summaryrefslogtreecommitdiff
path: root/java/lang/invoke/MethodHandle.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/lang/invoke/MethodHandle.java')
-rw-r--r--java/lang/invoke/MethodHandle.java1347
1 files changed, 11 insertions, 1336 deletions
diff --git a/java/lang/invoke/MethodHandle.java b/java/lang/invoke/MethodHandle.java
index af3db103..159f9dd7 100644
--- a/java/lang/invoke/MethodHandle.java
+++ b/java/lang/invoke/MethodHandle.java
@@ -25,1353 +25,28 @@
package java.lang.invoke;
-
-import dalvik.system.EmulatedStackFrame;
-
-import static java.lang.invoke.MethodHandleStatics.*;
-
-/**
- * A method handle is a typed, directly executable reference to an underlying method,
- * constructor, field, or similar low-level operation, with optional
- * transformations of arguments or return values.
- * These transformations are quite general, and include such patterns as
- * {@linkplain #asType conversion},
- * {@linkplain #bindTo insertion},
- * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
- * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
- *
- * <h1>Method handle contents</h1>
- * Method handles are dynamically and strongly typed according to their parameter and return types.
- * They are not distinguished by the name or the defining class of their underlying methods.
- * A method handle must be invoked using a symbolic type descriptor which matches
- * the method handle's own {@linkplain #type type descriptor}.
- * <p>
- * Every method handle reports its type descriptor via the {@link #type type} accessor.
- * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
- * whose structure is a series of classes, one of which is
- * the return type of the method (or {@code void.class} if none).
- * <p>
- * A method handle's type controls the types of invocations it accepts,
- * and the kinds of transformations that apply to it.
- * <p>
- * A method handle contains a pair of special invoker methods
- * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
- * Both invoker methods provide direct access to the method handle's
- * underlying method, constructor, field, or other operation,
- * as modified by transformations of arguments and return values.
- * Both invokers accept calls which exactly match the method handle's own type.
- * The plain, inexact invoker also accepts a range of other call types.
- * <p>
- * Method handles are immutable and have no visible state.
- * Of course, they can be bound to underlying methods or data which exhibit state.
- * With respect to the Java Memory Model, any method handle will behave
- * as if all of its (internal) fields are final variables. This means that any method
- * handle made visible to the application will always be fully formed.
- * This is true even if the method handle is published through a shared
- * variable in a data race.
- * <p>
- * Method handles cannot be subclassed by the user.
- * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
- * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
- * operation. The programmer should not draw conclusions about a method handle
- * from its specific class, as the method handle class hierarchy (if any)
- * may change from time to time or across implementations from different vendors.
- *
- * <h1>Method handle compilation</h1>
- * A Java method call expression naming {@code invokeExact} or {@code invoke}
- * can invoke a method handle from Java source code.
- * From the viewpoint of source code, these methods can take any arguments
- * and their result can be cast to any return type.
- * Formally this is accomplished by giving the invoker methods
- * {@code Object} return types and variable arity {@code Object} arguments,
- * but they have an additional quality called <em>signature polymorphism</em>
- * which connects this freedom of invocation directly to the JVM execution stack.
- * <p>
- * As is usual with virtual methods, source-level calls to {@code invokeExact}
- * and {@code invoke} compile to an {@code invokevirtual} instruction.
- * More unusually, the compiler must record the actual argument types,
- * and may not perform method invocation conversions on the arguments.
- * Instead, it must push them on the stack according to their own unconverted types.
- * The method handle object itself is pushed on the stack before the arguments.
- * The compiler then calls the method handle with a symbolic type descriptor which
- * describes the argument and return types.
- * <p>
- * To issue a complete symbolic type descriptor, the compiler must also determine
- * the return type. This is based on a cast on the method invocation expression,
- * if there is one, or else {@code Object} if the invocation is an expression
- * or else {@code void} if the invocation is a statement.
- * The cast may be to a primitive type (but not {@code void}).
- * <p>
- * As a corner case, an uncasted {@code null} argument is given
- * a symbolic type descriptor of {@code java.lang.Void}.
- * The ambiguity with the type {@code Void} is harmless, since there are no references of type
- * {@code Void} except the null reference.
- *
- * <h1>Method handle invocation</h1>
- * The first time a {@code invokevirtual} instruction is executed
- * it is linked, by symbolically resolving the names in the instruction
- * and verifying that the method call is statically legal.
- * This is true of calls to {@code invokeExact} and {@code invoke}.
- * In this case, the symbolic type descriptor emitted by the compiler is checked for
- * correct syntax and names it contains are resolved.
- * Thus, an {@code invokevirtual} instruction which invokes
- * a method handle will always link, as long
- * as the symbolic type descriptor is syntactically well-formed
- * and the types exist.
- * <p>
- * When the {@code invokevirtual} is executed after linking,
- * the receiving method handle's type is first checked by the JVM
- * to ensure that it matches the symbolic type descriptor.
- * If the type match fails, it means that the method which the
- * caller is invoking is not present on the individual
- * method handle being invoked.
- * <p>
- * In the case of {@code invokeExact}, the type descriptor of the invocation
- * (after resolving symbolic type names) must exactly match the method type
- * of the receiving method handle.
- * In the case of plain, inexact {@code invoke}, the resolved type descriptor
- * must be a valid argument to the receiver's {@link #asType asType} method.
- * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
- * <p>
- * After type matching, a call to {@code invokeExact} directly
- * and immediately invoke the method handle's underlying method
- * (or other behavior, as the case may be).
- * <p>
- * A call to plain {@code invoke} works the same as a call to
- * {@code invokeExact}, if the symbolic type descriptor specified by the caller
- * exactly matches the method handle's own type.
- * If there is a type mismatch, {@code invoke} attempts
- * to adjust the type of the receiving method handle,
- * as if by a call to {@link #asType asType},
- * to obtain an exactly invokable method handle {@code M2}.
- * This allows a more powerful negotiation of method type
- * between caller and callee.
- * <p>
- * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
- * and implementations are therefore not required to materialize it.)
- *
- * <h1>Invocation checking</h1>
- * In typical programs, method handle type matching will usually succeed.
- * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
- * either directly (in the case of {@code invokeExact}) or indirectly as if
- * by a failed call to {@code asType} (in the case of {@code invoke}).
- * <p>
- * Thus, a method type mismatch which might show up as a linkage error
- * in a statically typed program can show up as
- * a dynamic {@code WrongMethodTypeException}
- * in a program which uses method handles.
- * <p>
- * Because method types contain "live" {@code Class} objects,
- * method type matching takes into account both types names and class loaders.
- * Thus, even if a method handle {@code M} is created in one
- * class loader {@code L1} and used in another {@code L2},
- * method handle calls are type-safe, because the caller's symbolic type
- * descriptor, as resolved in {@code L2},
- * is matched against the original callee method's symbolic type descriptor,
- * as resolved in {@code L1}.
- * The resolution in {@code L1} happens when {@code M} is created
- * and its type is assigned, while the resolution in {@code L2} happens
- * when the {@code invokevirtual} instruction is linked.
- * <p>
- * Apart from the checking of type descriptors,
- * a method handle's capability to call its underlying method is unrestricted.
- * If a method handle is formed on a non-public method by a class
- * that has access to that method, the resulting handle can be used
- * in any place by any caller who receives a reference to it.
- * <p>
- * Unlike with the Core Reflection API, where access is checked every time
- * a reflective method is invoked,
- * method handle access checking is performed
- * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
- * In the case of {@code ldc} (see below), access checking is performed as part of linking
- * the constant pool entry underlying the constant method handle.
- * <p>
- * Thus, handles to non-public methods, or to methods in non-public classes,
- * should generally be kept secret.
- * They should not be passed to untrusted code unless their use from
- * the untrusted code would be harmless.
- *
- * <h1>Method handle creation</h1>
- * Java code can create a method handle that directly accesses
- * any method, constructor, or field that is accessible to that code.
- * This is done via a reflective, capability-based API called
- * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
- * For example, a static method handle can be obtained
- * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
- * There are also conversion methods from Core Reflection API objects,
- * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
- * <p>
- * Like classes and strings, method handles that correspond to accessible
- * fields, methods, and constructors can also be represented directly
- * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
- * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
- * refers directly to an associated {@code CONSTANT_Methodref},
- * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
- * constant pool entry.
- * (For full details on method handle constants,
- * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
- * <p>
- * Method handles produced by lookups or constant loads from methods or
- * constructors with the variable arity modifier bit ({@code 0x0080})
- * have a corresponding variable arity, as if they were defined with
- * the help of {@link #asVarargsCollector asVarargsCollector}.
- * <p>
- * A method reference may refer either to a static or non-static method.
- * In the non-static case, the method handle type includes an explicit
- * receiver argument, prepended before any other arguments.
- * In the method handle's type, the initial receiver argument is typed
- * according to the class under which the method was initially requested.
- * (E.g., if a non-static method handle is obtained via {@code ldc},
- * the type of the receiver is the class named in the constant pool entry.)
- * <p>
- * Method handle constants are subject to the same link-time access checks
- * their corresponding bytecode instructions, and the {@code ldc} instruction
- * will throw corresponding linkage errors if the bytecode behaviors would
- * throw such errors.
- * <p>
- * As a corollary of this, access to protected members is restricted
- * to receivers only of the accessing class, or one of its subclasses,
- * and the accessing class must in turn be a subclass (or package sibling)
- * of the protected member's defining class.
- * If a method reference refers to a protected non-static method or field
- * of a class outside the current package, the receiver argument will
- * be narrowed to the type of the accessing class.
- * <p>
- * When a method handle to a virtual method is invoked, the method is
- * always looked up in the receiver (that is, the first argument).
- * <p>
- * A non-virtual method handle to a specific virtual method implementation
- * can also be created. These do not perform virtual lookup based on
- * receiver type. Such a method handle simulates the effect of
- * an {@code invokespecial} instruction to the same method.
- *
- * <h1>Usage examples</h1>
- * Here are some examples of usage:
- * <blockquote><pre>{@code
-Object x, y; String s; int i;
-MethodType mt; MethodHandle mh;
-MethodHandles.Lookup lookup = MethodHandles.lookup();
-// mt is (char,char)String
-mt = MethodType.methodType(String.class, char.class, char.class);
-mh = lookup.findVirtual(String.class, "replace", mt);
-s = (String) mh.invokeExact("daddy",'d','n');
-// invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
-assertEquals(s, "nanny");
-// weakly typed invocation (using MHs.invoke)
-s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
-assertEquals(s, "savvy");
-// mt is (Object[])List
-mt = MethodType.methodType(java.util.List.class, Object[].class);
-mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
-assert(mh.isVarargsCollector());
-x = mh.invoke("one", "two");
-// invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
-assertEquals(x, java.util.Arrays.asList("one","two"));
-// mt is (Object,Object,Object)Object
-mt = MethodType.genericMethodType(3);
-mh = mh.asType(mt);
-x = mh.invokeExact((Object)1, (Object)2, (Object)3);
-// invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
-assertEquals(x, java.util.Arrays.asList(1,2,3));
-// mt is ()int
-mt = MethodType.methodType(int.class);
-mh = lookup.findVirtual(java.util.List.class, "size", mt);
-i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
-// invokeExact(Ljava/util/List;)I
-assert(i == 3);
-mt = MethodType.methodType(void.class, String.class);
-mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
-mh.invokeExact(System.out, "Hello, world.");
-// invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
- * }</pre></blockquote>
- * Each of the above calls to {@code invokeExact} or plain {@code invoke}
- * generates a single invokevirtual instruction with
- * the symbolic type descriptor indicated in the following comment.
- * In these examples, the helper method {@code assertEquals} is assumed to
- * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
- * on its arguments, and asserts that the result is true.
- *
- * <h1>Exceptions</h1>
- * The methods {@code invokeExact} and {@code invoke} are declared
- * to throw {@link java.lang.Throwable Throwable},
- * which is to say that there is no static restriction on what a method handle
- * can throw. Since the JVM does not distinguish between checked
- * and unchecked exceptions (other than by their class, of course),
- * there is no particular effect on bytecode shape from ascribing
- * checked exceptions to method handle invocations. But in Java source
- * code, methods which perform method handle calls must either explicitly
- * throw {@code Throwable}, or else must catch all
- * throwables locally, rethrowing only those which are legal in the context,
- * and wrapping ones which are illegal.
- *
- * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
- * The unusual compilation and linkage behavior of
- * {@code invokeExact} and plain {@code invoke}
- * is referenced by the term <em>signature polymorphism</em>.
- * As defined in the Java Language Specification,
- * a signature polymorphic method is one which can operate with
- * any of a wide range of call signatures and return types.
- * <p>
- * In source code, a call to a signature polymorphic method will
- * compile, regardless of the requested symbolic type descriptor.
- * As usual, the Java compiler emits an {@code invokevirtual}
- * instruction with the given symbolic type descriptor against the named method.
- * The unusual part is that the symbolic type descriptor is derived from
- * the actual argument and return types, not from the method declaration.
- * <p>
- * When the JVM processes bytecode containing signature polymorphic calls,
- * it will successfully link any such call, regardless of its symbolic type descriptor.
- * (In order to retain type safety, the JVM will guard such calls with suitable
- * dynamic type checks, as described elsewhere.)
- * <p>
- * Bytecode generators, including the compiler back end, are required to emit
- * untransformed symbolic type descriptors for these methods.
- * Tools which determine symbolic linkage are required to accept such
- * untransformed descriptors, without reporting linkage errors.
- *
- * <h1>Interoperation between method handles and the Core Reflection API</h1>
- * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
- * any class member represented by a Core Reflection API object
- * can be converted to a behaviorally equivalent method handle.
- * For example, a reflective {@link java.lang.reflect.Method Method} can
- * be converted to a method handle using
- * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
- * The resulting method handles generally provide more direct and efficient
- * access to the underlying class members.
- * <p>
- * As a special case,
- * when the Core Reflection API is used to view the signature polymorphic
- * methods {@code invokeExact} or plain {@code invoke} in this class,
- * they appear as ordinary non-polymorphic methods.
- * Their reflective appearance, as viewed by
- * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
- * is unaffected by their special status in this API.
- * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
- * will report exactly those modifier bits required for any similarly
- * declared method, including in this case {@code native} and {@code varargs} bits.
- * <p>
- * As with any reflected method, these methods (when reflected) may be
- * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
- * However, such reflective calls do not result in method handle invocations.
- * Such a call, if passed the required argument
- * (a single one, of type {@code Object[]}), will ignore the argument and
- * will throw an {@code UnsupportedOperationException}.
- * <p>
- * Since {@code invokevirtual} instructions can natively
- * invoke method handles under any symbolic type descriptor, this reflective view conflicts
- * with the normal presentation of these methods via bytecodes.
- * Thus, these two native methods, when reflectively viewed by
- * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
- * <p>
- * In order to obtain an invoker method for a particular type descriptor,
- * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
- * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
- * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
- * API is also able to return a method handle
- * to call {@code invokeExact} or plain {@code invoke},
- * for any specified type descriptor .
- *
- * <h1>Interoperation between method handles and Java generics</h1>
- * A method handle can be obtained on a method, constructor, or field
- * which is declared with Java generic types.
- * As with the Core Reflection API, the type of the method handle
- * will constructed from the erasure of the source-level type.
- * When a method handle is invoked, the types of its arguments
- * or the return value cast type may be generic types or type instances.
- * If this occurs, the compiler will replace those
- * types by their erasures when it constructs the symbolic type descriptor
- * for the {@code invokevirtual} instruction.
- * <p>
- * Method handles do not represent
- * their function-like types in terms of Java parameterized (generic) types,
- * because there are three mismatches between function-like types and parameterized
- * Java types.
- * <ul>
- * <li>Method types range over all possible arities,
- * from no arguments to up to the <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
- * Generics are not variadic, and so cannot represent this.</li>
- * <li>Method types can specify arguments of primitive types,
- * which Java generic types cannot range over.</li>
- * <li>Higher order functions over method handles (combinators) are
- * often generic across a wide range of function types, including
- * those of multiple arities. It is impossible to represent such
- * genericity with a Java type parameter.</li>
- * </ul>
- *
- * <h1><a name="maxarity"></a>Arity limits</h1>
- * The JVM imposes on all methods and constructors of any kind an absolute
- * limit of 255 stacked arguments. This limit can appear more restrictive
- * in certain cases:
- * <ul>
- * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
- * <li>A non-static method consumes an extra argument for the object on which the method is called.
- * <li>A constructor consumes an extra argument for the object which is being constructed.
- * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
- * it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
- * </ul>
- * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
- * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
- * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
- * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
- *
- * @see MethodType
- * @see MethodHandles
- * @author John Rose, JSR 292 EG
- */
public abstract class MethodHandle {
- // Android-changed:
- //
- // static { MethodHandleImpl.initStatics(); }
- //
- // LambdaForm and customizationCount are currently unused in our implementation
- // and will be substituted with appropriate implementation / delegate classes.
- //
- // /*private*/ final LambdaForm form;
- // form is not private so that invokers can easily fetch it
- // /*non-public*/ byte customizationCount;
- // customizationCount should be accessible from invokers
-
-
- /**
- * Internal marker interface which distinguishes (to the Java compiler)
- * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
- *
- * @hide
- */
- @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
- @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
- public @interface PolymorphicSignature { }
-
- /**
- * The type of this method handle, this corresponds to the exact type of the method
- * being invoked.
- */
- private final MethodType type;
-
- /**
- * The nominal type of this method handle, will be non-null if a method handle declares
- * a different type from its "real" type, which is either the type of the method being invoked
- * or the type of the emulated stackframe expected by an underyling adapter.
- */
- private MethodType nominalType;
-
- /**
- * The spread invoker associated with this type with zero trailing arguments.
- * This is used to speed up invokeWithArguments.
- */
- private MethodHandle cachedSpreadInvoker;
-
- /**
- * The INVOKE* constants and SGET/SPUT and IGET/IPUT constants specify the behaviour of this
- * method handle with respect to the ArtField* or the ArtMethod* that it operates on. These
- * behaviours are equivalent to the dex bytecode behaviour on the respective method_id or
- * field_id in the equivalent instruction.
- *
- * INVOKE_TRANSFORM is a special type of handle which doesn't encode any dex bytecode behaviour,
- * instead it transforms the list of input arguments or performs other higher order operations
- * before (optionally) delegating to another method handle.
- *
- * INVOKE_CALLSITE_TRANSFORM is a variation on INVOKE_TRANSFORM where the method type of
- * a MethodHandle dynamically varies based on the callsite. This is used by
- * the VarargsCollector implementation which places any number of trailing arguments
- * into an array before invoking an arity method. The "any number of trailing arguments" means
- * it would otherwise generate WrongMethodTypeExceptions as the callsite method type and
- * VarargsCollector method type appear incompatible.
- */
-
- /** @hide */ public static final int INVOKE_VIRTUAL = 0;
- /** @hide */ public static final int INVOKE_SUPER = 1;
- /** @hide */ public static final int INVOKE_DIRECT = 2;
- /** @hide */ public static final int INVOKE_STATIC = 3;
- /** @hide */ public static final int INVOKE_INTERFACE = 4;
- /** @hide */ public static final int INVOKE_TRANSFORM = 5;
- /** @hide */ public static final int INVOKE_CALLSITE_TRANSFORM = 6;
- /** @hide */ public static final int IGET = 7;
- /** @hide */ public static final int IPUT = 8;
- /** @hide */ public static final int SGET = 9;
- /** @hide */ public static final int SPUT = 10;
-
- // The kind of this method handle (used by the runtime). This is one of the INVOKE_*
- // constants or SGET/SPUT, IGET/IPUT.
- /** @hide */ protected final int handleKind;
-
- // The ArtMethod* or ArtField* associated with this method handle (used by the runtime).
- /** @hide */ protected final long artFieldOrMethod;
-
- /** @hide */
- protected MethodHandle(long artFieldOrMethod, int handleKind, MethodType type) {
- this.artFieldOrMethod = artFieldOrMethod;
- this.handleKind = handleKind;
- this.type = type;
- }
-
- /**
- * Reports the type of this method handle.
- * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
- * @return the method handle type
- */
- public MethodType type() {
- if (nominalType != null) {
- return nominalType;
- }
-
- return type;
- }
-
- /**
- * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
- * The symbolic type descriptor at the call site of {@code invokeExact} must
- * exactly match this method handle's {@link #type type}.
- * No conversions are allowed on arguments or return values.
- * <p>
- * When this method is observed via the Core Reflection API,
- * it will appear as a single native method, taking an object array and returning an object.
- * If this native method is invoked directly via
- * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
- * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
- * it will throw an {@code UnsupportedOperationException}.
- * @param args the signature-polymorphic parameter list, statically represented using varargs
- * @return the signature-polymorphic result, statically represented using {@code Object}
- * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
- * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
- */
- public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
-
- /**
- * Invokes the method handle, allowing any caller type descriptor,
- * and optionally performing conversions on arguments and return values.
- * <p>
- * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
- * the call proceeds as if by {@link #invokeExact invokeExact}.
- * <p>
- * Otherwise, the call proceeds as if this method handle were first
- * adjusted by calling {@link #asType asType} to adjust this method handle
- * to the required type, and then the call proceeds as if by
- * {@link #invokeExact invokeExact} on the adjusted method handle.
- * <p>
- * There is no guarantee that the {@code asType} call is actually made.
- * If the JVM can predict the results of making the call, it may perform
- * adaptations directly on the caller's arguments,
- * and call the target method handle according to its own exact type.
- * <p>
- * The resolved type descriptor at the call site of {@code invoke} must
- * be a valid argument to the receivers {@code asType} method.
- * In particular, the caller must specify the same argument arity
- * as the callee's type,
- * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
- * <p>
- * When this method is observed via the Core Reflection API,
- * it will appear as a single native method, taking an object array and returning an object.
- * If this native method is invoked directly via
- * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
- * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
- * it will throw an {@code UnsupportedOperationException}.
- * @param args the signature-polymorphic parameter list, statically represented using varargs
- * @return the signature-polymorphic result, statically represented using {@code Object}
- * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
- * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
- * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
- */
- public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
-
- // Android-changed: Removed implementation details.
- //
- // /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args)
- // /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args)
- // /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args)
- // /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args)
- // /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args)
-
- /**
- * Performs a variable arity invocation, passing the arguments in the given list
- * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
- * which mentions only the type {@code Object}, and whose arity is the length
- * of the argument list.
- * <p>
- * Specifically, execution proceeds as if by the following steps,
- * although the methods are not guaranteed to be called if the JVM
- * can predict their effects.
- * <ul>
- * <li>Determine the length of the argument array as {@code N}.
- * For a null reference, {@code N=0}. </li>
- * <li>Determine the general type {@code TN} of {@code N} arguments as
- * as {@code TN=MethodType.genericMethodType(N)}.</li>
- * <li>Force the original target method handle {@code MH0} to the
- * required type, as {@code MH1 = MH0.asType(TN)}. </li>
- * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
- * <li>Invoke the type-adjusted method handle on the unpacked arguments:
- * MH1.invokeExact(A0, ...). </li>
- * <li>Take the return value as an {@code Object} reference. </li>
- * </ul>
- * <p>
- * Because of the action of the {@code asType} step, the following argument
- * conversions are applied as necessary:
- * <ul>
- * <li>reference casting
- * <li>unboxing
- * <li>widening primitive conversions
- * </ul>
- * <p>
- * The result returned by the call is boxed if it is a primitive,
- * or forced to null if the return type is void.
- * <p>
- * This call is equivalent to the following code:
- * <blockquote><pre>{@code
- * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
- * Object result = invoker.invokeExact(this, arguments);
- * }</pre></blockquote>
- * <p>
- * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
- * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
- * It can therefore be used as a bridge between native or reflective code and method handles.
- *
- * @param arguments the arguments to pass to the target
- * @return the result returned by the target
- * @throws ClassCastException if an argument cannot be converted by reference casting
- * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
- * @throws Throwable anything thrown by the target method invocation
- * @see MethodHandles#spreadInvoker
- */
- public Object invokeWithArguments(Object... arguments) throws Throwable {
- MethodHandle invoker = null;
- synchronized (this) {
- if (cachedSpreadInvoker == null) {
- cachedSpreadInvoker = MethodHandles.spreadInvoker(this.type(), 0);
- }
-
- invoker = cachedSpreadInvoker;
- }
-
- return invoker.invoke(this, arguments);
- }
-
- /**
- * Performs a variable arity invocation, passing the arguments in the given array
- * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
- * which mentions only the type {@code Object}, and whose arity is the length
- * of the argument array.
- * <p>
- * This method is also equivalent to the following code:
- * <blockquote><pre>{@code
- * invokeWithArguments(arguments.toArray()
- * }</pre></blockquote>
- *
- * @param arguments the arguments to pass to the target
- * @return the result returned by the target
- * @throws NullPointerException if {@code arguments} is a null reference
- * @throws ClassCastException if an argument cannot be converted by reference casting
- * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
- * @throws Throwable anything thrown by the target method invocation
- */
- public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
- return invokeWithArguments(arguments.toArray());
- }
-
- /**
- * Produces an adapter method handle which adapts the type of the
- * current method handle to a new type.
- * The resulting method handle is guaranteed to report a type
- * which is equal to the desired new type.
- * <p>
- * If the original type and new type are equal, returns {@code this}.
- * <p>
- * The new method handle, when invoked, will perform the following
- * steps:
- * <ul>
- * <li>Convert the incoming argument list to match the original
- * method handle's argument list.
- * <li>Invoke the original method handle on the converted argument list.
- * <li>Convert any result returned by the original method handle
- * to the return type of new method handle.
- * </ul>
- * <p>
- * This method provides the crucial behavioral difference between
- * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
- * The two methods
- * perform the same steps when the caller's type descriptor exactly m atches
- * the callee's, but when the types differ, plain {@link #invoke invoke}
- * also calls {@code asType} (or some internal equivalent) in order
- * to match up the caller's and callee's types.
- * <p>
- * If the current method is a variable arity method handle
- * argument list conversion may involve the conversion and collection
- * of several arguments into an array, as
- * {@linkplain #asVarargsCollector described elsewhere}.
- * In every other case, all conversions are applied <em>pairwise</em>,
- * which means that each argument or return value is converted to
- * exactly one argument or return value (or no return value).
- * The applied conversions are defined by consulting the
- * the corresponding component types of the old and new
- * method handle types.
- * <p>
- * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
- * or old and new return types. Specifically, for some valid index {@code i}, let
- * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
- * Or else, going the other way for return values, let
- * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
- * If the types are the same, the new method handle makes no change
- * to the corresponding argument or return value (if any).
- * Otherwise, one of the following conversions is applied
- * if possible:
- * <ul>
- * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
- * (The types do not need to be related in any particular way.
- * This is because a dynamic value of null can convert to any reference type.)
- * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
- * conversion (JLS 5.3) is applied, if one exists.
- * (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
- * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
- * a Java casting conversion (JLS 5.5) is applied if one exists.
- * (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
- * which is then widened as needed to <em>T1</em>.)
- * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
- * conversion will be applied at runtime, possibly followed
- * by a Java method invocation conversion (JLS 5.3)
- * on the primitive value. (These are the primitive widening conversions.)
- * <em>T0</em> must be a wrapper class or a supertype of one.
- * (In the case where <em>T0</em> is Object, these are the conversions
- * allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
- * The unboxing conversion must have a possibility of success, which means that
- * if <em>T0</em> is not itself a wrapper class, there must exist at least one
- * wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
- * primitive value can be widened to <em>T1</em>.
- * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
- * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
- * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
- * a zero value is introduced.
- * </ul>
- * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
- * because neither corresponds specifically to the <em>dynamic type</em> of any
- * actual argument or return value.)
- * <p>
- * The method handle conversion cannot be made if any one of the required
- * pairwise conversions cannot be made.
- * <p>
- * At runtime, the conversions applied to reference arguments
- * or return values may require additional runtime checks which can fail.
- * An unboxing operation may fail because the original reference is null,
- * causing a {@link java.lang.NullPointerException NullPointerException}.
- * An unboxing operation or a reference cast may also fail on a reference
- * to an object of the wrong type,
- * causing a {@link java.lang.ClassCastException ClassCastException}.
- * Although an unboxing operation may accept several kinds of wrappers,
- * if none are available, a {@code ClassCastException} will be thrown.
- *
- * @param newType the expected type of the new method handle
- * @return a method handle which delegates to {@code this} after performing
- * any necessary argument conversions, and arranges for any
- * necessary return value conversions
- * @throws NullPointerException if {@code newType} is a null reference
- * @throws WrongMethodTypeException if the conversion cannot be made
- * @see MethodHandles#explicitCastArguments
- */
- public MethodHandle asType(MethodType newType) {
- // Fast path alternative to a heavyweight {@code asType} call.
- // Return 'this' if the conversion will be a no-op.
- if (newType == type) {
- return this;
- }
-
- if (!type.isConvertibleTo(newType)) {
- throw new WrongMethodTypeException("cannot convert " + this + " to " + newType);
- }
-
- MethodHandle mh = duplicate();
- mh.nominalType = newType;
- return mh;
- }
-
- /**
- * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
- * and spreads its elements as positional arguments.
- * The new method handle adapts, as its <i>target</i>,
- * the current method handle. The type of the adapter will be
- * the same as the type of the target, except that the final
- * {@code arrayLength} parameters of the target's type are replaced
- * by a single array parameter of type {@code arrayType}.
- * <p>
- * If the array element type differs from any of the corresponding
- * argument types on the original target,
- * the original target is adapted to take the array elements directly,
- * as if by a call to {@link #asType asType}.
- * <p>
- * When called, the adapter replaces a trailing array argument
- * by the array's elements, each as its own argument to the target.
- * (The order of the arguments is preserved.)
- * They are converted pairwise by casting and/or unboxing
- * to the types of the trailing parameters of the target.
- * Finally the target is called.
- * What the target eventually returns is returned unchanged by the adapter.
- * <p>
- * Before calling the target, the adapter verifies that the array
- * contains exactly enough elements to provide a correct argument count
- * to the target method handle.
- * (The array may also be null when zero elements are required.)
- * <p>
- * If, when the adapter is called, the supplied array argument does
- * not have the correct number of elements, the adapter will throw
- * an {@link IllegalArgumentException} instead of invoking the target.
- * <p>
- * Here are some simple examples of array-spreading method handles:
- * <blockquote><pre>{@code
-MethodHandle equals = publicLookup()
- .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
-assert( (boolean) equals.invokeExact("me", (Object)"me"));
-assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
-// spread both arguments from a 2-array:
-MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
-assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
-assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
-// try to spread from anything but a 2-array:
-for (int n = 0; n <= 10; n++) {
- Object[] badArityArgs = (n == 2 ? null : new Object[n]);
- try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
- catch (IllegalArgumentException ex) { } // OK
-}
-// spread both arguments from a String array:
-MethodHandle eq2s = equals.asSpreader(String[].class, 2);
-assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
-assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
-// spread second arguments from a 1-array:
-MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
-assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
-assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
-// spread no arguments from a 0-array or null:
-MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
-assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
-assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
-// asSpreader and asCollector are approximate inverses:
-for (int n = 0; n <= 2; n++) {
- for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
- MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
- assert( (boolean) equals2.invokeWithArguments("me", "me"));
- assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
- }
-}
-MethodHandle caToString = publicLookup()
- .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
-assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
-MethodHandle caString3 = caToString.asCollector(char[].class, 3);
-assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
-MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
-assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
- * }</pre></blockquote>
- * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
- * @param arrayLength the number of arguments to spread from an incoming array argument
- * @return a new method handle which spreads its final array argument,
- * before calling the original method handle
- * @throws NullPointerException if {@code arrayType} is a null reference
- * @throws IllegalArgumentException if {@code arrayType} is not an array type,
- * or if target does not have at least
- * {@code arrayLength} parameter types,
- * or if {@code arrayLength} is negative,
- * or if the resulting method handle's type would have
- * <a href="MethodHandle.html#maxarity">too many parameters</a>
- * @throws WrongMethodTypeException if the implied {@code asType} call fails
- * @see #asCollector
- */
- public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
- MethodType postSpreadType = asSpreaderChecks(arrayType, arrayLength);
-
- final int targetParamCount = postSpreadType.parameterCount();
- MethodType dropArrayArgs = postSpreadType.dropParameterTypes(
- (targetParamCount - arrayLength), targetParamCount);
- MethodType adapterType = dropArrayArgs.appendParameterTypes(arrayType);
-
- return new Transformers.Spreader(this, adapterType, arrayLength);
- }
-
- /**
- * See if {@code asSpreader} can be validly called with the given arguments.
- * Return the type of the method handle call after spreading but before conversions.
- */
- private MethodType asSpreaderChecks(Class<?> arrayType, int arrayLength) {
- spreadArrayChecks(arrayType, arrayLength);
- int nargs = type().parameterCount();
- if (nargs < arrayLength || arrayLength < 0)
- throw newIllegalArgumentException("bad spread array length");
- Class<?> arrayElement = arrayType.getComponentType();
- MethodType mtype = type();
- boolean match = true, fail = false;
- for (int i = nargs - arrayLength; i < nargs; i++) {
- Class<?> ptype = mtype.parameterType(i);
- if (ptype != arrayElement) {
- match = false;
- if (!MethodType.canConvert(arrayElement, ptype)) {
- fail = true;
- break;
- }
- }
- }
- if (match) return mtype;
- MethodType needType = mtype.asSpreaderType(arrayType, arrayLength);
- if (!fail) return needType;
- // elicit an error:
- this.asType(needType);
- throw newInternalError("should not return", null);
- }
-
- private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
- Class<?> arrayElement = arrayType.getComponentType();
- if (arrayElement == null)
- throw newIllegalArgumentException("not an array type", arrayType);
- if ((arrayLength & 0x7F) != arrayLength) {
- if ((arrayLength & 0xFF) != arrayLength)
- throw newIllegalArgumentException("array length is not legal", arrayLength);
- assert(arrayLength >= 128);
- if (arrayElement == long.class ||
- arrayElement == double.class)
- throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
- }
- }
-
- /**
- * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
- * positional arguments and collects them into an array argument.
- * The new method handle adapts, as its <i>target</i>,
- * the current method handle. The type of the adapter will be
- * the same as the type of the target, except that a single trailing
- * parameter (usually of type {@code arrayType}) is replaced by
- * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
- * <p>
- * If the array type differs from the final argument type on the original target,
- * the original target is adapted to take the array type directly,
- * as if by a call to {@link #asType asType}.
- * <p>
- * When called, the adapter replaces its trailing {@code arrayLength}
- * arguments by a single new array of type {@code arrayType}, whose elements
- * comprise (in order) the replaced arguments.
- * Finally the target is called.
- * What the target eventually returns is returned unchanged by the adapter.
- * <p>
- * (The array may also be a shared constant when {@code arrayLength} is zero.)
- * <p>
- * (<em>Note:</em> The {@code arrayType} is often identical to the last
- * parameter type of the original target.
- * It is an explicit argument for symmetry with {@code asSpreader}, and also
- * to allow the target to use a simple {@code Object} as its last parameter type.)
- * <p>
- * In order to create a collecting adapter which is not restricted to a particular
- * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
- * <p>
- * Here are some examples of array-collecting method handles:
- * <blockquote><pre>{@code
-MethodHandle deepToString = publicLookup()
- .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
-assertEquals("[won]", (String) deepToString.invokeExact(new Object[]{"won"}));
-MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
-assertEquals(methodType(String.class, Object.class), ts1.type());
-//assertEquals("[won]", (String) ts1.invokeExact( new Object[]{"won"})); //FAIL
-assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
-// arrayType can be a subtype of Object[]
-MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
-assertEquals(methodType(String.class, String.class, String.class), ts2.type());
-assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
-MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
-assertEquals("[]", (String) ts0.invokeExact());
-// collectors can be nested, Lisp-style
-MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
-assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
-// arrayType can be any primitive array type
-MethodHandle bytesToString = publicLookup()
- .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
- .asCollector(byte[].class, 3);
-assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
-MethodHandle longsToString = publicLookup()
- .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
- .asCollector(long[].class, 1);
-assertEquals("[123]", (String) longsToString.invokeExact((long)123));
- * }</pre></blockquote>
- * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
- * @param arrayLength the number of arguments to collect into a new array argument
- * @return a new method handle which collects some trailing argument
- * into an array, before calling the original method handle
- * @throws NullPointerException if {@code arrayType} is a null reference
- * @throws IllegalArgumentException if {@code arrayType} is not an array type
- * or {@code arrayType} is not assignable to this method handle's trailing parameter type,
- * or {@code arrayLength} is not a legal array size,
- * or the resulting method handle's type would have
- * <a href="MethodHandle.html#maxarity">too many parameters</a>
- * @throws WrongMethodTypeException if the implied {@code asType} call fails
- * @see #asSpreader
- * @see #asVarargsCollector
- */
- public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
- asCollectorChecks(arrayType, arrayLength);
-
- return new Transformers.Collector(this, arrayType, arrayLength);
- }
-
- /**
- * See if {@code asCollector} can be validly called with the given arguments.
- * Return false if the last parameter is not an exact match to arrayType.
- */
- /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
- spreadArrayChecks(arrayType, arrayLength);
- int nargs = type().parameterCount();
- if (nargs != 0) {
- Class<?> lastParam = type().parameterType(nargs-1);
- if (lastParam == arrayType) return true;
- if (lastParam.isAssignableFrom(arrayType)) return false;
- }
- throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
- }
-
- /**
- * Makes a <em>variable arity</em> adapter which is able to accept
- * any number of trailing positional arguments and collect them
- * into an array argument.
- * <p>
- * The type and behavior of the adapter will be the same as
- * the type and behavior of the target, except that certain
- * {@code invoke} and {@code asType} requests can lead to
- * trailing positional arguments being collected into target's
- * trailing parameter.
- * Also, the last parameter type of the adapter will be
- * {@code arrayType}, even if the target has a different
- * last parameter type.
- * <p>
- * This transformation may return {@code this} if the method handle is
- * already of variable arity and its trailing parameter type
- * is identical to {@code arrayType}.
- * <p>
- * When called with {@link #invokeExact invokeExact}, the adapter invokes
- * the target with no argument changes.
- * (<em>Note:</em> This behavior is different from a
- * {@linkplain #asCollector fixed arity collector},
- * since it accepts a whole array of indeterminate length,
- * rather than a fixed number of arguments.)
- * <p>
- * When called with plain, inexact {@link #invoke invoke}, if the caller
- * type is the same as the adapter, the adapter invokes the target as with
- * {@code invokeExact}.
- * (This is the normal behavior for {@code invoke} when types match.)
- * <p>
- * Otherwise, if the caller and adapter arity are the same, and the
- * trailing parameter type of the caller is a reference type identical to
- * or assignable to the trailing parameter type of the adapter,
- * the arguments and return values are converted pairwise,
- * as if by {@link #asType asType} on a fixed arity
- * method handle.
- * <p>
- * Otherwise, the arities differ, or the adapter's trailing parameter
- * type is not assignable from the corresponding caller type.
- * In this case, the adapter replaces all trailing arguments from
- * the original trailing argument position onward, by
- * a new array of type {@code arrayType}, whose elements
- * comprise (in order) the replaced arguments.
- * <p>
- * The caller type must provides as least enough arguments,
- * and of the correct type, to satisfy the target's requirement for
- * positional arguments before the trailing array argument.
- * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
- * where {@code N} is the arity of the target.
- * Also, there must exist conversions from the incoming arguments
- * to the target's arguments.
- * As with other uses of plain {@code invoke}, if these basic
- * requirements are not fulfilled, a {@code WrongMethodTypeException}
- * may be thrown.
- * <p>
- * In all cases, what the target eventually returns is returned unchanged by the adapter.
- * <p>
- * In the final case, it is exactly as if the target method handle were
- * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
- * to the arity required by the caller type.
- * (As with {@code asCollector}, if the array length is zero,
- * a shared constant may be used instead of a new array.
- * If the implied call to {@code asCollector} would throw
- * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
- * the call to the variable arity adapter must throw
- * {@code WrongMethodTypeException}.)
- * <p>
- * The behavior of {@link #asType asType} is also specialized for
- * variable arity adapters, to maintain the invariant that
- * plain, inexact {@code invoke} is always equivalent to an {@code asType}
- * call to adjust the target type, followed by {@code invokeExact}.
- * Therefore, a variable arity adapter responds
- * to an {@code asType} request by building a fixed arity collector,
- * if and only if the adapter and requested type differ either
- * in arity or trailing argument type.
- * The resulting fixed arity collector has its type further adjusted
- * (if necessary) to the requested type by pairwise conversion,
- * as if by another application of {@code asType}.
- * <p>
- * When a method handle is obtained by executing an {@code ldc} instruction
- * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
- * as a variable arity method (with the modifier bit {@code 0x0080}),
- * the method handle will accept multiple arities, as if the method handle
- * constant were created by means of a call to {@code asVarargsCollector}.
- * <p>
- * In order to create a collecting adapter which collects a predetermined
- * number of arguments, and whose type reflects this predetermined number,
- * use {@link #asCollector asCollector} instead.
- * <p>
- * No method handle transformations produce new method handles with
- * variable arity, unless they are documented as doing so.
- * Therefore, besides {@code asVarargsCollector},
- * all methods in {@code MethodHandle} and {@code MethodHandles}
- * will return a method handle with fixed arity,
- * except in the cases where they are specified to return their original
- * operand (e.g., {@code asType} of the method handle's own type).
- * <p>
- * Calling {@code asVarargsCollector} on a method handle which is already
- * of variable arity will produce a method handle with the same type and behavior.
- * It may (or may not) return the original variable arity method handle.
- * <p>
- * Here is an example, of a list-making variable arity method handle:
- * <blockquote><pre>{@code
-MethodHandle deepToString = publicLookup()
- .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
-MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
-assertEquals("[won]", (String) ts1.invokeExact( new Object[]{"won"}));
-assertEquals("[won]", (String) ts1.invoke( new Object[]{"won"}));
-assertEquals("[won]", (String) ts1.invoke( "won" ));
-assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
-// findStatic of Arrays.asList(...) produces a variable arity method handle:
-MethodHandle asList = publicLookup()
- .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
-assertEquals(methodType(List.class, Object[].class), asList.type());
-assert(asList.isVarargsCollector());
-assertEquals("[]", asList.invoke().toString());
-assertEquals("[1]", asList.invoke(1).toString());
-assertEquals("[two, too]", asList.invoke("two", "too").toString());
-String[] argv = { "three", "thee", "tee" };
-assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
-assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
-List ls = (List) asList.invoke((Object)argv);
-assertEquals(1, ls.size());
-assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
- * }</pre></blockquote>
- * <p style="font-size:smaller;">
- * <em>Discussion:</em>
- * These rules are designed as a dynamically-typed variation
- * of the Java rules for variable arity methods.
- * In both cases, callers to a variable arity method or method handle
- * can either pass zero or more positional arguments, or else pass
- * pre-collected arrays of any length. Users should be aware of the
- * special role of the final argument, and of the effect of a
- * type match on that final argument, which determines whether
- * or not a single trailing argument is interpreted as a whole
- * array or a single element of an array to be collected.
- * Note that the dynamic type of the trailing argument has no
- * effect on this decision, only a comparison between the symbolic
- * type descriptor of the call site and the type descriptor of the method handle.)
- *
- * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
- * @return a new method handle which can collect any number of trailing arguments
- * into an array, before calling the original method handle
- * @throws NullPointerException if {@code arrayType} is a null reference
- * @throws IllegalArgumentException if {@code arrayType} is not an array type
- * or {@code arrayType} is not assignable to this method handle's trailing parameter type
- * @see #asCollector
- * @see #isVarargsCollector
- * @see #asFixedArity
- */
- public MethodHandle asVarargsCollector(Class<?> arrayType) {
- arrayType.getClass(); // explicit NPE
- boolean lastMatch = asCollectorChecks(arrayType, 0);
- if (isVarargsCollector() && lastMatch)
- return this;
- return new Transformers.VarargsCollector(this);
- }
+ public MethodType type() { return null; }
- /**
- * Determines if this method handle
- * supports {@linkplain #asVarargsCollector variable arity} calls.
- * Such method handles arise from the following sources:
- * <ul>
- * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
- * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
- * which resolves to a variable arity Java method or constructor
- * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
- * which resolves to a variable arity Java method or constructor
- * </ul>
- * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
- * @see #asVarargsCollector
- * @see #asFixedArity
- */
- public boolean isVarargsCollector() {
- return false;
- }
+ public final Object invokeExact(Object... args) throws Throwable { return null; }
- /**
- * Makes a <em>fixed arity</em> method handle which is otherwise
- * equivalent to the current method handle.
- * <p>
- * If the current method handle is not of
- * {@linkplain #asVarargsCollector variable arity},
- * the current method handle is returned.
- * This is true even if the current method handle
- * could not be a valid input to {@code asVarargsCollector}.
- * <p>
- * Otherwise, the resulting fixed-arity method handle has the same
- * type and behavior of the current method handle,
- * except that {@link #isVarargsCollector isVarargsCollector}
- * will be false.
- * The fixed-arity method handle may (or may not) be the
- * a previous argument to {@code asVarargsCollector}.
- * <p>
- * Here is an example, of a list-making variable arity method handle:
- * <blockquote><pre>{@code
-MethodHandle asListVar = publicLookup()
- .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
- .asVarargsCollector(Object[].class);
-MethodHandle asListFix = asListVar.asFixedArity();
-assertEquals("[1]", asListVar.invoke(1).toString());
-Exception caught = null;
-try { asListFix.invoke((Object)1); }
-catch (Exception ex) { caught = ex; }
-assert(caught instanceof ClassCastException);
-assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
-try { asListFix.invoke("two", "too"); }
-catch (Exception ex) { caught = ex; }
-assert(caught instanceof WrongMethodTypeException);
-Object[] argv = { "three", "thee", "tee" };
-assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
-assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
-assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
-assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
- * }</pre></blockquote>
- *
- * @return a new method handle which accepts only a fixed number of arguments
- * @see #asVarargsCollector
- * @see #isVarargsCollector
- */
- public MethodHandle asFixedArity() {
- // Android-changed: implementation specific.
- MethodHandle mh = this;
- if (mh.isVarargsCollector()) {
- mh = ((Transformers.VarargsCollector) mh).asFixedArity();
- }
- assert(!mh.isVarargsCollector());
- return mh;
- }
+ public final Object invoke(Object... args) throws Throwable { return null; }
- /**
- * Binds a value {@code x} to the first argument of a method handle, without invoking it.
- * The new method handle adapts, as its <i>target</i>,
- * the current method handle by binding it to the given argument.
- * The type of the bound handle will be
- * the same as the type of the target, except that a single leading
- * reference parameter will be omitted.
- * <p>
- * When called, the bound handle inserts the given value {@code x}
- * as a new leading argument to the target. The other arguments are
- * also passed unchanged.
- * What the target eventually returns is returned unchanged by the bound handle.
- * <p>
- * The reference {@code x} must be convertible to the first parameter
- * type of the target.
- * <p>
- * (<em>Note:</em> Because method handles are immutable, the target method handle
- * retains its original type and behavior.)
- * @param x the value to bind to the first argument of the target
- * @return a new method handle which prepends the given value to the incoming
- * argument list, before calling the original method handle
- * @throws IllegalArgumentException if the target does not have a
- * leading parameter type that is a reference type
- * @throws ClassCastException if {@code x} cannot be converted
- * to the leading parameter type of the target
- * @see MethodHandles#insertArguments
- */
- public MethodHandle bindTo(Object x) {
- x = type.leadingReferenceParameter().cast(x); // throw CCE if needed
+ public Object invokeWithArguments(Object... arguments) throws Throwable { return null; }
- return new Transformers.BindTo(this, x);
- }
+ public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable { return null; }
- /**
- * Returns a string representation of the method handle,
- * starting with the string {@code "MethodHandle"} and
- * ending with the string representation of the method handle's type.
- * In other words, this method returns a string equal to the value of:
- * <blockquote><pre>{@code
- * "MethodHandle" + type().toString()
- * }</pre></blockquote>
- * <p>
- * (<em>Note:</em> Future releases of this API may add further information
- * to the string representation.
- * Therefore, the present syntax should not be parsed by applications.)
- *
- * @return a string representation of the method handle
- */
- @Override
- public String toString() {
- // Android-changed: Removed debugging support.
- return "MethodHandle"+type;
- }
+ public MethodHandle asType(MethodType newType) { return null; }
- /** @hide */
- public int getHandleKind() {
- return handleKind;
- }
+ public MethodHandle asCollector(Class<?> arrayType, int arrayLength) { return null; }
- /** @hide */
- protected void transform(EmulatedStackFrame arguments) throws Throwable {
- throw new AssertionError("MethodHandle.transform should never be called.");
- }
+ public MethodHandle asVarargsCollector(Class<?> arrayType) { return null; }
- /**
- * Creates a copy of this method handle, copying all relevant data.
- *
- * @hide
- */
- protected MethodHandle duplicate() {
- try {
- return (MethodHandle) this.clone();
- } catch (CloneNotSupportedException cnse) {
- throw new AssertionError("Subclass of Transformer is not cloneable");
- }
- }
+ public boolean isVarargsCollector() { return false; }
+ public MethodHandle asFixedArity() { return null; }
- /**
- * This is the entry point for all transform calls, and dispatches to the protected
- * transform method. This layer of indirection exists purely for convenience, because
- * we can invoke-direct on a fixed ArtMethod for all transform variants.
- *
- * NOTE: If this extra layer of indirection proves to be a problem, we can get rid
- * of this layer of indirection at the cost of some additional ugliness.
- */
- private void transformInternal(EmulatedStackFrame arguments) throws Throwable {
- transform(arguments);
- }
+ public MethodHandle bindTo(Object x) { return null; }
- // Android-changed: Removed implementation details :
- //
- // String standardString();
- // String debugString();
- //
- //// Implementation methods.
- //// Sub-classes can override these default implementations.
- //// All these methods assume arguments are already validated.
- //
- // Other transforms to do: convert, explicitCast, permute, drop, filter, fold, GWT, catch
- //
- // BoundMethodHandle bindArgumentL(int pos, Object value);
- // /*non-public*/ MethodHandle setVarargs(MemberName member);
- // /*non-public*/ MethodHandle viewAsType(MethodType newType, boolean strict);
- // /*non-public*/ boolean viewAsTypeChecks(MethodType newType, boolean strict);
- //
- // Decoding
- //
- // /*non-public*/ LambdaForm internalForm();
- // /*non-public*/ MemberName internalMemberName();
- // /*non-public*/ Class<?> internalCallerClass();
- // /*non-public*/ MethodHandleImpl.Intrinsic intrinsicName();
- // /*non-public*/ MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial);
- // /*non-public*/ boolean isInvokeSpecial();
- // /*non-public*/ Object internalValues();
- // /*non-public*/ Object internalProperties();
- //
- //// Method handle implementation methods.
- //// Sub-classes can override these default implementations.
- //// All these methods assume arguments are already validated.
- //
- // /*non-public*/ abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
- // abstract BoundMethodHandle rebind();
- // /*non-public*/ void updateForm(LambdaForm newForm);
- // /*non-public*/ void customize();
- // private static final long FORM_OFFSET;
}