# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import its.image import its.device import its.objects import its.target import os.path import math def main(): """Test capturing a single frame as both RAW and YUV outputs. """ NAME = os.path.basename(__file__).split(".")[0] THRESHOLD_MAX_RMS_DIFF = 0.02 with its.device.ItsSession() as cam: props = cam.get_camera_properties() # Use a manual request with a linear tonemap so that the YUV and RAW # should look the same (once converted by the its.image module). e, s = its.target.get_target_exposure_combos(cam)["midExposureTime"] req = its.objects.manual_capture_request(s, e, True) cap_raw, cap_yuv = cam.do_capture(req, cam.CAP_RAW_YUV) img = its.image.convert_capture_to_rgb_image(cap_yuv) its.image.write_image(img, "%s_yuv.jpg" % (NAME), True) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) rgb0 = its.image.compute_image_means(tile) # Raw shots are 1/2 x 1/2 smaller after conversion to RGB, so scale the # tile appropriately. img = its.image.convert_capture_to_rgb_image(cap_raw, props=props) its.image.write_image(img, "%s_raw.jpg" % (NAME), True) tile = its.image.get_image_patch(img, 0.475, 0.475, 0.05, 0.05) rgb1 = its.image.compute_image_means(tile) rms_diff = math.sqrt( sum([pow(rgb0[i] - rgb1[i], 2.0) for i in range(3)]) / 3.0) print "RMS difference:", rms_diff assert(rms_diff < THRESHOLD_MAX_RMS_DIFF) if __name__ == '__main__': main()