summaryrefslogtreecommitdiff
path: root/android/animation/PathKeyframes.java
blob: b362904bef04c86e211f61e0a93812d05ce7cd8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package android.animation;

import android.graphics.Path;
import android.graphics.PointF;

import java.util.ArrayList;

/**
 * PathKeyframes relies on approximating the Path as a series of line segments.
 * The line segments are recursively divided until there is less than 1/2 pixel error
 * between the lines and the curve. Each point of the line segment is converted
 * to a Keyframe and a linear interpolation between Keyframes creates a good approximation
 * of the curve.
 * <p>
 * PathKeyframes is optimized to reduce the number of objects created when there are
 * many keyframes for a curve.
 * </p>
 * <p>
 * Typically, the returned type is a PointF, but the individual components can be extracted
 * as either an IntKeyframes or FloatKeyframes.
 * </p>
 * @hide
 */
public class PathKeyframes implements Keyframes {
    private static final int FRACTION_OFFSET = 0;
    private static final int X_OFFSET = 1;
    private static final int Y_OFFSET = 2;
    private static final int NUM_COMPONENTS = 3;
    private static final ArrayList<Keyframe> EMPTY_KEYFRAMES = new ArrayList<Keyframe>();

    private PointF mTempPointF = new PointF();
    private float[] mKeyframeData;

    public PathKeyframes(Path path) {
        this(path, 0.5f);
    }

    public PathKeyframes(Path path, float error) {
        if (path == null || path.isEmpty()) {
            throw new IllegalArgumentException("The path must not be null or empty");
        }
        mKeyframeData = path.approximate(error);
    }

    @Override
    public ArrayList<Keyframe> getKeyframes() {
        return EMPTY_KEYFRAMES;
    }

    @Override
    public Object getValue(float fraction) {
        int numPoints = mKeyframeData.length / 3;
        if (fraction < 0) {
            return interpolateInRange(fraction, 0, 1);
        } else if (fraction > 1) {
            return interpolateInRange(fraction, numPoints - 2, numPoints - 1);
        } else if (fraction == 0) {
            return pointForIndex(0);
        } else if (fraction == 1) {
            return pointForIndex(numPoints - 1);
        } else {
            // Binary search for the correct section
            int low = 0;
            int high = numPoints - 1;

            while (low <= high) {
                int mid = (low + high) / 2;
                float midFraction = mKeyframeData[(mid * NUM_COMPONENTS) + FRACTION_OFFSET];

                if (fraction < midFraction) {
                    high = mid - 1;
                } else if (fraction > midFraction) {
                    low = mid + 1;
                } else {
                    return pointForIndex(mid);
                }
            }

            // now high is below the fraction and low is above the fraction
            return interpolateInRange(fraction, high, low);
        }
    }

    private PointF interpolateInRange(float fraction, int startIndex, int endIndex) {
        int startBase = (startIndex * NUM_COMPONENTS);
        int endBase = (endIndex * NUM_COMPONENTS);

        float startFraction = mKeyframeData[startBase + FRACTION_OFFSET];
        float endFraction = mKeyframeData[endBase + FRACTION_OFFSET];

        float intervalFraction = (fraction - startFraction)/(endFraction - startFraction);

        float startX = mKeyframeData[startBase + X_OFFSET];
        float endX = mKeyframeData[endBase + X_OFFSET];
        float startY = mKeyframeData[startBase + Y_OFFSET];
        float endY = mKeyframeData[endBase + Y_OFFSET];

        float x = interpolate(intervalFraction, startX, endX);
        float y = interpolate(intervalFraction, startY, endY);

        mTempPointF.set(x, y);
        return mTempPointF;
    }

    @Override
    public void setEvaluator(TypeEvaluator evaluator) {
    }

    @Override
    public Class getType() {
        return PointF.class;
    }

    @Override
    public Keyframes clone() {
        Keyframes clone = null;
        try {
            clone = (Keyframes) super.clone();
        } catch (CloneNotSupportedException e) {}
        return clone;
    }

    private PointF pointForIndex(int index) {
        int base = (index * NUM_COMPONENTS);
        int xOffset = base + X_OFFSET;
        int yOffset = base + Y_OFFSET;
        mTempPointF.set(mKeyframeData[xOffset], mKeyframeData[yOffset]);
        return mTempPointF;
    }

    private static float interpolate(float fraction, float startValue, float endValue) {
        float diff = endValue - startValue;
        return startValue + (diff * fraction);
    }

    /**
     * Returns a FloatKeyframes for the X component of the Path.
     * @return a FloatKeyframes for the X component of the Path.
     */
    public FloatKeyframes createXFloatKeyframes() {
        return new FloatKeyframesBase() {
            @Override
            public float getFloatValue(float fraction) {
                PointF pointF = (PointF) PathKeyframes.this.getValue(fraction);
                return pointF.x;
            }
        };
    }

    /**
     * Returns a FloatKeyframes for the Y component of the Path.
     * @return a FloatKeyframes for the Y component of the Path.
     */
    public FloatKeyframes createYFloatKeyframes() {
        return new FloatKeyframesBase() {
            @Override
            public float getFloatValue(float fraction) {
                PointF pointF = (PointF) PathKeyframes.this.getValue(fraction);
                return pointF.y;
            }
        };
    }

    /**
     * Returns an IntKeyframes for the X component of the Path.
     * @return an IntKeyframes for the X component of the Path.
     */
    public IntKeyframes createXIntKeyframes() {
        return new IntKeyframesBase() {
            @Override
            public int getIntValue(float fraction) {
                PointF pointF = (PointF) PathKeyframes.this.getValue(fraction);
                return Math.round(pointF.x);
            }
        };
    }

    /**
     * Returns an IntKeyframeSet for the Y component of the Path.
     * @return an IntKeyframeSet for the Y component of the Path.
     */
    public IntKeyframes createYIntKeyframes() {
        return new IntKeyframesBase() {
            @Override
            public int getIntValue(float fraction) {
                PointF pointF = (PointF) PathKeyframes.this.getValue(fraction);
                return Math.round(pointF.y);
            }
        };
    }

    private abstract static class SimpleKeyframes implements Keyframes {
        @Override
        public void setEvaluator(TypeEvaluator evaluator) {
        }

        @Override
        public ArrayList<Keyframe> getKeyframes() {
            return EMPTY_KEYFRAMES;
        }

        @Override
        public Keyframes clone() {
            Keyframes clone = null;
            try {
                clone = (Keyframes) super.clone();
            } catch (CloneNotSupportedException e) {}
            return clone;
        }
    }

    abstract static class IntKeyframesBase extends SimpleKeyframes implements IntKeyframes {
        @Override
        public Class getType() {
            return Integer.class;
        }

        @Override
        public Object getValue(float fraction) {
            return getIntValue(fraction);
        }
    }

    abstract static class FloatKeyframesBase extends SimpleKeyframes
            implements FloatKeyframes {
        @Override
        public Class getType() {
            return Float.class;
        }

        @Override
        public Object getValue(float fraction) {
            return getFloatValue(fraction);
        }
    }
}