summaryrefslogtreecommitdiff
path: root/renderscript/clang-include/avxintrin.h
blob: 86bfdfb80c796a74d9f83bdf05b13484c108b51e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 *===-----------------------------------------------------------------------===
 */

#ifndef __IMMINTRIN_H
#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
#endif

#ifndef __AVXINTRIN_H
#define __AVXINTRIN_H

typedef double __v4df __attribute__ ((__vector_size__ (32)));
typedef float __v8sf __attribute__ ((__vector_size__ (32)));
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
typedef int __v8si __attribute__ ((__vector_size__ (32)));
typedef short __v16hi __attribute__ ((__vector_size__ (32)));
typedef char __v32qi __attribute__ ((__vector_size__ (32)));

/* Unsigned types */
typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));

/* We need an explicitly signed variant for char. Note that this shouldn't
 * appear in the interface though. */
typedef signed char __v32qs __attribute__((__vector_size__(32)));

typedef float __m256 __attribute__ ((__vector_size__ (32)));
typedef double __m256d __attribute__((__vector_size__(32)));
typedef long long __m256i __attribute__((__vector_size__(32)));

/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))

/* Arithmetic */
/// \brief Adds two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the sums of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a+(__v4df)__b);
}

/// \brief Adds two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the sums of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a+(__v8sf)__b);
}

/// \brief Subtracts two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the minuend.
/// \param __b
///    A 256-bit vector of [4 x double] containing the subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the differences between
///    both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a-(__v4df)__b);
}

/// \brief Subtracts two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the minuend.
/// \param __b
///    A 256-bit vector of [8 x float] containing the subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the differences between
///    both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a-(__v8sf)__b);
}

/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
///    two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the left source operand.
/// \param __b
///    A 256-bit vector of [4 x double] containing the right source operand.
/// \returns A 256-bit vector of [4 x double] containing the alternating sums
///    and differences between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
///    two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the left source operand.
/// \param __b
///    A 256-bit vector of [8 x float] containing the right source operand.
/// \returns A 256-bit vector of [8 x float] containing the alternating sums and
///    differences between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Divides two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the dividend.
/// \param __b
///    A 256-bit vector of [4 x double] containing the divisor.
/// \returns A 256-bit vector of [4 x double] containing the quotients of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a/(__v4df)__b);
}

/// \brief Divides two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the dividend.
/// \param __b
///    A 256-bit vector of [8 x float] containing the divisor.
/// \returns A 256-bit vector of [8 x float] containing the quotients of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a/(__v8sf)__b);
}

/// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the maximum values
///    between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the maximum values
///    between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the minimum values
///    between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the minimum values
///    between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Multiplies two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the products of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a * (__v4df)__b);
}

/// \brief Multiplies two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the products of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a * (__v8sf)__b);
}

/// \brief Calculates the square roots of the values in a 256-bit vector of
///    [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the square roots of the
///    values in the operand.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)
{
  return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
}

/// \brief Calculates the square roots of the values in a 256-bit vector of
///    [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the square roots of the
///    values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
}

/// \brief Calculates the reciprocal square roots of the values in a 256-bit
///    vector of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the reciprocal square
///    roots of the values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
}

/// \brief Calculates the reciprocals of the values in a 256-bit vector of
///    [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
///    values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
}

/// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
///    by the byte operand. The source values are rounded to integer values and
///    returned as 64-bit double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_round_pd(__m256d V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \param M
///    An integer value that specifies the rounding operation.
///    Bits [7:4] are reserved.
///    Bit [3] is a precision exception value:
///    0: A normal PE exception is used.
///    1: The PE field is not updated.
///    Bit [2] is the rounding control source:
///    0: Use bits [1:0] of M.
///    1: Use the current MXCSR setting.
///    Bits [1:0] contain the rounding control definition:
///    00: Nearest.
///    01: Downward (toward negative infinity).
///    10: Upward (toward positive infinity).
///    11: Truncated.
/// \returns A 256-bit vector of [4 x double] containing the rounded values.
#define _mm256_round_pd(V, M) __extension__ ({ \
    (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })

/// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
///    specified by the byte operand. The source values are rounded to integer
///    values and returned as floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_round_ps(__m256 V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \param M
///    An integer value that specifies the rounding operation.
///    Bits [7:4] are reserved.
///    Bit [3] is a precision exception value:
///    0: A normal PE exception is used.
///    1: The PE field is not updated.
///    Bit [2] is the rounding control source:
///    0: Use bits [1:0] of M.
///    1: Use the current MXCSR setting.
///    Bits [1:0] contain the rounding control definition:
///    00: Nearest.
///    01: Downward (toward negative infinity).
///    10: Upward (toward positive infinity).
///    11: Truncated.
/// \returns A 256-bit vector of [8 x float] containing the rounded values.
#define _mm256_round_ps(V, M) __extension__ ({ \
  (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })

/// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
///    source values are rounded up to integer values and returned as 64-bit
///    double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_ceil_pd(__m256d V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the rounded up values.
#define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)

/// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
///    The source values are rounded down to integer values and returned as
///    64-bit double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_floor_pd(__m256d V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the rounded down
///    values.
#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)

/// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
///    source values are rounded up to integer values and returned as
///    floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_ceil_ps(__m256 V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the rounded up values.
#define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)

/// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
///    source values are rounded down to integer values and returned as
///    floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_floor_ps(__m256 V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the rounded down values.
#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)

/* Logical */
/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a & (__v4du)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a & (__v8su)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
///    the one's complement of the values contained in the first source operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the left source operand. The
///    one's complement of this value is used in the bitwise AND.
/// \param __b
///    A 256-bit vector of [4 x double] containing the right source operand.
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
///    values of the second operand and the one's complement of the first
///    operand.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a, __m256d __b)
{
  return (__m256d)(~(__v4du)__a & (__v4du)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
///    the one's complement of the values contained in the first source operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the left source operand. The
///    one's complement of this value is used in the bitwise AND.
/// \param __b
///    A 256-bit vector of [8 x float] containing the right source operand.
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
///    values of the second operand and the one's complement of the first
///    operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a, __m256 __b)
{
  return (__m256)(~(__v8su)__a & (__v8su)__b);
}

/// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VORPD / ORPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a | (__v4du)__b);
}

/// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VORPS / ORPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a | (__v8su)__b);
}

/// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a ^ (__v4du)__b);
}

/// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a ^ (__v8su)__b);
}

/* Horizontal arithmetic */
/// \brief Horizontally adds the adjacent pairs of values contained in two
///    256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal sums of the values are returned in the even-indexed
///    elements of a vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal sums of the values are returned in the odd-indexed
///    elements of a vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
///    both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Horizontally adds the adjacent pairs of values contained in two
///    256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal sums of the values are returned in the elements with
///    index 0, 1, 4, 5 of a vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal sums of the values are returned in the elements with
///    index 2, 3, 6, 7 of a vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
///    both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Horizontally subtracts the adjacent pairs of values contained in two
///    256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    even-indexed elements of a vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    odd-indexed elements of a vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the horizontal
///    differences of both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Horizontally subtracts the adjacent pairs of values contained in two
///    256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the horizontal
///    differences of both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
}

/* Vector permutations */
/// \brief Copies the values in a 128-bit vector of [2 x double] as specified
///    by the 128-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param __a
///    A 128-bit vector of [2 x double].
/// \param __c
///    A 128-bit integer vector operand specifying how the values are to be
///    copied.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [65]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
static __inline __m128d __DEFAULT_FN_ATTRS
_mm_permutevar_pd(__m128d __a, __m128i __c)
{
  return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
}

/// \brief Copies the values in a 256-bit vector of [4 x double] as
///    specified by the 256-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \param __c
///    A 256-bit integer vector operand specifying how the values are to be
///    copied.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [65]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
///    Bit [129]:
///    0: Bits [191:128] of the source are copied to bits [191:128] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [191:128] of the
///    returned vector.
///    Bit [193]:
///    0: Bits [191:128] of the source are copied to bits [255:192] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [255:192] of the
///    returned vector.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a, __m256i __c)
{
  return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
}

/// \brief Copies the values stored in a 128-bit vector of [4 x float] as
///    specified by the 128-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param __a
///    A 128-bit vector of [4 x float].
/// \param __c
///    A 128-bit integer vector operand specifying how the values are to be
///    copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [33:32]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [65:64]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [97:96]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
static __inline __m128 __DEFAULT_FN_ATTRS
_mm_permutevar_ps(__m128 __a, __m128i __c)
{
  return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
}

/// \brief Copies the values stored in a 256-bit vector of [8 x float] as
///    specified by the 256-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \param __c
///    A 256-bit integer vector operand specifying how the values are to be
///    copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [33:32]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [65:64]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [97:96]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
///    Bits [129:128]:
///    00: Bits [159:128] of the source are copied to bits [159:128] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [159:128] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [159:128] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [159:128] of the
///    returned vector.
///    Bits [161:160]:
///    00: Bits [159:128] of the source are copied to bits [191:160] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [191:160] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [191:160] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [191:160] of the
///    returned vector.
///    Bits [193:192]:
///    00: Bits [159:128] of the source are copied to bits [223:192] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [223:192] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [223:192] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [223:192] of the
///    returned vector.
///    Bits [225:224]:
///    00: Bits [159:128] of the source are copied to bits [255:224] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [255:224] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [255:224] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [255:224] of the
///    returned vector.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a, __m256i __c)
{
  return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
}

/// \brief Copies the values in a 128-bit vector of [2 x double] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_permute_pd(__m128d A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param A
///    A 128-bit vector of [2 x double].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bit [0]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
#define _mm_permute_pd(A, C) __extension__ ({ \
  (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
                                   (__v2df)_mm_undefined_pd(), \
                                   ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })

/// \brief Copies the values in a 256-bit vector of [4 x double] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_permute_pd(__m256d A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param A
///    A 256-bit vector of [4 x double].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bit [0]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
///    Bit [2]:
///    0: Bits [191:128] of the source are copied to bits [191:128] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [191:128] of the
///    returned vector.
///    Bit [3]:
///    0: Bits [191:128] of the source are copied to bits [255:192] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [255:192] of the
///    returned vector.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_permute_pd(A, C) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
                                   (__v4df)_mm256_undefined_pd(), \
                                   0 + (((C) >> 0) & 0x1), \
                                   0 + (((C) >> 1) & 0x1), \
                                   2 + (((C) >> 2) & 0x1), \
                                   2 + (((C) >> 3) & 0x1)); })

/// \brief Copies the values in a 128-bit vector of [4 x float] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_permute_ps(__m128 A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param A
///    A 128-bit vector of [4 x float].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
#define _mm_permute_ps(A, C) __extension__ ({ \
  (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
                                  (__v4sf)_mm_undefined_ps(), \
                                  ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
                                  ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })

/// \brief Copies the values in a 256-bit vector of [8 x float] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_permute_ps(__m256 A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param A
///    A 256-bit vector of [8 x float].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
///    Bits [1:0]:
///    00: Bits [159:128] of the source are copied to bits [159:128] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [159:128] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [159:128] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [159:128] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [159:128] of the source are copied to bits [191:160] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [191:160] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [191:160] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [191:160] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [159:128] of the source are copied to bits [223:192] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [223:192] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [223:192] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [223:192] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [159:128] of the source are copied to bits [255:224] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [255:224] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [255:224] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [255:224] of the
///    returned vector.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_permute_ps(A, C) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
                                  (__v8sf)_mm256_undefined_ps(), \
                                  0 + (((C) >> 0) & 0x3), \
                                  0 + (((C) >> 2) & 0x3), \
                                  0 + (((C) >> 4) & 0x3), \
                                  0 + (((C) >> 6) & 0x3), \
                                  4 + (((C) >> 0) & 0x3), \
                                  4 + (((C) >> 2) & 0x3), \
                                  4 + (((C) >> 4) & 0x3), \
                                  4 + (((C) >> 6) & 0x3)); })

/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
///    [4 x double], as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit vector of [4 x double].
/// \param V2
///    A 256-bit vector of [4 x double.
/// \param M
///    An immediate integer operand specifying how the values are to be
///    permuted.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
                                           (__v4df)(__m256d)(V2), (M)); })

/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
///    [8 x float], as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit vector of [8 x float].
/// \param V2
///    A 256-bit vector of [8 x float].
/// \param M
///    An immediate integer operand specifying how the values are to be
///    permuted.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
                                          (__v8sf)(__m256)(V2), (M)); })

/// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
///    as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit integer vector.
/// \param V2
///    A 256-bit integer vector.
/// \param M
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit integer vector containing the copied values.
#define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
  (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
                                           (__v8si)(__m256i)(V2), (M)); })

/* Vector Blend */
/// \brief Merges 64-bit double-precision data values stored in either of the
///    two 256-bit vectors of [4 x double], as specified by the immediate
///    integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
///
/// \param V1
///    A 256-bit vector of [4 x double].
/// \param V2
///    A 256-bit vector of [4 x double].
/// \param M
///    An immediate integer operand, with mask bits [3:0] specifying how the
///    values are to be copied. The position of the mask bit corresponds to the
///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
///    element in operand V1 is copied to the same position in the destination.
///    When a mask bit is 1, the corresponding 64-bit element in operand V2 is
///    copied to the same position in the destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
                                   (__v4df)(__m256d)(V2), \
                                   (((M) & 0x01) ? 4 : 0), \
                                   (((M) & 0x02) ? 5 : 1), \
                                   (((M) & 0x04) ? 6 : 2), \
                                   (((M) & 0x08) ? 7 : 3)); })

/// \brief Merges 32-bit single-precision data values stored in either of the
///    two 256-bit vectors of [8 x float], as specified by the immediate
///    integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
///
/// \param V1
///    A 256-bit vector of [8 x float].
/// \param V2
///    A 256-bit vector of [8 x float].
/// \param M
///    An immediate integer operand, with mask bits [7:0] specifying how the
///    values are to be copied. The position of the mask bit corresponds to the
///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
///    element in operand V1 is copied to the same position in the destination.
///    When a mask bit is 1, the corresponding 32-bit element in operand V2 is
///    copied to the same position in the destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
                                  (__v8sf)(__m256)(V2), \
                                  (((M) & 0x01) ?  8 : 0), \
                                  (((M) & 0x02) ?  9 : 1), \
                                  (((M) & 0x04) ? 10 : 2), \
                                  (((M) & 0x08) ? 11 : 3), \
                                  (((M) & 0x10) ? 12 : 4), \
                                  (((M) & 0x20) ? 13 : 5), \
                                  (((M) & 0x40) ? 14 : 6), \
                                  (((M) & 0x80) ? 15 : 7)); })

/// \brief Merges 64-bit double-precision data values stored in either of the
///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
///    operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double].
/// \param __c
///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
///    how the values are to be copied. The position of the mask bit corresponds
///    to the most significant bit of a copied value. When a mask bit is 0, the
///    corresponding 64-bit element in operand __a is copied to the same
///    position in the destination. When a mask bit is 1, the corresponding
///    64-bit element in operand __b is copied to the same position in the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
{
  return (__m256d)__builtin_ia32_blendvpd256(
    (__v4df)__a, (__v4df)__b, (__v4df)__c);
}

/// \brief Merges 32-bit single-precision data values stored in either of the
///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
///    operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float].
/// \param __c
///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
///    and 31 specifying how the values are to be copied. The position of the
///    mask bit corresponds to the most significant bit of a copied value. When
///    a mask bit is 0, the corresponding 32-bit element in operand __a is
///    copied to the same position in the destination. When a mask bit is 1, the
///    corresponding 32-bit element in operand __b is copied to the same
///    position in the destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
{
  return (__m256)__builtin_ia32_blendvps256(
    (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
}

/* Vector Dot Product */
/// \brief Computes two dot products in parallel, using the lower and upper
///    halves of two [8 x float] vectors as input to the two computations, and
///    returning the two dot products in the lower and upper halves of the
///    [8 x float] result. The immediate integer operand controls which
///    input elements will contribute to the dot product, and where the final
///    results are returned. In general, for each dot product, the four
///    corresponding elements of the input vectors are multiplied; the first
///    two and second two products are summed, then the two sums are added to
///    form the final result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
///
/// \param V1
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
/// \param V2
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
/// \param M
///    An immediate integer argument. Bits [7:4] determine which elements of
///    the input vectors are used, with bit [4] corresponding to the lowest
///    element and bit [7] corresponding to the highest element of each [4 x
///    float] subvector. If a bit is set, the corresponding elements from the
///    two input vectors are used as an input for dot product; otherwise that
///    input is treated as zero. Bits [3:0] determine which elements of the
///    result will receive a copy of the final dot product, with bit [0]
///    corresponding to the lowest element and bit [3] corresponding to the
///    highest element of each [4 x float] subvector. If a bit is set, the dot
///    product is returned in the corresponding element; otherwise that element
///    is set to zero. The bitmask is applied in the same way to each of the
///    two parallel dot product computations.
/// \returns A 256-bit vector of [8 x float] containing the two dot products.
#define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
                                 (__v8sf)(__m256)(V2), (M)); })

/* Vector shuffle */
/// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
///    specified by the immediate value operand. The four selected elements in
///    each operand are copied to the destination according to the bits
///    specified in the immediate operand. The selected elements from the first
///    256-bit operand are copied to bits [63:0] and bits [191:128] of the
///    destination, and the selected elements from the second 256-bit operand
///    are copied to bits [127:64] and bits [255:192] of the destination. For
///    example, if bits [7:0] of the immediate operand contain a value of 0xFF,
///    the 256-bit destination vector would contain the following values: b[7],
///    b[7], a[7], a[7], b[3], b[3], a[3], a[3].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
///
/// \param a
///    A 256-bit vector of [8 x float]. The four selected elements in this
///    operand are copied to bits [63:0] and bits [191:128] in the destination,
///    according to the bits specified in the immediate operand.
/// \param b
///    A 256-bit vector of [8 x float]. The four selected elements in this
///    operand are copied to bits [127:64] and bits [255:192] in the
///    destination, according to the bits specified in the immediate operand.
/// \param mask
///    An immediate value containing an 8-bit value specifying which elements to
///    copy from a and b. Bits [3:0] specify the values copied from operand a.
///    Bits [7:4] specify the values copied from operand b.
///    The destinations within the 256-bit destination are assigned values as
///    follows, according to the bit value assignments described below:
///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
///    destination.
///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
///    destination.
///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
///    destination.
///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
///    the destination.
///    Bit value assignments:
///    00: Bits [31:0] and [159:128] are copied from the selected operand.
///    01: Bits [63:32] and [191:160] are copied from the selected operand.
///    10: Bits [95:64] and [223:192] are copied from the selected operand.
///    11: Bits [127:96] and [255:224] are copied from the selected operand.
/// \returns A 256-bit vector of [8 x float] containing the shuffled values.
#define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
                                  (__v8sf)(__m256)(b), \
                                  0  + (((mask) >> 0) & 0x3), \
                                  0  + (((mask) >> 2) & 0x3), \
                                  8  + (((mask) >> 4) & 0x3), \
                                  8  + (((mask) >> 6) & 0x3), \
                                  4  + (((mask) >> 0) & 0x3), \
                                  4  + (((mask) >> 2) & 0x3), \
                                  12 + (((mask) >> 4) & 0x3), \
                                  12 + (((mask) >> 6) & 0x3)); })

/// \brief Selects four double-precision values from the 256-bit operands of
///    [4 x double], as specified by the immediate value operand. The selected
///    elements from the first 256-bit operand are copied to bits [63:0] and
///    bits [191:128] in the destination, and the selected elements from the
///    second 256-bit operand are copied to bits [127:64] and bits [255:192] in
///    the destination. For example, if bits [3:0] of the immediate operand
///    contain a value of 0xF, the 256-bit destination vector would contain the
///    following values: b[3], a[3], b[1], a[1].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
///
/// \param a
///    A 256-bit vector of [4 x double].
/// \param b
///    A 256-bit vector of [4 x double].
/// \param mask
///    An immediate value containing 8-bit values specifying which elements to
///    copy from a and b:
///    Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
///    destination.
///    Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
///    destination.
///    Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
///    destination.
///    Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
///    destination.
///    Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
///    destination.
///    Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
///    destination.
///    Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
///    destination.
///    Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the shuffled values.
#define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
                                   (__v4df)(__m256d)(b), \
                                   0 + (((mask) >> 0) & 0x1), \
                                   4 + (((mask) >> 1) & 0x1), \
                                   2 + (((mask) >> 2) & 0x1), \
                                   6 + (((mask) >> 3) & 0x1)); })

/* Compare */
#define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
#define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
#define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
#define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
#define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
#define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
#define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
#define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
#define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
#define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
#define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
#define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
#define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
#define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
#define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
#define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
#define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
#define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
#define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
#define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
#define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
#define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
#define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
#define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
#define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
#define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
#define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
#define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
#define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
#define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */

/// \brief Compares each of the corresponding double-precision values of two
///    128-bit vectors of [2 x double], using the operation specified by the
///    immediate integer operand. Returns a [2 x double] vector consisting of
///    two doubles corresponding to the two comparison results: zero if the
///    comparison is false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
///
/// \param a
///    A 128-bit vector of [2 x double].
/// \param b
///    A 128-bit vector of [2 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                        (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
#define _mm_cmp_pd(a, b, c) __extension__ ({ \
  (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
                                (__v2df)(__m128d)(b), (c)); })

/// \brief Compares each of the corresponding values of two 128-bit vectors of
///    [4 x float], using the operation specified by the immediate integer
///    operand. Returns a [4 x float] vector consisting of four floats
///    corresponding to the four comparison results: zero if the comparison is
///    false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
///
/// \param a
///    A 128-bit vector of [4 x float].
/// \param b
///    A 128-bit vector of [4 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ps(a, b, c) __extension__ ({ \
  (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
                               (__v4sf)(__m128)(b), (c)); })

/// \brief Compares each of the corresponding double-precision values of two
///    256-bit vectors of [4 x double], using the operation specified by the
///    immediate integer operand. Returns a [4 x double] vector consisting of
///    four doubles corresponding to the four comparison results: zero if the
///    comparison is false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
///
/// \param a
///    A 256-bit vector of [4 x double].
/// \param b
///    A 256-bit vector of [4 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                        (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 256-bit vector of [4 x double] containing the comparison results.
#define _mm256_cmp_pd(a, b, c) __extension__ ({ \
  (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
                                   (__v4df)(__m256d)(b), (c)); })

/// \brief Compares each of the corresponding values of two 256-bit vectors of
///    [8 x float], using the operation specified by the immediate integer
///    operand. Returns a [8 x float] vector consisting of eight floats
///    corresponding to the eight comparison results: zero if the comparison is
///    false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
///
/// \param a
///    A 256-bit vector of [8 x float].
/// \param b
///    A 256-bit vector of [8 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 256-bit vector of [8 x float] containing the comparison results.
#define _mm256_cmp_ps(a, b, c) __extension__ ({ \
  (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
                                  (__v8sf)(__m256)(b), (c)); })

/// \brief Compares each of the corresponding scalar double-precision values of
///    two 128-bit vectors of [2 x double], using the operation specified by the
///    immediate integer operand. If the result is true, all 64 bits of the
///    destination vector are set; otherwise they are cleared.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
///
/// \param a
///    A 128-bit vector of [2 x double].
/// \param b
///    A 128-bit vector of [2 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
#define _mm_cmp_sd(a, b, c) __extension__ ({ \
  (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
                                (__v2df)(__m128d)(b), (c)); })

/// \brief Compares each of the corresponding scalar values of two 128-bit
///    vectors of [4 x float], using the operation specified by the immediate
///    integer operand. If the result is true, all 32 bits of the destination
///    vector are set; otherwise they are cleared.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
///
/// \param a
///    A 128-bit vector of [4 x float].
/// \param b
///    A 128-bit vector of [4 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ss(a, b, c) __extension__ ({ \
  (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
                               (__v4sf)(__m128)(b), (c)); })

/// \brief Takes a [8 x i32] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///   EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit vector of [8 x i32].
/// \param __imm
///    An immediate integer operand with bits [2:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 32 bits of extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi32(__m256i __a, const int __imm)
{
  __v8si __b = (__v8si)__a;
  return __b[__imm & 7];
}

/// \brief Takes a [16 x i16] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [16 x i16].
/// \param __imm
///    An immediate integer operand with bits [3:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 16 bits of zero extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi16(__m256i __a, const int __imm)
{
  __v16hi __b = (__v16hi)__a;
  return (unsigned short)__b[__imm & 15];
}

/// \brief Takes a [32 x i8] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [32 x i8].
/// \param __imm
///    An immediate integer operand with bits [4:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 8 bits of zero extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi8(__m256i __a, const int __imm)
{
  __v32qi __b = (__v32qi)__a;
  return (unsigned char)__b[__imm & 31];
}

#ifdef __x86_64__
/// \brief Takes a [4 x i64] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [4 x i64].
/// \param __imm
///    An immediate integer operand with bits [1:0] determining which vector
///    element is extracted and returned.
/// \returns A 64-bit integer containing the extracted 64 bits of extended
///    packed data.
static __inline long long  __DEFAULT_FN_ATTRS
_mm256_extract_epi64(__m256i __a, const int __imm)
{
  __v4di __b = (__v4di)__a;
  return __b[__imm & 3];
}
#endif

/// \brief Takes a [8 x i32] vector and replaces the vector element value
///    indexed by the immediate constant operand by a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [8 x i32] to be used by the insert operation.
/// \param __b
///    An integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi32(__m256i __a, int __b, int const __imm)
{
  __v8si __c = (__v8si)__a;
  __c[__imm & 7] = __b;
  return (__m256i)__c;
}


/// \brief Takes a [16 x i16] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [16 x i16] to be used by the insert operation.
/// \param __b
///    An i16 integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi16(__m256i __a, int __b, int const __imm)
{
  __v16hi __c = (__v16hi)__a;
  __c[__imm & 15] = __b;
  return (__m256i)__c;
}

/// \brief Takes a [32 x i8] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [32 x i8] to be used by the insert operation.
/// \param __b
///    An i8 integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///    with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi8(__m256i __a, int __b, int const __imm)
{
  __v32qi __c = (__v32qi)__a;
  __c[__imm & 31] = __b;
  return (__m256i)__c;
}

#ifdef __x86_64__
/// \brief Takes a [4 x i64] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [4 x i64] to be used by the insert operation.
/// \param __b
///    A 64-bit integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
{
  __v4di __c = (__v4di)__a;
  __c[__imm & 3] = __b;
  return (__m256i)__c;
}
#endif

/* Conversion */
/// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
///
/// \param __a
///    A 128-bit integer vector of [4 x i32].
/// \returns A 256-bit vector of [4 x double] containing the converted values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)
{
  return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
}

/// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
///
/// \param __a
///    A 256-bit integer vector.
/// \returns A 256-bit vector of [8 x float] containing the converted values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)
{
  return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
}

/// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
///    [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \returns A 128-bit vector of [4 x float] containing the converted values.
static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)
{
  return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
}

/// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit integer vector containing the converted values.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)
{
  return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)
{
  return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)
{
  return (__m128i)__builtin_convertvector((__v4df) __a, __v4si);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)
{
  return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)
{
  return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si);
}

static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)
{
 return __a[0];
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)
{
 __v8si __b = (__v8si)__a;
 return __b[0];
}

static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)
{
 return __a[0];
}

/* Vector replicate */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
}

/* Unpack and Interleave */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a, __m256d __b)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a, __m256d __b)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a, __m256 __b)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a, __m256 __b)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
}

/* Bit Test */
static __inline int __DEFAULT_FN_ATTRS
_mm_testz_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testc_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testz_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testc_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
}

/* Vector extract sign mask */
static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)
{
  return __builtin_ia32_movmskpd256((__v4df)__a);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)
{
  return __builtin_ia32_movmskps256((__v8sf)__a);
}

/* Vector __zero */
static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroall(void)
{
  __builtin_ia32_vzeroall();
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroupper(void)
{
  __builtin_ia32_vzeroupper();
}

/* Vector load with broadcast */
static __inline __m128 __DEFAULT_FN_ATTRS
_mm_broadcast_ss(float const *__a)
{
  float __f = *__a;
  return (__m128)(__v4sf){ __f, __f, __f, __f };
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const *__a)
{
  double __d = *__a;
  return (__m256d)(__v4df){ __d, __d, __d, __d };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const *__a)
{
  float __f = *__a;
  return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const *__a)
{
  return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const *__a)
{
  return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
}

/* SIMD load ops */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const *__p)
{
  return *(__m256d *)__p;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const *__p)
{
  return *(__m256 *)__p;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const *__p)
{
  struct __loadu_pd {
    __m256d __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_pd*)__p)->__v;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const *__p)
{
  struct __loadu_ps {
    __m256 __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_ps*)__p)->__v;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const *__p)
{
  return *__p;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i const *__p)
{
  struct __loadu_si256 {
    __m256i __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_si256*)__p)->__v;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i const *__p)
{
  return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
}

/* SIMD store ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double *__p, __m256d __a)
{
  *(__m256d *)__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float *__p, __m256 __a)
{
  *(__m256 *)__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double *__p, __m256d __a)
{
  struct __storeu_pd {
    __m256d __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_pd*)__p)->__v = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float *__p, __m256 __a)
{
  struct __storeu_ps {
    __m256 __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_ps*)__p)->__v = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i *__p, __m256i __a)
{
  *__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i *__p, __m256i __a)
{
  struct __storeu_si256 {
    __m256i __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_si256*)__p)->__v = __a;
}

/* Conditional load ops */
static __inline __m128d __DEFAULT_FN_ATTRS
_mm_maskload_pd(double const *__p, __m128i __m)
{
  return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const *__p, __m256i __m)
{
  return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
                                               (__v4di)__m);
}

static __inline __m128 __DEFAULT_FN_ATTRS
_mm_maskload_ps(float const *__p, __m128i __m)
{
  return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const *__p, __m256i __m)
{
  return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
}

/* Conditional store ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
{
  __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
{
  __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
{
  __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
{
  __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
}

/* Cacheability support ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i *__a, __m256i __b)
{
  __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double *__a, __m256d __b)
{
  __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float *__p, __m256 __a)
{
  __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
}

/* Create vectors */
static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)
{
  return (__m256d)__builtin_ia32_undef256();
}

static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)
{
  return (__m256)__builtin_ia32_undef256();
}

static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)
{
  return (__m256i)__builtin_ia32_undef256();
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a, double __b, double __c, double __d)
{
  return (__m256d){ __d, __c, __b, __a };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a, float __b, float __c, float __d,
              float __e, float __f, float __g, float __h)
{
  return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
                 int __i4, int __i5, int __i6, int __i7)
{
  return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
                 short __w11, short __w10, short __w09, short __w08,
                 short __w07, short __w06, short __w05, short __w04,
                 short __w03, short __w02, short __w01, short __w00)
{
  return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
    __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
                char __b27, char __b26, char __b25, char __b24,
                char __b23, char __b22, char __b21, char __b20,
                char __b19, char __b18, char __b17, char __b16,
                char __b15, char __b14, char __b13, char __b12,
                char __b11, char __b10, char __b09, char __b08,
                char __b07, char __b06, char __b05, char __b04,
                char __b03, char __b02, char __b01, char __b00)
{
  return (__m256i)(__v32qi){
    __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
    __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
    __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
    __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
  };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
{
  return (__m256i)(__v4di){ __d, __c, __b, __a };
}

/* Create vectors with elements in reverse order */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a, double __b, double __c, double __d)
{
  return (__m256d){ __a, __b, __c, __d };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a, float __b, float __c, float __d,
               float __e, float __f, float __g, float __h)
{
  return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
                  int __i4, int __i5, int __i6, int __i7)
{
  return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
       short __w11, short __w10, short __w09, short __w08,
       short __w07, short __w06, short __w05, short __w04,
       short __w03, short __w02, short __w01, short __w00)
{
  return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
    __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
                 char __b27, char __b26, char __b25, char __b24,
                 char __b23, char __b22, char __b21, char __b20,
                 char __b19, char __b18, char __b17, char __b16,
                 char __b15, char __b14, char __b13, char __b12,
                 char __b11, char __b10, char __b09, char __b08,
                 char __b07, char __b06, char __b05, char __b04,
                 char __b03, char __b02, char __b01, char __b00)
{
  return (__m256i)(__v32qi){
    __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
    __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
    __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
    __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
{
  return (__m256i)(__v4di){ __a, __b, __c, __d };
}

/* Create vectors with repeated elements */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)
{
  return (__m256d){ __w, __w, __w, __w };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)
{
  return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)
{
  return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)
{
  return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
    __w, __w, __w, __w, __w, __w };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)
{
  return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
    __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
    __b, __b, __b, __b, __b, __b, __b };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)
{
  return (__m256i)(__v4di){ __q, __q, __q, __q };
}

/* Create __zeroed vectors */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)
{
  return (__m256d){ 0, 0, 0, 0 };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)
{
  return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)
{
  return (__m256i){ 0LL, 0LL, 0LL, 0LL };
}

/* Cast between vector types */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)
{
  return (__m256)__a;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)
{
  return (__m256i)__a;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)
{
  return (__m256d)__a;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)
{
  return (__m256i)__a;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)
{
  return (__m256)__a;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)
{
  return (__m256d)__a;
}

static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
}

static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)
{
  return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)
{
  return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)
{
  return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)
{
  return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
}

/*
   Vector insert.
   We use macros rather than inlines because we only want to accept
   invocations where the immediate M is a constant expression.
*/
#define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_shufflevector( \
    (__v8sf)(__m256)(V1), \
    (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
    (((M) & 1) ?  0 :  8), \
    (((M) & 1) ?  1 :  9), \
    (((M) & 1) ?  2 : 10), \
    (((M) & 1) ?  3 : 11), \
    (((M) & 1) ?  8 :  4), \
    (((M) & 1) ?  9 :  5), \
    (((M) & 1) ? 10 :  6), \
    (((M) & 1) ? 11 :  7) );})

#define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_shufflevector( \
    (__v4df)(__m256d)(V1), \
    (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
    (((M) & 1) ? 0 : 4), \
    (((M) & 1) ? 1 : 5), \
    (((M) & 1) ? 4 : 2), \
    (((M) & 1) ? 5 : 3) );})

#define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
  (__m256i)__builtin_shufflevector( \
    (__v4di)(__m256i)(V1), \
    (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
    (((M) & 1) ? 0 : 4), \
    (((M) & 1) ? 1 : 5), \
    (((M) & 1) ? 4 : 2), \
    (((M) & 1) ? 5 : 3) );})

/*
   Vector extract.
   We use macros rather than inlines because we only want to accept
   invocations where the immediate M is a constant expression.
*/
#define _mm256_extractf128_ps(V, M) __extension__ ({ \
  (__m128)__builtin_shufflevector( \
    (__v8sf)(__m256)(V), \
    (__v8sf)(_mm256_undefined_ps()), \
    (((M) & 1) ? 4 : 0), \
    (((M) & 1) ? 5 : 1), \
    (((M) & 1) ? 6 : 2), \
    (((M) & 1) ? 7 : 3) );})

#define _mm256_extractf128_pd(V, M) __extension__ ({ \
  (__m128d)__builtin_shufflevector( \
    (__v4df)(__m256d)(V), \
    (__v4df)(_mm256_undefined_pd()), \
    (((M) & 1) ? 2 : 0), \
    (((M) & 1) ? 3 : 1) );})

#define _mm256_extractf128_si256(V, M) __extension__ ({ \
  (__m128i)__builtin_shufflevector( \
    (__v4di)(__m256i)(V), \
    (__v4di)(_mm256_undefined_si256()), \
    (((M) & 1) ? 2 : 0), \
    (((M) & 1) ? 3 : 1) );})

/* SIMD load ops (unaligned) */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
{
  __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
  return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
{
  __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
  return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
{
  __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
  return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
}

/* SIMD store ops (unaligned) */
static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
{
  __m128 __v128;

  __v128 = _mm256_castps256_ps128(__a);
  _mm_storeu_ps(__addr_lo, __v128);
  __v128 = _mm256_extractf128_ps(__a, 1);
  _mm_storeu_ps(__addr_hi, __v128);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
{
  __m128d __v128;

  __v128 = _mm256_castpd256_pd128(__a);
  _mm_storeu_pd(__addr_lo, __v128);
  __v128 = _mm256_extractf128_pd(__a, 1);
  _mm_storeu_pd(__addr_hi, __v128);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
{
  __m128i __v128;

  __v128 = _mm256_castsi256_si128(__a);
  _mm_storeu_si128(__addr_lo, __v128);
  __v128 = _mm256_extractf128_si256(__a, 1);
  _mm_storeu_si128(__addr_hi, __v128);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128 (__m128 __hi, __m128 __lo) {
  return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d (__m128d __hi, __m128d __lo) {
  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i (__m128i __hi, __m128i __lo) {
  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128 (__m128 __lo, __m128 __hi) {
  return _mm256_set_m128(__hi, __lo);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d (__m128d __lo, __m128d __hi) {
  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i (__m128i __lo, __m128i __hi) {
  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

#undef __DEFAULT_FN_ATTRS

#endif /* __AVXINTRIN_H */