summaryrefslogtreecommitdiff
path: root/android/util/Rational.java
blob: 80d26d943ed7532778a5af478babda4d3c15c31b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package android.util;

import static com.android.internal.util.Preconditions.*;

import java.io.IOException;
import java.io.InvalidObjectException;

/**
 * <p>An immutable data type representation a rational number.</p>
 *
 * <p>Contains a pair of {@code int}s representing the numerator and denominator of a
 * Rational number. </p>
 */
public final class Rational extends Number implements Comparable<Rational> {
    /**
     * Constant for the <em>Not-a-Number (NaN)</em> value of the {@code Rational} type.
     *
     * <p>A {@code NaN} value is considered to be equal to itself (that is {@code NaN.equals(NaN)}
     * will return {@code true}; it is always greater than any non-{@code NaN} value (that is
     * {@code NaN.compareTo(notNaN)} will return a number greater than {@code 0}).</p>
     *
     * <p>Equivalent to constructing a new rational with both the numerator and denominator
     * equal to {@code 0}.</p>
     */
    public static final Rational NaN = new Rational(0, 0);

    /**
     * Constant for the positive infinity value of the {@code Rational} type.
     *
     * <p>Equivalent to constructing a new rational with a positive numerator and a denominator
     * equal to {@code 0}.</p>
     */
    public static final Rational POSITIVE_INFINITY = new Rational(1, 0);

    /**
     * Constant for the negative infinity value of the {@code Rational} type.
     *
     * <p>Equivalent to constructing a new rational with a negative numerator and a denominator
     * equal to {@code 0}.</p>
     */
    public static final Rational NEGATIVE_INFINITY = new Rational(-1, 0);

    /**
     * Constant for the zero value of the {@code Rational} type.
     *
     * <p>Equivalent to constructing a new rational with a numerator equal to {@code 0} and
     * any non-zero denominator.</p>
     */
    public static final Rational ZERO = new Rational(0, 1);

    /**
     * Unique version number per class to be compliant with {@link java.io.Serializable}.
     *
     * <p>Increment each time the fields change in any way.</p>
     */
    private static final long serialVersionUID = 1L;

    /*
     * Do not change the order of these fields or add new instance fields to maintain the
     * Serializable compatibility across API revisions.
     */
    private final int mNumerator;
    private final int mDenominator;

    /**
     * <p>Create a {@code Rational} with a given numerator and denominator.</p>
     *
     * <p>The signs of the numerator and the denominator may be flipped such that the denominator
     * is always positive. Both the numerator and denominator will be converted to their reduced
     * forms (see {@link #equals} for more details).</p>
     *
     * <p>For example,
     * <ul>
     * <li>a rational of {@code 2/4} will be reduced to {@code 1/2}.
     * <li>a rational of {@code 1/-1} will be flipped to {@code -1/1}
     * <li>a rational of {@code 5/0} will be reduced to {@code 1/0}
     * <li>a rational of {@code 0/5} will be reduced to {@code 0/1}
     * </ul>
     * </p>
     *
     * @param numerator the numerator of the rational
     * @param denominator the denominator of the rational
     *
     * @see #equals
     */
    public Rational(int numerator, int denominator) {

        if (denominator < 0) {
            numerator = -numerator;
            denominator = -denominator;
        }

        // Convert to reduced form
        if (denominator == 0 && numerator > 0) {
            mNumerator = 1; // +Inf
            mDenominator = 0;
        } else if (denominator == 0 && numerator < 0) {
            mNumerator = -1; // -Inf
            mDenominator = 0;
        } else if (denominator == 0 && numerator == 0) {
            mNumerator = 0; // NaN
            mDenominator = 0;
        } else if (numerator == 0) {
            mNumerator = 0;
            mDenominator = 1;
        } else {
            int gcd = gcd(numerator, denominator);

            mNumerator = numerator / gcd;
            mDenominator = denominator / gcd;
        }
    }

    /**
     * Gets the numerator of the rational.
     *
     * <p>The numerator will always return {@code 1} if this rational represents
     * infinity (that is, the denominator is {@code 0}).</p>
     */
    public int getNumerator() {
        return mNumerator;
    }

    /**
     * Gets the denominator of the rational
     *
     * <p>The denominator may return {@code 0}, in which case the rational may represent
     * positive infinity (if the numerator was positive), negative infinity (if the numerator
     * was negative), or {@code NaN} (if the numerator was {@code 0}).</p>
     *
     * <p>The denominator will always return {@code 1} if the numerator is {@code 0}.
     */
    public int getDenominator() {
        return mDenominator;
    }

    /**
     * Indicates whether this rational is a <em>Not-a-Number (NaN)</em> value.
     *
     * <p>A {@code NaN} value occurs when both the numerator and the denominator are {@code 0}.</p>
     *
     * @return {@code true} if this rational is a <em>Not-a-Number (NaN)</em> value;
     *         {@code false} if this is a (potentially infinite) number value
     */
    public boolean isNaN() {
        return mDenominator == 0 && mNumerator == 0;
    }

    /**
     * Indicates whether this rational represents an infinite value.
     *
     * <p>An infinite value occurs when the denominator is {@code 0} (but the numerator is not).</p>
     *
     * @return {@code true} if this rational is a (positive or negative) infinite value;
     *         {@code false} if this is a finite number value (or {@code NaN})
     */
    public boolean isInfinite() {
        return mNumerator != 0 && mDenominator == 0;
    }

    /**
     * Indicates whether this rational represents a finite value.
     *
     * <p>A finite value occurs when the denominator is not {@code 0}; in other words
     * the rational is neither infinity or {@code NaN}.</p>
     *
     * @return {@code true} if this rational is a (positive or negative) infinite value;
     *         {@code false} if this is a finite number value (or {@code NaN})
     */
    public boolean isFinite() {
        return mDenominator != 0;
    }

    /**
     * Indicates whether this rational represents a zero value.
     *
     * <p>A zero value is a {@link #isFinite finite} rational with a numerator of {@code 0}.</p>
     *
     * @return {@code true} if this rational is finite zero value;
     *         {@code false} otherwise
     */
    public boolean isZero() {
        return isFinite() && mNumerator == 0;
    }

    private boolean isPosInf() {
        return mDenominator == 0 && mNumerator > 0;
    }

    private boolean isNegInf() {
        return mDenominator == 0 && mNumerator < 0;
    }

    /**
     * <p>Compare this Rational to another object and see if they are equal.</p>
     *
     * <p>A Rational object can only be equal to another Rational object (comparing against any
     * other type will return {@code false}).</p>
     *
     * <p>A Rational object is considered equal to another Rational object if and only if one of
     * the following holds:</p>
     * <ul><li>Both are {@code NaN}</li>
     *     <li>Both are infinities of the same sign</li>
     *     <li>Both have the same numerator and denominator in their reduced form</li>
     * </ul>
     *
     * <p>A reduced form of a Rational is calculated by dividing both the numerator and the
     * denominator by their greatest common divisor.</p>
     *
     * <pre>{@code
     * (new Rational(1, 2)).equals(new Rational(1, 2)) == true   // trivially true
     * (new Rational(2, 3)).equals(new Rational(1, 2)) == false  // trivially false
     * (new Rational(1, 2)).equals(new Rational(2, 4)) == true   // true after reduction
     * (new Rational(0, 0)).equals(new Rational(0, 0)) == true   // NaN.equals(NaN)
     * (new Rational(1, 0)).equals(new Rational(5, 0)) == true   // both are +infinity
     * (new Rational(1, 0)).equals(new Rational(-1, 0)) == false // +infinity != -infinity
     * }</pre>
     *
     * @param obj a reference to another object
     *
     * @return A boolean that determines whether or not the two Rational objects are equal.
     */
    @Override
    public boolean equals(Object obj) {
        return obj instanceof Rational && equals((Rational) obj);
    }

    private boolean equals(Rational other) {
        return (mNumerator == other.mNumerator && mDenominator == other.mDenominator);
    }

    /**
     * Return a string representation of this rational, e.g. {@code "1/2"}.
     *
     * <p>The following rules of conversion apply:
     * <ul>
     * <li>{@code NaN} values will return {@code "NaN"}
     * <li>Positive infinity values will return {@code "Infinity"}
     * <li>Negative infinity values will return {@code "-Infinity"}
     * <li>All other values will return {@code "numerator/denominator"} where {@code numerator}
     * and {@code denominator} are substituted with the appropriate numerator and denominator
     * values.
     * </ul></p>
     */
    @Override
    public String toString() {
        if (isNaN()) {
            return "NaN";
        } else if (isPosInf()) {
            return "Infinity";
        } else if (isNegInf()) {
            return "-Infinity";
        } else {
            return mNumerator + "/" + mDenominator;
        }
    }

    /**
     * <p>Convert to a floating point representation.</p>
     *
     * @return The floating point representation of this rational number.
     * @hide
     */
    public float toFloat() {
        // TODO: remove this duplicate function (used in CTS and the shim)
        return floatValue();
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public int hashCode() {
        // Bias the hash code for the first (2^16) values for both numerator and denominator
        int numeratorFlipped = mNumerator << 16 | mNumerator >>> 16;

        return mDenominator ^ numeratorFlipped;
    }

    /**
     * Calculates the greatest common divisor using Euclid's algorithm.
     *
     * <p><em>Visible for testing only.</em></p>
     *
     * @param numerator the numerator in a fraction
     * @param denominator the denominator in a fraction
     *
     * @return An int value representing the gcd. Always positive.
     * @hide
     */
    public static int gcd(int numerator, int denominator) {
        /*
         * Non-recursive implementation of Euclid's algorithm:
         *
         *  gcd(a, 0) := a
         *  gcd(a, b) := gcd(b, a mod b)
         *
         */
        int a = numerator;
        int b = denominator;

        while (b != 0) {
            int oldB = b;

            b = a % b;
            a = oldB;
        }

        return Math.abs(a);
    }

    /**
     * Returns the value of the specified number as a {@code double}.
     *
     * <p>The {@code double} is calculated by converting both the numerator and denominator
     * to a {@code double}; then returning the result of dividing the numerator by the
     * denominator.</p>
     *
     * @return the divided value of the numerator and denominator as a {@code double}.
     */
    @Override
    public double doubleValue() {
        double num = mNumerator;
        double den = mDenominator;

        return num / den;
    }

    /**
     * Returns the value of the specified number as a {@code float}.
     *
     * <p>The {@code float} is calculated by converting both the numerator and denominator
     * to a {@code float}; then returning the result of dividing the numerator by the
     * denominator.</p>
     *
     * @return the divided value of the numerator and denominator as a {@code float}.
     */
    @Override
    public float floatValue() {
        float num = mNumerator;
        float den = mDenominator;

        return num / den;
    }

    /**
     * Returns the value of the specified number as a {@code int}.
     *
     * <p>{@link #isInfinite Finite} rationals are converted to an {@code int} value
     * by dividing the numerator by the denominator; conversion for non-finite values happens
     * identically to casting a floating point value to an {@code int}, in particular:
     *
     * <p>
     * <ul>
     * <li>Positive infinity saturates to the largest maximum integer
     * {@link Integer#MAX_VALUE}</li>
     * <li>Negative infinity saturates to the smallest maximum integer
     * {@link Integer#MIN_VALUE}</li>
     * <li><em>Not-A-Number (NaN)</em> returns {@code 0}.</li>
     * </ul>
     * </p>
     *
     * @return the divided value of the numerator and denominator as a {@code int}.
     */
    @Override
    public int intValue() {
        // Mimic float to int conversion rules from JLS 5.1.3

        if (isPosInf()) {
            return Integer.MAX_VALUE;
        } else if (isNegInf()) {
            return Integer.MIN_VALUE;
        } else if (isNaN()) {
            return 0;
        } else { // finite
            return mNumerator / mDenominator;
        }
    }

    /**
     * Returns the value of the specified number as a {@code long}.
     *
     * <p>{@link #isInfinite Finite} rationals are converted to an {@code long} value
     * by dividing the numerator by the denominator; conversion for non-finite values happens
     * identically to casting a floating point value to a {@code long}, in particular:
     *
     * <p>
     * <ul>
     * <li>Positive infinity saturates to the largest maximum long
     * {@link Long#MAX_VALUE}</li>
     * <li>Negative infinity saturates to the smallest maximum long
     * {@link Long#MIN_VALUE}</li>
     * <li><em>Not-A-Number (NaN)</em> returns {@code 0}.</li>
     * </ul>
     * </p>
     *
     * @return the divided value of the numerator and denominator as a {@code long}.
     */
    @Override
    public long longValue() {
        // Mimic float to long conversion rules from JLS 5.1.3

        if (isPosInf()) {
            return Long.MAX_VALUE;
        } else if (isNegInf()) {
            return Long.MIN_VALUE;
        } else if (isNaN()) {
            return 0;
        } else { // finite
            return mNumerator / mDenominator;
        }
    }

    /**
     * Returns the value of the specified number as a {@code short}.
     *
     * <p>{@link #isInfinite Finite} rationals are converted to a {@code short} value
     * identically to {@link #intValue}; the {@code int} result is then truncated to a
     * {@code short} before returning the value.</p>
     *
     * @return the divided value of the numerator and denominator as a {@code short}.
     */
    @Override
    public short shortValue() {
        return (short) intValue();
    }

    /**
     * Compare this rational to the specified rational to determine their natural order.
     *
     * <p>{@link #NaN} is considered to be equal to itself and greater than all other
     * {@code Rational} values. Otherwise, if the objects are not {@link #equals equal}, then
     * the following rules apply:</p>
     *
     * <ul>
     * <li>Positive infinity is greater than any other finite number (or negative infinity)
     * <li>Negative infinity is less than any other finite number (or positive infinity)
     * <li>The finite number represented by this rational is checked numerically
     * against the other finite number by converting both rationals to a common denominator multiple
     * and comparing their numerators.
     * </ul>
     *
     * @param another the rational to be compared
     *
     * @return a negative integer, zero, or a positive integer as this object is less than,
     *         equal to, or greater than the specified rational.
     *
     * @throws NullPointerException if {@code another} was {@code null}
     */
    @Override
    public int compareTo(Rational another) {
        checkNotNull(another, "another must not be null");

        if (equals(another)) {
            return 0;
        } else if (isNaN()) { // NaN is greater than the other non-NaN value
            return 1;
        } else if (another.isNaN()) { // the other NaN is greater than this non-NaN value
            return -1;
        } else if (isPosInf() || another.isNegInf()) {
            return 1; // positive infinity is greater than any non-NaN/non-posInf value
        } else if (isNegInf() || another.isPosInf()) {
            return -1; // negative infinity is less than any non-NaN/non-negInf value
        }

        // else both this and another are finite numbers

        // make the denominators the same, then compare numerators
        long thisNumerator = ((long)mNumerator) * another.mDenominator; // long to avoid overflow
        long otherNumerator = ((long)another.mNumerator) * mDenominator; // long to avoid overflow

        // avoid underflow from subtraction by doing comparisons
        if (thisNumerator < otherNumerator) {
            return -1;
        } else if (thisNumerator > otherNumerator) {
            return 1;
        } else {
            // This should be covered by #equals, but have this code path just in case
            return 0;
        }
    }

    /*
     * Serializable implementation.
     *
     * The following methods are omitted:
     * >> writeObject - the default is sufficient (field by field serialization)
     * >> readObjectNoData - the default is sufficient (0s for both fields is a NaN)
     */

    /**
     * writeObject with default serialized form - guards against
     * deserializing non-reduced forms of the rational.
     *
     * @throws InvalidObjectException if the invariants were violated
     */
    private void readObject(java.io.ObjectInputStream in)
            throws IOException, ClassNotFoundException {
        in.defaultReadObject();

        /*
         * Guard against trying to deserialize illegal values (in this case, ones
         * that don't have a standard reduced form).
         *
         * - Non-finite values must be one of [0, 1], [0, 0], [0, 1], [0, -1]
         * - Finite values must always have their greatest common divisor as 1
         */

        if (mNumerator == 0) { // either zero or NaN
            if (mDenominator == 1 || mDenominator == 0) {
                return;
            }
            throw new InvalidObjectException(
                    "Rational must be deserialized from a reduced form for zero values");
        } else if (mDenominator == 0) { // either positive or negative infinity
            if (mNumerator == 1 || mNumerator == -1) {
                return;
            }
            throw new InvalidObjectException(
                    "Rational must be deserialized from a reduced form for infinity values");
        } else { // finite value
            if (gcd(mNumerator, mDenominator) > 1) {
                throw new InvalidObjectException(
                        "Rational must be deserialized from a reduced form for finite values");
            }
        }
    }

    private static NumberFormatException invalidRational(String s) {
        throw new NumberFormatException("Invalid Rational: \"" + s + "\"");
    }

    /**
     * Parses the specified string as a rational value.
     * <p>The ASCII characters {@code \}{@code u003a} (':') and
     * {@code \}{@code u002f} ('/') are recognized as separators between
     * the numerator and denumerator.</p>
     * <p>
     * For any {@code Rational r}: {@code Rational.parseRational(r.toString()).equals(r)}.
     * However, the method also handles rational numbers expressed in the
     * following forms:</p>
     * <p>
     * "<i>num</i>{@code /}<i>den</i>" or
     * "<i>num</i>{@code :}<i>den</i>" {@code => new Rational(num, den);},
     * where <i>num</i> and <i>den</i> are string integers potentially
     * containing a sign, such as "-10", "+7" or "5".</p>
     *
     * <pre>{@code
     * Rational.parseRational("3:+6").equals(new Rational(1, 2)) == true
     * Rational.parseRational("-3/-6").equals(new Rational(1, 2)) == true
     * Rational.parseRational("4.56") => throws NumberFormatException
     * }</pre>
     *
     * @param string the string representation of a rational value.
     * @return the rational value represented by {@code string}.
     *
     * @throws NumberFormatException if {@code string} cannot be parsed
     * as a rational value.
     * @throws NullPointerException if {@code string} was {@code null}
     */
    public static Rational parseRational(String string)
            throws NumberFormatException {
        checkNotNull(string, "string must not be null");

        if (string.equals("NaN")) {
            return NaN;
        } else if (string.equals("Infinity")) {
            return POSITIVE_INFINITY;
        } else if (string.equals("-Infinity")) {
            return NEGATIVE_INFINITY;
        }

        int sep_ix = string.indexOf(':');
        if (sep_ix < 0) {
            sep_ix = string.indexOf('/');
        }
        if (sep_ix < 0) {
            throw invalidRational(string);
        }
        try {
            return new Rational(Integer.parseInt(string.substring(0, sep_ix)),
                    Integer.parseInt(string.substring(sep_ix + 1)));
        } catch (NumberFormatException e) {
            throw invalidRational(string);
        }
    }
}