aboutsummaryrefslogtreecommitdiff
path: root/apps/CameraITS/pymodules/its/image.py
blob: 14bd248a4e46cf465d117f60707d01543a61c32c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import matplotlib
matplotlib.use('Agg')

import its.error
import pylab
import sys
import Image
import numpy
import math
import unittest
import cStringIO
import scipy.stats

DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([
                                [1.000,  0.000,  1.402],
                                [1.000, -0.344, -0.714],
                                [1.000,  1.772,  0.000]])

DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128])

DEFAULT_GAMMA_LUT = numpy.array(
        [math.floor(65535 * math.pow(i/65535.0, 1/2.2) + 0.5)
         for i in xrange(65536)])

DEFAULT_INVGAMMA_LUT = numpy.array(
        [math.floor(65535 * math.pow(i/65535.0, 2.2) + 0.5)
         for i in xrange(65536)])

MAX_LUT_SIZE = 65536

def convert_capture_to_rgb_image(cap,
                                 ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
                                 yuv_off=DEFAULT_YUV_OFFSETS,
                                 props=None):
    """Convert a captured image object to a RGB image.

    Args:
        cap: A capture object as returned by its.device.do_capture.
        ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
        yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
        props: (Optional) camera properties object (of static values);
            required for processing raw images.

    Returns:
        RGB float-3 image array, with pixel values in [0.0, 1.0].
    """
    w = cap["width"]
    h = cap["height"]
    if cap["format"] == "yuv":
        y = cap["data"][0:w*h]
        u = cap["data"][w*h:w*h*5/4]
        v = cap["data"][w*h*5/4:w*h*6/4]
        return convert_yuv420_to_rgb_image(y, u, v, w, h)
    elif cap["format"] == "jpeg":
        return decompress_jpeg_to_rgb_image(cap["data"])
    elif cap["format"] == "raw":
        r,gr,gb,b = convert_capture_to_planes(cap, props)
        return convert_raw_to_rgb_image(r,gr,gb,b, props, cap["metadata"])
    else:
        raise its.error.Error('Invalid format %s' % (cap["format"]))

def convert_capture_to_planes(cap, props=None):
    """Convert a captured image object to separate image planes.

    Decompose an image into multiple images, corresponding to different planes.

    For YUV420 captures ("yuv"):
        Returns Y,U,V planes, where the Y plane is full-res and the U,V planes
        are each 1/2 x 1/2 of the full res.

    For Bayer captures ("raw"):
        Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern
        layout. Each plane is 1/2 x 1/2 of the full res.

    For JPEG captures ("jpeg"):
        Returns R,G,B full-res planes.

    Args:
        cap: A capture object as returned by its.device.do_capture.
        props: (Optional) camera properties object (of static values);
            required for processing raw images.

    Returns:
        A tuple of float numpy arrays (one per plane), consisting of pixel
            values in the range [0.0, 1.0].
    """
    w = cap["width"]
    h = cap["height"]
    if cap["format"] == "yuv":
        y = cap["data"][0:w*h]
        u = cap["data"][w*h:w*h*5/4]
        v = cap["data"][w*h*5/4:w*h*6/4]
        return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
                (u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1),
                (v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1))
    elif cap["format"] == "jpeg":
        rgb = decompress_jpeg_to_rgb_image(cap["data"]).reshape(w*h*3)
        return (rgb[::3].reshape(h,w,1),
                rgb[1::3].reshape(h,w,1),
                rgb[2::3].reshape(h,w,1))
    elif cap["format"] == "raw":
        white_level = float(props['android.sensor.info.whiteLevel'])
        img = numpy.ndarray(shape=(h*w,), dtype='<u2',
                            buffer=cap["data"][0:w*h*2])
        img = img.astype(numpy.float32).reshape(h,w) / white_level
        imgs = [img[::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1),
                img[::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1),
                img[1::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1),
                img[1::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1)]
        idxs = get_canonical_cfa_order(props)
        return [imgs[i] for i in idxs]
    else:
        raise its.error.Error('Invalid format %s' % (cap["format"]))

def get_canonical_cfa_order(props):
    """Returns a mapping from the Bayer 2x2 top-left grid in the CFA to
    the standard order R,Gr,Gb,B.

    Args:
        props: Camera properties object.

    Returns:
        List of 4 integers, corresponding to the positions in the 2x2 top-
            left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as
            0,1,2,3 in row major order.
    """
    # TODO: Take sensor crop region into account in the CFA logic.
    cfa_pat = props['android.sensor.info.colorFilterArrangement']
    if cfa_pat == 0:
        # RGGB
        return [0,1,2,3]
    elif cfa_pat == 1:
        # GRBG
        return [1,0,3,2]
    elif cfa_pat == 2:
        # GBRG
        return [2,3,0,1]
    elif cfa_pat == 3:
        # BGGR
        return [3,2,1,0]
    else:
        raise its.error.Error("Not supported")

def get_gains_in_canonical_order(props, gains):
    """Reorders the gains tuple to the canonical R,Gr,Gb,B order.

    Args:
        props: Camera properties object.
        gains: List of 4 values, in R,G_even,G_odd,B order.

    Returns:
        List of gains values, in R,Gr,Gb,B order.
    """
    # TODO: Take sensor crop region into account in the CFA logic.
    cfa_pat = props['android.sensor.info.colorFilterArrangement']
    if cfa_pat in [0,1]:
        # RGGB or GRBG, so G_even is Gr
        return gains
    elif cfa_pat in [2,3]:
        # GBRG or BGGR, so G_even is Gb
        return [gains[0], gains[2], gains[1], gains[3]]
    else:
        raise its.error.Error("Not supported")

def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane,
                             props, cap_res):
    """Convert a Bayer raw-16 image to an RGB image.

    Includes some extremely rudimentary demosaicking and color processing
    operations; the output of this function shouldn't be used for any image
    quality analysis.

    Args:
        r_plane,gr_plane,gb_plane,b_plane: Numpy arrays for each color plane
            in the Bayer image, with pixels in the [0.0, 1.0] range.
        props: Camera properties object.
        cap_res: Capture result (metadata) object.

    Returns:
        RGB float-3 image array, with pixel values in [0.0, 1.0]
    """
    # Values required for the RAW to RGB conversion.
    assert(props is not None)
    white_level = float(props['android.sensor.info.whiteLevel'])
    black_levels = props['android.sensor.blackLevelPattern']
    gains = cap_res['android.colorCorrection.gains']
    ccm = cap_res['android.colorCorrection.transform']

    # Reorder black levels and gains to R,Gr,Gb,B, to match the order
    # of the planes.
    idxs = get_canonical_cfa_order(props)
    black_levels = [black_levels[i] for i in idxs]
    gains = get_gains_in_canonical_order(props, gains)

    # Convert CCM from rational to float, as numpy arrays.
    ccm = numpy.array(its.objects.rational_to_float(ccm)).reshape(3,3)

    # Need to scale the image back to the full [0,1] range after subtracting
    # the black level from each pixel.
    scale = white_level / (white_level - max(black_levels))

    # Three-channel black levels, normalized to [0,1] by white_level.
    black_levels = numpy.array([b/white_level for b in [
            black_levels[i] for i in [0,1,3]]])

    # Three-channel gains.
    gains = numpy.array([gains[i] for i in [0,1,3]])

    h,w = r_plane.shape[:2]
    img = numpy.dstack([r_plane,(gr_plane+gb_plane)/2.0,b_plane])
    img = (((img.reshape(h,w,3) - black_levels) * scale) * gains).clip(0.0,1.0)
    img = numpy.dot(img.reshape(w*h,3), ccm.T).reshape(h,w,3).clip(0.0,1.0)
    return img

def convert_yuv420_to_rgb_image(y_plane, u_plane, v_plane,
                                w, h,
                                ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
                                yuv_off=DEFAULT_YUV_OFFSETS):
    """Convert a YUV420 8-bit planar image to an RGB image.

    Args:
        y_plane: The packed 8-bit Y plane.
        u_plane: The packed 8-bit U plane.
        v_plane: The packed 8-bit V plane.
        w: The width of the image.
        h: The height of the image.
        ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
        yuv_off: (Optional) offsets to subtract from each of Y,U,V values.

    Returns:
        RGB float-3 image array, with pixel values in [0.0, 1.0].
    """
    y = numpy.subtract(y_plane, yuv_off[0])
    u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8)
    v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8)
    u = u.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0)
    v = v.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0)
    yuv = numpy.dstack([y, u.reshape(w*h), v.reshape(w*h)])
    flt = numpy.empty([h, w, 3], dtype=numpy.float32)
    flt.reshape(w*h*3)[:] = yuv.reshape(h*w*3)[:]
    flt = numpy.dot(flt.reshape(w*h,3), ccm_yuv_to_rgb.T).clip(0, 255)
    rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
    rgb.reshape(w*h*3)[:] = flt.reshape(w*h*3)[:]
    return rgb.astype(numpy.float32) / 255.0

def load_yuv420_to_rgb_image(yuv_fname,
                             w, h,
                             ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
                             yuv_off=DEFAULT_YUV_OFFSETS):
    """Load a YUV420 image file, and return as an RGB image.

    Args:
        yuv_fname: The path of the YUV420 file.
        w: The width of the image.
        h: The height of the image.
        ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
        yuv_off: (Optional) offsets to subtract from each of Y,U,V values.

    Returns:
        RGB float-3 image array, with pixel values in [0.0, 1.0].
    """
    with open(yuv_fname, "rb") as f:
        y = numpy.fromfile(f, numpy.uint8, w*h, "")
        v = numpy.fromfile(f, numpy.uint8, w*h/4, "")
        u = numpy.fromfile(f, numpy.uint8, w*h/4, "")
        return convert_yuv420_to_rgb_image(y,u,v,w,h,ccm_yuv_to_rgb,yuv_off)

def load_yuv420_to_yuv_planes(yuv_fname, w, h):
    """Load a YUV420 image file, and return separate Y, U, and V plane images.

    Args:
        yuv_fname: The path of the YUV420 file.
        w: The width of the image.
        h: The height of the image.

    Returns:
        Separate Y, U, and V images as float-1 Numpy arrays, pixels in [0,1].
        Note that pixel (0,0,0) is not black, since U,V pixels are centered at
        0.5, and also that the Y and U,V plane images returned are different
        sizes (due to chroma subsampling in the YUV420 format).
    """
    with open(yuv_fname, "rb") as f:
        y = numpy.fromfile(f, numpy.uint8, w*h, "")
        v = numpy.fromfile(f, numpy.uint8, w*h/4, "")
        u = numpy.fromfile(f, numpy.uint8, w*h/4, "")
        return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
                (u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1),
                (v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1))

def decompress_jpeg_to_rgb_image(jpeg_buffer):
    """Decompress a JPEG-compressed image, returning as an RGB image.

    Args:
        jpeg_buffer: The JPEG stream.

    Returns:
        A numpy array for the RGB image, with pixels in [0,1].
    """
    img = Image.open(cStringIO.StringIO(jpeg_buffer))
    w = img.size[0]
    h = img.size[1]
    return numpy.array(img).reshape(h,w,3) / 255.0

def apply_lut_to_image(img, lut):
    """Applies a LUT to every pixel in a float image array.

    Internally converts to a 16b integer image, since the LUT can work with up
    to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also
    have fewer than 65536 entries, however it must be sized as a power of 2
    (and for smaller luts, the scale must match the bitdepth).

    For a 16b lut of 65536 entries, the operation performed is:

        lut[r * 65535] / 65535 -> r'
        lut[g * 65535] / 65535 -> g'
        lut[b * 65535] / 65535 -> b'

    For a 10b lut of 1024 entries, the operation becomes:

        lut[r * 1023] / 1023 -> r'
        lut[g * 1023] / 1023 -> g'
        lut[b * 1023] / 1023 -> b'

    Args:
        img: Numpy float image array, with pixel values in [0,1].
        lut: Numpy table encoding a LUT, mapping 16b integer values.

    Returns:
        Float image array after applying LUT to each pixel.
    """
    n = len(lut)
    if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0:
        raise its.error.Error('Invalid arg LUT size: %d' % (n))
    m = float(n-1)
    return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32)

def apply_matrix_to_image(img, mat):
    """Multiplies a 3x3 matrix with each float-3 image pixel.

    Each pixel is considered a column vector, and is left-multiplied by
    the given matrix:

        [     ]   r    r'
        [ mat ] * g -> g'
        [     ]   b    b'

    Args:
        img: Numpy float image array, with pixel values in [0,1].
        mat: Numpy 3x3 matrix.

    Returns:
        The numpy float-3 image array resulting from the matrix mult.
    """
    h = img.shape[0]
    w = img.shape[1]
    img2 = numpy.empty([h, w, 3], dtype=numpy.float32)
    img2.reshape(w*h*3)[:] = (numpy.dot(img.reshape(h*w, 3), mat.T)
                             ).reshape(w*h*3)[:]
    return img2

def get_image_patch(img, xnorm, ynorm, wnorm, hnorm):
    """Get a patch (tile) of an image.

    Args:
        img: Numpy float image array, with pixel values in [0,1].
        xnorm,ynorm,wnorm,hnorm: Normalized (in [0,1]) coords for the tile.

    Returns:
        Float image array of the patch.
    """
    hfull = img.shape[0]
    wfull = img.shape[1]
    xtile = math.ceil(xnorm * wfull)
    ytile = math.ceil(ynorm * hfull)
    wtile = math.floor(wnorm * wfull)
    htile = math.floor(hnorm * hfull)
    return img[ytile:ytile+htile,xtile:xtile+wtile,:].copy()

def compute_image_means(img):
    """Calculate the mean of each color channel in the image.

    Args:
        img: Numpy float image array, with pixel values in [0,1].

    Returns:
        A list of mean values, one per color channel in the image.
    """
    means = []
    chans = img.shape[2]
    for i in xrange(chans):
        means.append(numpy.mean(img[:,:,i], dtype=numpy.float64))
    return means

def compute_image_variances(img):
    """Calculate the variance of each color channel in the image.

    Args:
        img: Numpy float image array, with pixel values in [0,1].

    Returns:
        A list of mean values, one per color channel in the image.
    """
    variances = []
    chans = img.shape[2]
    for i in xrange(chans):
        variances.append(numpy.var(img[:,:,i], dtype=numpy.float64))
    return variances

def write_image(img, fname, apply_gamma=False):
    """Save a float-3 numpy array image to a file.

    Supported formats: PNG, JPEG, and others; see PIL docs for more.

    Image can be 3-channel, which is interpreted as RGB, or can be 1-channel,
    which is greyscale.

    Can optionally specify that the image should be gamma-encoded prior to
    writing it out; this should be done if the image contains linear pixel
    values, to make the image look "normal".

    Args:
        img: Numpy image array data.
        fname: Path of file to save to; the extension specifies the format.
        apply_gamma: (Optional) apply gamma to the image prior to writing it.
    """
    if apply_gamma:
        img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT)
    (h, w, chans) = img.shape
    if chans == 3:
        Image.fromarray((img * 255.0).astype(numpy.uint8), "RGB").save(fname)
    elif chans == 1:
        img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h,w,3)
        Image.fromarray(img3, "RGB").save(fname)
    else:
        raise its.error.Error('Unsupported image type')

def downscale_image(img, f):
    """Shrink an image by a given integer factor.

    This function computes output pixel values by averaging over rectangular
    regions of the input image; it doesn't skip or sample pixels, and all input
    image pixels are evenly weighted.

    If the downscaling factor doesn't cleanly divide the width and/or height,
    then the remaining pixels on the right or bottom edge are discarded prior
    to the downscaling.

    Args:
        img: The input image as an ndarray.
        f: The downscaling factor, which should be an integer.

    Returns:
        The new (downscaled) image, as an ndarray.
    """
    h,w,chans = img.shape
    f = int(f)
    assert(f >= 1)
    h = (h/f)*f
    w = (w/f)*f
    img = img[0:h:,0:w:,::]
    chs = []
    for i in xrange(chans):
        ch = img.reshape(h*w*chans)[i::chans].reshape(h,w)
        ch = ch.reshape(h,w/f,f).mean(2).reshape(h,w/f)
        ch = ch.T.reshape(w/f,h/f,f).mean(2).T.reshape(h/f,w/f)
        chs.append(ch.reshape(h*w/(f*f)))
    img = numpy.vstack(chs).T.reshape(h/f,w/f,chans)
    return img

def __measure_color_checker_patch(img, xc,yc, patch_size):
    r = patch_size/2
    tile = img[yc-r:yc+r+1:, xc-r:xc+r+1:, ::]
    means = tile.mean(1).mean(0)
    return means

def get_color_checker_chart_patches(img, debug_fname_prefix=None):
    """Return the center coords of each patch in a color checker chart.

    Assumptions:
    * Chart is vertical or horizontal w.r.t. camera, but not diagonal.
    * Chart is (roughly) planar-parallel to the camera.
    * Chart is centered in frame (roughly).
    * Around/behind chart is white/grey background.
    * The only black pixels in the image are from the chart.
    * Chart is 100% visible and contained within image.
    * No other objects within image.
    * Image is well-exposed.
    * Standard color checker chart with standard-sized black borders.

    The values returned are in the coordinate system of the chart; that is,
    the "origin" patch is the brown patch that is in the chart's top-left
    corner when it is in the normal upright/horizontal orientation. (The chart
    may be any of the four main orientations in the image.)

    The chart is 6x4 patches in the normal upright orientation. The return
    values of this function are the center coordinate of the top-left patch,
    and the displacement vectors to the next patches to the right and below
    the top-left patch. From these pieces of data, the center coordinates of
    any of the patches can be computed.

    Args:
        img: Input image, as a numpy array with pixels in [0,1].
        debug_fname_prefix: If not None, the (string) name of a file prefix to
            use to save a number of debug images for visulaizing the output of
            this function; can be used to see if the patches are being found
            successfully.

    Returns:
        Three tuples:
        (1) The integer (x,y) coords of the center of the chart's patch (0,0).
        (2) The float (dx,dy) displacement to the chart's (0,1) patch, which
            is the pink patch to the right of the top-left brown patch.
        (3) The float (dx,dt) displacement to the chart's (1,0) patch, which
            is the orange patch below the top-left brown patch.
    """

    # Shrink the original image.
    DOWNSCALE_FACTOR = 4
    img_small = downscale_image(img, DOWNSCALE_FACTOR)

    # Make a threshold image, which is 1.0 where the image is black,
    # and 0.0 elsewhere.
    BLACK_PIXEL_THRESH = 0.2
    mask_img = scipy.stats.threshold(
                img_small.max(2), BLACK_PIXEL_THRESH, 1.1, 0.0)
    mask_img = 1.0 - scipy.stats.threshold(mask_img, -0.1, 0.1, 1.0)

    if debug_fname_prefix is not None:
        h,w = mask_img.shape
        write_image(img, debug_fname_prefix+"_0.jpg")
        write_image(mask_img.repeat(3).reshape(h,w,3),
                debug_fname_prefix+"_1.jpg")

    # Mask image flattened to a single row or column (by averaging).
    # Also apply a threshold to these arrays.
    FLAT_PIXEL_THRESH = 0.05
    flat_row = mask_img.mean(0)
    flat_col = mask_img.mean(1)
    flat_row = [0 if v < FLAT_PIXEL_THRESH else 1 for v in flat_row]
    flat_col = [0 if v < FLAT_PIXEL_THRESH else 1 for v in flat_col]

    # Start and end of the non-zero region of the flattened row/column.
    flat_row_nonzero = [i for i in range(len(flat_row)) if flat_row[i]>0]
    flat_col_nonzero = [i for i in range(len(flat_col)) if flat_col[i]>0]
    flat_row_min, flat_row_max = min(flat_row_nonzero), max(flat_row_nonzero)
    flat_col_min, flat_col_max = min(flat_col_nonzero), max(flat_col_nonzero)

    # Orientation of chart, and number of grid cells horz. and vertically.
    orient = "h" if flat_row_max-flat_row_min>flat_col_max-flat_col_min else "v"
    xgrids = 6 if orient=="h" else 4
    ygrids = 6 if orient=="v" else 4

    # Get better bounds on the patches region, lopping off some of the excess
    # black border.
    HRZ_BORDER_PAD_FRAC = 0.0138
    VERT_BORDER_PAD_FRAC = 0.0395
    xpad = HRZ_BORDER_PAD_FRAC if orient=="h" else VERT_BORDER_PAD_FRAC
    ypad = HRZ_BORDER_PAD_FRAC if orient=="v" else VERT_BORDER_PAD_FRAC
    xchart = flat_row_min + (flat_row_max - flat_row_min) * xpad
    ychart = flat_col_min + (flat_col_max - flat_col_min) * ypad
    wchart = (flat_row_max - flat_row_min) * (1 - 2*xpad)
    hchart = (flat_col_max - flat_col_min) * (1 - 2*ypad)

    # Get the colors of the 4 corner patches, in clockwise order, by measuring
    # the average value of a small patch at each of the 4 patch centers.
    colors = []
    centers = []
    for (x,y) in [(0,0), (xgrids-1,0), (xgrids-1,ygrids-1), (0,ygrids-1)]:
        xc = xchart + (x + 0.5)*wchart/xgrids
        yc = ychart + (y + 0.5)*hchart/ygrids
        xc = int(xc * DOWNSCALE_FACTOR + 0.5)
        yc = int(yc * DOWNSCALE_FACTOR + 0.5)
        centers.append((xc,yc))
        chan_means = __measure_color_checker_patch(img, xc,yc, 32)
        colors.append(sum(chan_means) / len(chan_means))

    # The brightest corner is the white patch, the darkest is the black patch.
    # The black patch should be counter-clockwise from the white patch.
    white_patch_index = None
    for i in range(4):
        if colors[i] == max(colors) and \
                colors[(i-1+4)%4] == min(colors):
            white_patch_index = i%4
    assert(white_patch_index is not None)

    # Return the coords of the origin (top-left when the chart is in the normal
    # upright orientation) patch's center, and the vector displacement to the
    # center of the second patch on the first row of the chart (when in the
    # normal upright orienation).
    origin_index = (white_patch_index+1)%4
    prev_index = (origin_index-1+4)%4
    next_index = (origin_index+1)%4
    origin_center = centers[origin_index]
    prev_center = centers[prev_index]
    next_center = centers[next_index]
    vec_across = tuple([(next_center[i]-origin_center[i])/5.0 for i in [0,1]])
    vec_down = tuple([(prev_center[i]-origin_center[i])/3.0 for i in [0,1]])

    # Sanity check: test that the R,G,B,black,white patches are correct.
    patch_info = [("r",2,2), ("g",2,1), ("b",2,0), ("w",3,0), ("k",3,5)]
    for i in range(len(patch_info)):
        color,yi,xi = patch_info[i]
        xc = int(origin_center[0] + vec_across[0]*xi + vec_down[0]*yi)
        yc = int(origin_center[1] + vec_across[1]*xi + vec_down[1]*yi)
        means = __measure_color_checker_patch(img, xc,yc, 64)
        if color == "r":
            high_chans = [0]
            low_chans = [1,2]
        elif color == "g":
            high_chans = [1]
            low_chans = [0,2]
        elif color == "b":
            high_chans = [2]
            low_chans = [0,1]
        elif color == "w":
            high_chans = [0,1,2]
            low_chans = []
        elif color == "k":
            high_chans = []
            low_chans = [0,1,2]
        else:
            assert(False)

        # If the debug info is requested, then don't assert that the patches
        # are matched, to allow the caller to see the output.
        if debug_fname_prefix is not None:
            img[int(yc),int(xc)] = 1.0
        else:
            assert(min([means[i] for i in high_chans]+[1]) > \
                   max([means[i] for i in low_chans]+[0]))

    if debug_fname_prefix is not None:
        write_image(img, debug_fname_prefix+"_2.jpg")

    return origin_center, vec_across, vec_down

class __UnitTest(unittest.TestCase):
    """Run a suite of unit tests on this module.
    """

    # TODO: Add more unit tests.

    def test_apply_matrix_to_image(self):
        """Unit test for apply_matrix_to_image.

        Test by using a canned set of values on a 1x1 pixel image.

            [ 1 2 3 ]   [ 0.1 ]   [ 1.4 ]
            [ 4 5 6 ] * [ 0.2 ] = [ 3.2 ]
            [ 7 8 9 ]   [ 0.3 ]   [ 5.0 ]
               mat         x         y
        """
        mat = numpy.array([[1,2,3],[4,5,6],[7,8,9]])
        x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3)
        y = apply_matrix_to_image(x, mat).reshape(3).tolist()
        y_ref = [1.4,3.2,5.0]
        passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)])
        self.assertTrue(passed)

    def test_apply_lut_to_image(self):
        """ Unit test for apply_lut_to_image.

        Test by using a canned set of values on a 1x1 pixel image. The LUT will
        simply double the value of the index:

            lut[x] = 2*x
        """
        lut = numpy.array([2*i for i in xrange(65536)])
        x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3)
        y = apply_lut_to_image(x, lut).reshape(3).tolist()
        y_ref = [0.2,0.4,0.6]
        passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)])
        self.assertTrue(passed)

if __name__ == '__main__':
    unittest.main()