summaryrefslogtreecommitdiff
path: root/lib/python2.7/ctypes/test/test_numbers.py
blob: 79239068306c812ccd20e0fa971fbdcab57ef391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from ctypes import *
import unittest
import struct

def valid_ranges(*types):
    # given a sequence of numeric types, collect their _type_
    # attribute, which is a single format character compatible with
    # the struct module, use the struct module to calculate the
    # minimum and maximum value allowed for this format.
    # Returns a list of (min, max) values.
    result = []
    for t in types:
        fmt = t._type_
        size = struct.calcsize(fmt)
        a = struct.unpack(fmt, ("\x00"*32)[:size])[0]
        b = struct.unpack(fmt, ("\xFF"*32)[:size])[0]
        c = struct.unpack(fmt, ("\x7F"+"\x00"*32)[:size])[0]
        d = struct.unpack(fmt, ("\x80"+"\xFF"*32)[:size])[0]
        result.append((min(a, b, c, d), max(a, b, c, d)))
    return result

ArgType = type(byref(c_int(0)))

unsigned_types = [c_ubyte, c_ushort, c_uint, c_ulong]
signed_types = [c_byte, c_short, c_int, c_long, c_longlong]

bool_types = []

float_types = [c_double, c_float]

try:
    c_ulonglong
    c_longlong
except NameError:
    pass
else:
    unsigned_types.append(c_ulonglong)
    signed_types.append(c_longlong)

try:
    c_bool
except NameError:
    pass
else:
    bool_types.append(c_bool)

unsigned_ranges = valid_ranges(*unsigned_types)
signed_ranges = valid_ranges(*signed_types)
bool_values = [True, False, 0, 1, -1, 5000, 'test', [], [1]]

################################################################

class NumberTestCase(unittest.TestCase):

    def test_default_init(self):
        # default values are set to zero
        for t in signed_types + unsigned_types + float_types:
            self.assertEqual(t().value, 0)

    def test_unsigned_values(self):
        # the value given to the constructor is available
        # as the 'value' attribute
        for t, (l, h) in zip(unsigned_types, unsigned_ranges):
            self.assertEqual(t(l).value, l)
            self.assertEqual(t(h).value, h)

    def test_signed_values(self):
        # see above
        for t, (l, h) in zip(signed_types, signed_ranges):
            self.assertEqual(t(l).value, l)
            self.assertEqual(t(h).value, h)

    def test_bool_values(self):
        from operator import truth
        for t, v in zip(bool_types, bool_values):
            self.assertEqual(t(v).value, truth(v))

    def test_typeerror(self):
        # Only numbers are allowed in the contructor,
        # otherwise TypeError is raised
        for t in signed_types + unsigned_types + float_types:
            self.assertRaises(TypeError, t, "")
            self.assertRaises(TypeError, t, None)

##    def test_valid_ranges(self):
##        # invalid values of the correct type
##        # raise ValueError (not OverflowError)
##        for t, (l, h) in zip(unsigned_types, unsigned_ranges):
##            self.assertRaises(ValueError, t, l-1)
##            self.assertRaises(ValueError, t, h+1)

    def test_from_param(self):
        # the from_param class method attribute always
        # returns PyCArgObject instances
        for t in signed_types + unsigned_types + float_types:
            self.assertEqual(ArgType, type(t.from_param(0)))

    def test_byref(self):
        # calling byref returns also a PyCArgObject instance
        for t in signed_types + unsigned_types + float_types + bool_types:
            parm = byref(t())
            self.assertEqual(ArgType, type(parm))


    def test_floats(self):
        # c_float and c_double can be created from
        # Python int, long and float
        class FloatLike(object):
            def __float__(self):
                return 2.0
        f = FloatLike()
        for t in float_types:
            self.assertEqual(t(2.0).value, 2.0)
            self.assertEqual(t(2).value, 2.0)
            self.assertEqual(t(2L).value, 2.0)
            self.assertEqual(t(f).value, 2.0)

    def test_integers(self):
        class FloatLike(object):
            def __float__(self):
                return 2.0
        f = FloatLike()
        class IntLike(object):
            def __int__(self):
                return 2
        i = IntLike()
        # integers cannot be constructed from floats,
        # but from integer-like objects
        for t in signed_types + unsigned_types:
            self.assertRaises(TypeError, t, 3.14)
            self.assertRaises(TypeError, t, f)
            self.assertEqual(t(i).value, 2)

    def test_sizes(self):
        for t in signed_types + unsigned_types + float_types + bool_types:
            try:
                size = struct.calcsize(t._type_)
            except struct.error:
                continue
            # sizeof of the type...
            self.assertEqual(sizeof(t), size)
            # and sizeof of an instance
            self.assertEqual(sizeof(t()), size)

    def test_alignments(self):
        for t in signed_types + unsigned_types + float_types:
            code = t._type_ # the typecode
            align = struct.calcsize("c%c" % code) - struct.calcsize(code)

            # alignment of the type...
            self.assertEqual((code, alignment(t)),
                                 (code, align))
            # and alignment of an instance
            self.assertEqual((code, alignment(t())),
                                 (code, align))

    def test_int_from_address(self):
        from array import array
        for t in signed_types + unsigned_types:
            # the array module doesn't support all format codes
            # (no 'q' or 'Q')
            try:
                array(t._type_)
            except ValueError:
                continue
            a = array(t._type_, [100])

            # v now is an integer at an 'external' memory location
            v = t.from_address(a.buffer_info()[0])
            self.assertEqual(v.value, a[0])
            self.assertEqual(type(v), t)

            # changing the value at the memory location changes v's value also
            a[0] = 42
            self.assertEqual(v.value, a[0])


    def test_float_from_address(self):
        from array import array
        for t in float_types:
            a = array(t._type_, [3.14])
            v = t.from_address(a.buffer_info()[0])
            self.assertEqual(v.value, a[0])
            self.assertTrue(type(v) is t)
            a[0] = 2.3456e17
            self.assertEqual(v.value, a[0])
            self.assertTrue(type(v) is t)

    def test_char_from_address(self):
        from ctypes import c_char
        from array import array

        a = array('c', 'x')
        v = c_char.from_address(a.buffer_info()[0])
        self.assertEqual(v.value, a[0])
        self.assertTrue(type(v) is c_char)

        a[0] = '?'
        self.assertEqual(v.value, a[0])

    # array does not support c_bool / 't'
    # def test_bool_from_address(self):
    #     from ctypes import c_bool
    #     from array import array
    #     a = array(c_bool._type_, [True])
    #     v = t.from_address(a.buffer_info()[0])
    #     self.assertEqual(v.value, a[0])
    #     self.assertEqual(type(v) is t)
    #     a[0] = False
    #     self.assertEqual(v.value, a[0])
    #     self.assertEqual(type(v) is t)

    def test_init(self):
        # c_int() can be initialized from Python's int, and c_int.
        # Not from c_long or so, which seems strange, abd should
        # probably be changed:
        self.assertRaises(TypeError, c_int, c_long(42))

    def test_float_overflow(self):
        import sys
        big_int = int(sys.float_info.max) * 2
        for t in float_types + [c_longdouble]:
            self.assertRaises(OverflowError, t, big_int)
            if (hasattr(t, "__ctype_be__")):
                self.assertRaises(OverflowError, t.__ctype_be__, big_int)
            if (hasattr(t, "__ctype_le__")):
                self.assertRaises(OverflowError, t.__ctype_le__, big_int)

##    def test_perf(self):
##        check_perf()

from ctypes import _SimpleCData
class c_int_S(_SimpleCData):
    _type_ = "i"
    __slots__ = []

def run_test(rep, msg, func, arg=None):
##    items = [None] * rep
    items = range(rep)
    from time import clock
    if arg is not None:
        start = clock()
        for i in items:
            func(arg); func(arg); func(arg); func(arg); func(arg)
        stop = clock()
    else:
        start = clock()
        for i in items:
            func(); func(); func(); func(); func()
        stop = clock()
    print "%15s: %.2f us" % (msg, ((stop-start)*1e6/5/rep))

def check_perf():
    # Construct 5 objects
    from ctypes import c_int

    REP = 200000

    run_test(REP, "int()", int)
    run_test(REP, "int(999)", int)
    run_test(REP, "c_int()", c_int)
    run_test(REP, "c_int(999)", c_int)
    run_test(REP, "c_int_S()", c_int_S)
    run_test(REP, "c_int_S(999)", c_int_S)

# Python 2.3 -OO, win2k, P4 700 MHz:
#
#          int(): 0.87 us
#       int(999): 0.87 us
#        c_int(): 3.35 us
#     c_int(999): 3.34 us
#      c_int_S(): 3.23 us
#   c_int_S(999): 3.24 us

# Python 2.2 -OO, win2k, P4 700 MHz:
#
#          int(): 0.89 us
#       int(999): 0.89 us
#        c_int(): 9.99 us
#     c_int(999): 10.02 us
#      c_int_S(): 9.87 us
#   c_int_S(999): 9.85 us

if __name__ == '__main__':
##    check_perf()
    unittest.main()