summaryrefslogtreecommitdiff
path: root/android/gesture/GestureUtils.java
blob: 416279e6e5eb70c7240cc563ac6741f133854a0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * Copyright (C) 2008-2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.gesture;

import android.graphics.RectF;
import android.util.Log;

import java.util.ArrayList;
import java.util.Arrays;
import java.io.Closeable;
import java.io.IOException;

import static android.gesture.GestureConstants.*;

/**
 * Utility functions for gesture processing & analysis, including methods for:
 * <ul> 
 * <li>feature extraction (e.g., samplers and those for calculating bounding
 * boxes and gesture path lengths);
 * <li>geometric transformation (e.g., translation, rotation and scaling);
 * <li>gesture similarity comparison (e.g., calculating Euclidean or Cosine
 * distances between two gestures).
 * </ul>
 */
public final class GestureUtils {
  
    private static final float SCALING_THRESHOLD = 0.26f;
    private static final float NONUNIFORM_SCALE = (float) Math.sqrt(2);
    
    private GestureUtils() {
    }

    /**
     * Closes the specified stream.
     *
     * @param stream The stream to close.
     */
    static void closeStream(Closeable stream) {
        if (stream != null) {
            try {
                stream.close();
            } catch (IOException e) {
                Log.e(LOG_TAG, "Could not close stream", e);
            }
        }
    }
    
    /**
     * Samples the gesture spatially by rendering the gesture into a 2D 
     * grayscale bitmap. Scales the gesture to fit the size of the bitmap. 
     * The scaling does not necessarily keep the aspect ratio of the gesture. 
     * 
     * @param gesture the gesture to be sampled
     * @param bitmapSize the size of the bitmap
     * @return a bitmapSize x bitmapSize grayscale bitmap that is represented 
     *         as a 1D array. The float at index i represents the grayscale 
     *         value at pixel [i%bitmapSize, i/bitmapSize] 
     */
    public static float[] spatialSampling(Gesture gesture, int bitmapSize) {
        return spatialSampling(gesture, bitmapSize, false);
    }

    /**
     * Samples the gesture spatially by rendering the gesture into a 2D 
     * grayscale bitmap. Scales the gesture to fit the size of the bitmap. 
     * 
     * @param gesture the gesture to be sampled
     * @param bitmapSize the size of the bitmap
     * @param keepAspectRatio if the scaling should keep the gesture's 
     *        aspect ratio
     * 
     * @return a bitmapSize x bitmapSize grayscale bitmap that is represented 
     *         as a 1D array. The float at index i represents the grayscale 
     *         value at pixel [i%bitmapSize, i/bitmapSize] 
     */
    public static float[] spatialSampling(Gesture gesture, int bitmapSize, 
            boolean keepAspectRatio) {
        final float targetPatchSize = bitmapSize - 1; 
        float[] sample = new float[bitmapSize * bitmapSize];
        Arrays.fill(sample, 0);
  
        RectF rect = gesture.getBoundingBox();
        final float gestureWidth = rect.width();
        final float gestureHeight = rect.height();
        float sx = targetPatchSize / gestureWidth;
        float sy = targetPatchSize / gestureHeight;
        
        if (keepAspectRatio) {
            float scale = sx < sy ? sx : sy;
            sx = scale;
            sy = scale;
        } else {

            float aspectRatio = gestureWidth / gestureHeight;
            if (aspectRatio > 1) {
                aspectRatio = 1 / aspectRatio;
            }
            if (aspectRatio < SCALING_THRESHOLD) {
                float scale = sx < sy ? sx : sy;
                sx = scale;
                sy = scale;
            } else {
                if (sx > sy) {
                    float scale = sy * NONUNIFORM_SCALE;
                    if (scale < sx) {
                        sx = scale;
                    }
                } else {
                    float scale = sx * NONUNIFORM_SCALE; 
                    if (scale < sy) {
                        sy = scale;
                    }
                }
            }
        }
        float preDx = -rect.centerX();
        float preDy = -rect.centerY();
        float postDx = targetPatchSize / 2;
        float postDy = targetPatchSize / 2;
        final ArrayList<GestureStroke> strokes = gesture.getStrokes();
        final int count = strokes.size();
        int size;
        float xpos;
        float ypos;
        for (int index = 0; index < count; index++) {
            final GestureStroke stroke = strokes.get(index);
            float[] strokepoints = stroke.points;
            size = strokepoints.length;
            final float[] pts = new float[size];
            for (int i = 0; i < size; i += 2) {
                pts[i] = (strokepoints[i] + preDx) * sx + postDx;
                pts[i + 1] = (strokepoints[i + 1] + preDy) * sy + postDy;
            }
            float segmentEndX = -1;
            float segmentEndY = -1;
            for (int i = 0; i < size; i += 2) {
                float segmentStartX = pts[i] < 0 ? 0 : pts[i];
                float segmentStartY = pts[i + 1] < 0 ? 0 : pts[i + 1];
                if (segmentStartX > targetPatchSize) {
                    segmentStartX = targetPatchSize;
                } 
                if (segmentStartY > targetPatchSize) {
                    segmentStartY = targetPatchSize;
                }
                plot(segmentStartX, segmentStartY, sample, bitmapSize);
                if (segmentEndX != -1) {
                    // Evaluate horizontally
                    if (segmentEndX > segmentStartX) {
                        xpos = (float) Math.ceil(segmentStartX);
                        float slope = (segmentEndY - segmentStartY) / 
                                      (segmentEndX - segmentStartX);
                        while (xpos < segmentEndX) {
                            ypos = slope * (xpos - segmentStartX) + segmentStartY;
                            plot(xpos, ypos, sample, bitmapSize); 
                            xpos++;
                        }
                    } else if (segmentEndX < segmentStartX){
                        xpos = (float) Math.ceil(segmentEndX);
                        float slope = (segmentEndY - segmentStartY) / 
                                      (segmentEndX - segmentStartX);
                        while (xpos < segmentStartX) {
                            ypos = slope * (xpos - segmentStartX) + segmentStartY;
                            plot(xpos, ypos, sample, bitmapSize); 
                            xpos++;
                        }
                    }
                    // Evaluate vertically
                    if (segmentEndY > segmentStartY) {
                        ypos = (float) Math.ceil(segmentStartY);
                        float invertSlope = (segmentEndX - segmentStartX) / 
                                            (segmentEndY - segmentStartY);
                        while (ypos < segmentEndY) {
                            xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
                            plot(xpos, ypos, sample, bitmapSize); 
                            ypos++;
                        }
                    } else if (segmentEndY < segmentStartY) {
                        ypos = (float) Math.ceil(segmentEndY);
                        float invertSlope = (segmentEndX - segmentStartX) / 
                                            (segmentEndY - segmentStartY);
                        while (ypos < segmentStartY) {
                            xpos = invertSlope * (ypos - segmentStartY) + segmentStartX; 
                            plot(xpos, ypos, sample, bitmapSize); 
                            ypos++;
                        }
                    }
                } 
                segmentEndX = segmentStartX;
                segmentEndY = segmentStartY;
            }
        }
        return sample;
    }
  
    private static void plot(float x, float y, float[] sample, int sampleSize) {
        x = x < 0 ? 0 : x;
        y = y < 0 ? 0 : y;
        int xFloor = (int) Math.floor(x);
        int xCeiling = (int) Math.ceil(x);
        int yFloor = (int) Math.floor(y);
        int yCeiling = (int) Math.ceil(y);
        
        // if it's an integer
        if (x == xFloor && y == yFloor) {
            int index = yCeiling * sampleSize + xCeiling;
            if (sample[index] < 1){
                sample[index] = 1;
            }
        } else {
            final double xFloorSq = Math.pow(xFloor - x, 2);
            final double yFloorSq = Math.pow(yFloor - y, 2);
            final double xCeilingSq = Math.pow(xCeiling - x, 2);
            final double yCeilingSq = Math.pow(yCeiling - y, 2);
            float topLeft = (float) Math.sqrt(xFloorSq + yFloorSq);
            float topRight = (float) Math.sqrt(xCeilingSq + yFloorSq);
            float btmLeft = (float) Math.sqrt(xFloorSq + yCeilingSq);
            float btmRight = (float) Math.sqrt(xCeilingSq + yCeilingSq);
            float sum = topLeft + topRight + btmLeft + btmRight;
            
            float value = topLeft / sum;
            int index = yFloor * sampleSize + xFloor;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = topRight / sum;
            index = yFloor * sampleSize + xCeiling;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = btmLeft / sum;
            index = yCeiling * sampleSize + xFloor;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = btmRight / sum;
            index = yCeiling * sampleSize + xCeiling;
            if (value > sample[index]){
                sample[index] = value;
            }
        }
    }

    /**
     * Samples a stroke temporally into a given number of evenly-distributed 
     * points.
     * 
     * @param stroke the gesture stroke to be sampled
     * @param numPoints the number of points
     * @return the sampled points in the form of [x1, y1, x2, y2, ..., xn, yn]
     */
    public static float[] temporalSampling(GestureStroke stroke, int numPoints) {
        final float increment = stroke.length / (numPoints - 1);
        int vectorLength = numPoints * 2;
        float[] vector = new float[vectorLength];
        float distanceSoFar = 0;
        float[] pts = stroke.points;
        float lstPointX = pts[0];
        float lstPointY = pts[1];
        int index = 0;
        float currentPointX = Float.MIN_VALUE;
        float currentPointY = Float.MIN_VALUE;
        vector[index] = lstPointX;
        index++;
        vector[index] = lstPointY;
        index++;
        int i = 0;
        int count = pts.length / 2;
        while (i < count) {
            if (currentPointX == Float.MIN_VALUE) {
                i++;
                if (i >= count) {
                    break;
                }
                currentPointX = pts[i * 2];
                currentPointY = pts[i * 2 + 1];
            }
            float deltaX = currentPointX - lstPointX;
            float deltaY = currentPointY - lstPointY;
            float distance = (float) Math.hypot(deltaX, deltaY);
            if (distanceSoFar + distance >= increment) {
                float ratio = (increment - distanceSoFar) / distance;
                float nx = lstPointX + ratio * deltaX;
                float ny = lstPointY + ratio * deltaY;
                vector[index] = nx;
                index++;
                vector[index] = ny;
                index++;
                lstPointX = nx;
                lstPointY = ny;
                distanceSoFar = 0;
            } else {
                lstPointX = currentPointX;
                lstPointY = currentPointY;
                currentPointX = Float.MIN_VALUE;
                currentPointY = Float.MIN_VALUE;
                distanceSoFar += distance;
            }
        }

        for (i = index; i < vectorLength; i += 2) {
            vector[i] = lstPointX;
            vector[i + 1] = lstPointY;
        }
        return vector;
    }

    /**
     * Calculates the centroid of a set of points.
     * 
     * @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
     * @return the centroid
     */
    static float[] computeCentroid(float[] points) {
        float centerX = 0;
        float centerY = 0;
        int count = points.length;
        for (int i = 0; i < count; i++) {
            centerX += points[i];
            i++;
            centerY += points[i];
        }
        float[] center = new float[2];
        center[0] = 2 * centerX / count;
        center[1] = 2 * centerY / count;

        return center;
    }

    /**
     * Calculates the variance-covariance matrix of a set of points.
     * 
     * @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
     * @return the variance-covariance matrix
     */
    private static float[][] computeCoVariance(float[] points) {
        float[][] array = new float[2][2];
        array[0][0] = 0;
        array[0][1] = 0;
        array[1][0] = 0;
        array[1][1] = 0;
        int count = points.length;
        for (int i = 0; i < count; i++) {
            float x = points[i];
            i++;
            float y = points[i];
            array[0][0] += x * x;
            array[0][1] += x * y;
            array[1][0] = array[0][1];
            array[1][1] += y * y;
        }
        array[0][0] /= (count / 2);
        array[0][1] /= (count / 2);
        array[1][0] /= (count / 2);
        array[1][1] /= (count / 2);

        return array;
    }

    static float computeTotalLength(float[] points) {
        float sum = 0;
        int count = points.length - 4;
        for (int i = 0; i < count; i += 2) {
            float dx = points[i + 2] - points[i];
            float dy = points[i + 3] - points[i + 1];
            sum += Math.hypot(dx, dy);
        }
        return sum;
    }

    static float computeStraightness(float[] points) {
        float totalLen = computeTotalLength(points);
        float dx = points[2] - points[0];
        float dy = points[3] - points[1];
        return (float) Math.hypot(dx, dy) / totalLen;
    }

    static float computeStraightness(float[] points, float totalLen) {
        float dx = points[2] - points[0];
        float dy = points[3] - points[1];
        return (float) Math.hypot(dx, dy) / totalLen;
    }

    /**
     * Calculates the squared Euclidean distance between two vectors.
     * 
     * @param vector1
     * @param vector2
     * @return the distance
     */
    static float squaredEuclideanDistance(float[] vector1, float[] vector2) {
        float squaredDistance = 0;
        int size = vector1.length;
        for (int i = 0; i < size; i++) {
            float difference = vector1[i] - vector2[i];
            squaredDistance += difference * difference;
        }
        return squaredDistance / size;
    }

    /**
     * Calculates the cosine distance between two instances.
     * 
     * @param vector1
     * @param vector2
     * @return the distance between 0 and Math.PI
     */
    static float cosineDistance(float[] vector1, float[] vector2) {
        float sum = 0;
        int len = vector1.length;
        for (int i = 0; i < len; i++) {
            sum += vector1[i] * vector2[i];
        }
        return (float) Math.acos(sum);
    }
    
    /**
     * Calculates the "minimum" cosine distance between two instances.
     * 
     * @param vector1
     * @param vector2
     * @param numOrientations the maximum number of orientation allowed
     * @return the distance between the two instances (between 0 and Math.PI)
     */
    static float minimumCosineDistance(float[] vector1, float[] vector2, int numOrientations) {
        final int len = vector1.length;
        float a = 0;
        float b = 0;
        for (int i = 0; i < len; i += 2) {
            a += vector1[i] * vector2[i] + vector1[i + 1] * vector2[i + 1];
            b += vector1[i] * vector2[i + 1] - vector1[i + 1] * vector2[i];
        }
        if (a != 0) {
            final float tan = b/a;
            final double angle = Math.atan(tan);
            if (numOrientations > 2 && Math.abs(angle) >= Math.PI / numOrientations) {
                return (float) Math.acos(a);
            } else {
                final double cosine = Math.cos(angle);
                final double sine = cosine * tan; 
                return (float) Math.acos(a * cosine + b * sine);
            }
        } else {
            return (float) Math.PI / 2;
        }
    }

    /**
     * Computes an oriented, minimum bounding box of a set of points.
     * 
     * @param originalPoints
     * @return an oriented bounding box
     */
    public static OrientedBoundingBox computeOrientedBoundingBox(ArrayList<GesturePoint> originalPoints) {
        final int count = originalPoints.size();
        float[] points = new float[count * 2];
        for (int i = 0; i < count; i++) {
            GesturePoint point = originalPoints.get(i);
            int index = i * 2;
            points[index] = point.x;
            points[index + 1] = point.y;
        }
        float[] meanVector = computeCentroid(points);
        return computeOrientedBoundingBox(points, meanVector);
    }

    /**
     * Computes an oriented, minimum bounding box of a set of points.
     * 
     * @param originalPoints
     * @return an oriented bounding box
     */
    public static OrientedBoundingBox computeOrientedBoundingBox(float[] originalPoints) {
        int size = originalPoints.length;
        float[] points = new float[size];
        for (int i = 0; i < size; i++) {
            points[i] = originalPoints[i];
        }
        float[] meanVector = computeCentroid(points);
        return computeOrientedBoundingBox(points, meanVector);
    }

    private static OrientedBoundingBox computeOrientedBoundingBox(float[] points, float[] centroid) {
        translate(points, -centroid[0], -centroid[1]);

        float[][] array = computeCoVariance(points);
        float[] targetVector = computeOrientation(array);

        float angle;
        if (targetVector[0] == 0 && targetVector[1] == 0) {
            angle = (float) -Math.PI/2;
        } else { // -PI<alpha<PI
            angle = (float) Math.atan2(targetVector[1], targetVector[0]);
            rotate(points, -angle);
        }

        float minx = Float.MAX_VALUE;
        float miny = Float.MAX_VALUE;
        float maxx = Float.MIN_VALUE;
        float maxy = Float.MIN_VALUE;
        int count = points.length;
        for (int i = 0; i < count; i++) {
            if (points[i] < minx) {
                minx = points[i];
            }
            if (points[i] > maxx) {
                maxx = points[i];
            }
            i++;
            if (points[i] < miny) {
                miny = points[i];
            }
            if (points[i] > maxy) {
                maxy = points[i];
            }
        }

        return new OrientedBoundingBox((float) (angle * 180 / Math.PI), centroid[0], centroid[1], maxx - minx, maxy - miny);
    }

    private static float[] computeOrientation(float[][] covarianceMatrix) {
        float[] targetVector = new float[2];
        if (covarianceMatrix[0][1] == 0 || covarianceMatrix[1][0] == 0) {
            targetVector[0] = 1;
            targetVector[1] = 0;
        }

        float a = -covarianceMatrix[0][0] - covarianceMatrix[1][1];
        float b = covarianceMatrix[0][0] * covarianceMatrix[1][1] - covarianceMatrix[0][1]
                * covarianceMatrix[1][0];
        float value = a / 2;
        float rightside = (float) Math.sqrt(Math.pow(value, 2) - b);
        float lambda1 = -value + rightside;
        float lambda2 = -value - rightside;
        if (lambda1 == lambda2) {
            targetVector[0] = 0;
            targetVector[1] = 0;
        } else {
            float lambda = lambda1 > lambda2 ? lambda1 : lambda2;
            targetVector[0] = 1;
            targetVector[1] = (lambda - covarianceMatrix[0][0]) / covarianceMatrix[0][1];
        }
        return targetVector;
    }
    
    
    static float[] rotate(float[] points, float angle) {
        float cos = (float) Math.cos(angle);
        float sin = (float) Math.sin(angle);
        int size = points.length;
        for (int i = 0; i < size; i += 2) {
            float x = points[i] * cos - points[i + 1] * sin;
            float y = points[i] * sin + points[i + 1] * cos;
            points[i] = x;
            points[i + 1] = y;
        }
        return points;
    }
    
    static float[] translate(float[] points, float dx, float dy) {
        int size = points.length;
        for (int i = 0; i < size; i += 2) {
            points[i] += dx;
            points[i + 1] += dy;
        }
        return points;
    }
    
    static float[] scale(float[] points, float sx, float sy) {
        int size = points.length;
        for (int i = 0; i < size; i += 2) {
            points[i] *= sx;
            points[i + 1] *= sy;
        }
        return points;
    }
}