before we lock to cancel transfers, and take the // lock in the callbacks before checking the flag. if (terminated_) { return; } terminated_ = true; { std::unique_lock lock(write_mutex_); ScopedLockAssertion assumed_locked(write_mutex_); std::erase_if(writes_, [](const auto& write_item) { auto const& [id, write_block] = write_item; int rc = libusb_cancel_transfer(write_block->transfer); if (rc != 0) { // libusb_cancel_transfer failed for some reason. We will // never get a callback for this transfer. So we need to // remove it from the list or we will hang below. LOG(INFO) << "libusb_cancel_transfer failed: " << libusb_error_name(rc); libusb_free_transfer(write_block->transfer); return true; } // Wait for the write_cb to fire before removing. return false; }); // Wait here until the write callbacks have all fired and removed // the remaining writes_. destruction_cv_.wait(lock, [this]() { ScopedLockAssertion assumed_locked(write_mutex_); return writes_.empty(); }); } { std::unique_lock lock(read_mutex_); ScopedLockAssertion assumed_locked(read_mutex_); CancelReadTransfer(&header_read_); CancelReadTransfer(&payload_read_); destruction_cv_.wait(lock, [this]() { ScopedLockAssertion assumed_locked(read_mutex_); return !header_read_.active && !payload_read_.active; }); incoming_header_.reset(); incoming_payload_.clear(); } if (device_handle_) { int rc = libusb_release_interface(device_handle_.get(), interface_num_); if (rc != 0) { LOG(WARNING) << "libusb_release_interface failed: " << libusb_error_name(rc); } device_handle_.reset(); } } bool StartImpl(std::string* error) { if (!device_handle_) { *error = "device not opened"; return false; } VLOG(USB) << "registered new usb device '" << serial_ << "'"; std::lock_guard lock(read_mutex_); CreateRead(&header_read_, true); CreateRead(&payload_read_, false); SubmitRead(&header_read_, sizeof(amessage)); return true; } void OnError(const std::string& error) { std::call_once(error_flag_, [this, &error]() { if (transport_) { transport_->HandleError(error); } }); } virtual bool Attach(std::string* error) override final { terminated_ = false; detached_ = false; if (!OpenDevice(error)) { return false; } if (!StartImpl(error)) { CloseDevice(); return false; } return true; } virtual bool Detach(std::string* error) override final { detached_ = true; CloseDevice(); return true; } virtual void Reset() override final { VLOG(USB) << "resetting " << transport_->serial_name(); int rc = libusb_reset_device(device_handle_.get()); if (rc == 0) { libusb_device* device = libusb_ref_device(device_.get()); Stop(); fdevent_run_on_looper([device]() { process_device(device); libusb_unref_device(device); }); } else { LOG(ERROR) << "libusb_reset_device failed: " << libusb_error_name(rc); } } virtual void Start() override final { std::string error; if (!Attach(&error)) { OnError(error); } } virtual void Stop() override final { CloseDevice(); OnError("requested stop"); } static std::optional> Create(unique_device device) { auto connection = std::make_unique(std::move(device)); if (!connection) { LOG(FATAL) << "failed to construct LibusbConnection"; } auto device_desc = connection->GetDeviceDescriptor(); if (!device_desc) { VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress() << ": not an adb interface. (GetDeviceDescriptor)"; return {}; } if (!connection->FindInterface(&device_desc.value())) { VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress() << ": not an adb interface. (FindInterface)"; return {}; } #if defined(__linux__) std::string device_serial; if (android::base::ReadFileToString(get_device_serial_path(connection->device_.get()), &device_serial)) { connection->serial_ = android::base::Trim(device_serial); } else { // We don't actually want to treat an unknown serial as an error because // devices aren't able to communicate a serial number in early bringup. // http://b/20883914 connection->serial_ = ""; } #else // We need to open the device to get its serial on Windows and OS X. std::string error; if (!connection->OpenDevice(&error)) { VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress() << ": not an adb interface. (OpenDevice)"; return {}; } connection->serial_ = connection->GetSerial(); connection->CloseDevice(); #endif if (!transport_server_owns_device(connection->GetUsbDeviceAddress(), connection->serial_)) { VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress() << " serial " << connection->serial_ << ": this server owns '" << transport_get_one_device() << "'"; return {}; } return connection; } virtual ConnectionSpeed MaxSpeedMbps() override final { return max_speed_; } virtual ConnectionSpeed NegotiatedSpeedMbps() override final { return negotiated_speed_; } unique_device device_; unique_device_handle device_handle_; std::string device_address_; std::string serial_ = ""; uint32_t interface_num_; uint8_t write_endpoint_; uint8_t read_endpoint_; std::mutex read_mutex_; ReadBlock header_read_ GUARDED_BY(read_mutex_); ReadBlock payload_read_ GUARDED_BY(read_mutex_); std::optional incoming_header_ GUARDED_BY(read_mutex_); IOVector incoming_payload_ GUARDED_BY(read_mutex_); std::mutex write_mutex_; std::unordered_map> writes_ GUARDED_BY(write_mutex_); std::atomic next_write_id_ = 0; std::once_flag error_flag_; std::atomic terminated_ = false; std::atomic detached_ = false; std::condition_variable destruction_cv_; size_t zero_mask_ = 0; ConnectionSpeed negotiated_speed_ = UNKNOWN; ConnectionSpeed max_speed_ = UNKNOWN; }; static std::mutex usb_handles_mutex [[clang::no_destroy]]; static std::unordered_map> usb_handles [[clang::no_destroy]] GUARDED_BY(usb_handles_mutex); static std::atomic connecting_devices(0); static void process_device(libusb_device* device_raw) { std::string device_address = get_device_address(device_raw); VLOG(USB) << "device connected: " << device_address; unique_device device(libusb_ref_device(device_raw)); auto connection_opt = LibusbConnection::Create(std::move(device)); if (!connection_opt) { return; } auto connection = *connection_opt; { std::lock_guard lock(usb_handles_mutex); usb_handles.emplace(libusb_ref_device(device_raw), connection); } VLOG(USB) << "constructed LibusbConnection for device " << connection->serial_ << " (" << device_address << ")"; register_usb_transport(connection, connection->serial_.c_str(), device_address.c_str(), true); } static void device_connected(libusb_device* device) { #if defined(__linux__) // Android's host linux libusb uses netlink instead of udev for device hotplug notification, // which means we can get hotplug notifications before udev has updated ownership/perms on the // device. Since we're not going to be able to link against the system's libudev any time soon, // poll for accessibility changes with inotify until a timeout expires. libusb_ref_device(device); auto thread = std::thread([device]() { std::string bus_path = StringPrintf("/dev/bus/usb/%03d/", libusb_get_bus_number(device)); std::string device_path = StringPrintf("%s/%03d", bus_path.c_str(), libusb_get_device_address(device)); auto deadline = std::chrono::steady_clock::now() + 1s; unique_fd infd(inotify_init1(IN_CLOEXEC | IN_NONBLOCK)); if (infd == -1) { PLOG(FATAL) << "failed to create inotify fd"; } // Register the watch first, and then check for accessibility, to avoid a race. // We can't watch the device file itself, as that requires us to be able to access it. if (inotify_add_watch(infd.get(), bus_path.c_str(), IN_ATTRIB) == -1) { PLOG(ERROR) << "failed to register inotify watch on '" << bus_path << "', falling back to sleep"; std::this_thread::sleep_for(std::chrono::seconds(1)); } else { adb_pollfd pfd = {.fd = infd.get(), .events = POLLIN, .revents = 0}; while (access(device_path.c_str(), R_OK | W_OK) == -1) { auto timeout = deadline - std::chrono::steady_clock::now(); if (timeout < 0s) { break; } uint64_t ms = timeout / 1ms; int rc = adb_poll(&pfd, 1, ms); if (rc == -1) { if (errno == EINTR) { continue; } else { LOG(WARNING) << "timeout expired while waiting for device accessibility"; break; } } union { struct inotify_event ev; char bytes[sizeof(struct inotify_event) + NAME_MAX + 1]; } buf; rc = adb_read(infd.get(), &buf, sizeof(buf)); if (rc == -1) { break; } // We don't actually care about the data: we might get spurious events for // other devices on the bus, but we'll double check in the loop condition. continue; } } process_device(device); if (--connecting_devices == 0) { adb_notify_device_scan_complete(); } libusb_unref_device(device); }); thread.detach(); #else process_device(device); #endif } static void device_disconnected(libusb_device* device) { usb_handles_mutex.lock(); auto it = usb_handles.find(device); if (it != usb_handles.end()) { // We need to ensure that we don't destroy the LibusbConnection on this thread, // as we're in a context with internal libusb mutexes held. libusb_device* device = it->first; std::weak_ptr connection_weak = it->second; usb_handles.erase(it); fdevent_run_on_looper([connection_weak]() { auto connection = connection_weak.lock(); if (connection) { connection->Stop(); VLOG(USB) << "libusb_hotplug: device disconnected: " << connection->serial_; } else { VLOG(USB) << "libusb_hotplug: device disconnected: (destroyed)"; } }); libusb_unref_device(device); } usb_handles_mutex.unlock(); } static auto& hotplug_queue = *new BlockingQueue>(); static void hotplug_thread() { VLOG(USB) << "libusb hotplug thread started"; adb_thread_setname("libusb hotplug"); while (true) { hotplug_queue.PopAll([](std::pair pair) { libusb_hotplug_event event = pair.first; libusb_device* device = pair.second; if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED) { VLOG(USB) << "libusb hotplug: device arrived"; device_connected(device); } else if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT) { VLOG(USB) << "libusb hotplug: device left"; device_disconnected(device); } else { LOG(WARNING) << "unknown libusb hotplug event: " << event; } }); } } static LIBUSB_CALL int hotplug_callback(libusb_context*, libusb_device* device, libusb_hotplug_event event, void*) { // We're called with the libusb lock taken. Call these on a separate thread outside of this // function so that the usb_handle mutex is always taken before the libusb mutex. static std::once_flag once; std::call_once(once, []() { std::thread(hotplug_thread).detach(); }); if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED) { ++connecting_devices; } hotplug_queue.Push({event, device}); return 0; } namespace libusb { void usb_init() { VLOG(USB) << "initializing libusb..."; int rc = libusb_init(nullptr); if (rc != 0) { LOG(FATAL) << "failed to initialize libusb: " << libusb_error_name(rc); } // Register the hotplug callback. rc = libusb_hotplug_register_callback( nullptr, static_cast(LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED | LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT), LIBUSB_HOTPLUG_ENUMERATE, LIBUSB_HOTPLUG_MATCH_ANY, LIBUSB_HOTPLUG_MATCH_ANY, LIBUSB_CLASS_PER_INTERFACE, hotplug_callback, nullptr, nullptr); if (rc != LIBUSB_SUCCESS) { LOG(FATAL) << "failed to register libusb hotplug callback"; } // Spawn a thread for libusb_handle_events. std::thread([]() { adb_thread_setname("libusb"); while (true) { libusb_handle_events(nullptr); } }).detach(); } } // namespace libusb