summaryrefslogtreecommitdiff
path: root/lib/python2.7/fractions.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/python2.7/fractions.py')
-rw-r--r--lib/python2.7/fractions.py605
1 files changed, 605 insertions, 0 deletions
diff --git a/lib/python2.7/fractions.py b/lib/python2.7/fractions.py
new file mode 100644
index 0000000..a0d86a4
--- /dev/null
+++ b/lib/python2.7/fractions.py
@@ -0,0 +1,605 @@
+# Originally contributed by Sjoerd Mullender.
+# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
+
+"""Rational, infinite-precision, real numbers."""
+
+from __future__ import division
+from decimal import Decimal
+import math
+import numbers
+import operator
+import re
+
+__all__ = ['Fraction', 'gcd']
+
+Rational = numbers.Rational
+
+
+def gcd(a, b):
+ """Calculate the Greatest Common Divisor of a and b.
+
+ Unless b==0, the result will have the same sign as b (so that when
+ b is divided by it, the result comes out positive).
+ """
+ while b:
+ a, b = b, a%b
+ return a
+
+
+_RATIONAL_FORMAT = re.compile(r"""
+ \A\s* # optional whitespace at the start, then
+ (?P<sign>[-+]?) # an optional sign, then
+ (?=\d|\.\d) # lookahead for digit or .digit
+ (?P<num>\d*) # numerator (possibly empty)
+ (?: # followed by
+ (?:/(?P<denom>\d+))? # an optional denominator
+ | # or
+ (?:\.(?P<decimal>\d*))? # an optional fractional part
+ (?:E(?P<exp>[-+]?\d+))? # and optional exponent
+ )
+ \s*\Z # and optional whitespace to finish
+""", re.VERBOSE | re.IGNORECASE)
+
+
+class Fraction(Rational):
+ """This class implements rational numbers.
+
+ In the two-argument form of the constructor, Fraction(8, 6) will
+ produce a rational number equivalent to 4/3. Both arguments must
+ be Rational. The numerator defaults to 0 and the denominator
+ defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
+
+ Fractions can also be constructed from:
+
+ - numeric strings similar to those accepted by the
+ float constructor (for example, '-2.3' or '1e10')
+
+ - strings of the form '123/456'
+
+ - float and Decimal instances
+
+ - other Rational instances (including integers)
+
+ """
+
+ __slots__ = ('_numerator', '_denominator')
+
+ # We're immutable, so use __new__ not __init__
+ def __new__(cls, numerator=0, denominator=None):
+ """Constructs a Fraction.
+
+ Takes a string like '3/2' or '1.5', another Rational instance, a
+ numerator/denominator pair, or a float.
+
+ Examples
+ --------
+
+ >>> Fraction(10, -8)
+ Fraction(-5, 4)
+ >>> Fraction(Fraction(1, 7), 5)
+ Fraction(1, 35)
+ >>> Fraction(Fraction(1, 7), Fraction(2, 3))
+ Fraction(3, 14)
+ >>> Fraction('314')
+ Fraction(314, 1)
+ >>> Fraction('-35/4')
+ Fraction(-35, 4)
+ >>> Fraction('3.1415') # conversion from numeric string
+ Fraction(6283, 2000)
+ >>> Fraction('-47e-2') # string may include a decimal exponent
+ Fraction(-47, 100)
+ >>> Fraction(1.47) # direct construction from float (exact conversion)
+ Fraction(6620291452234629, 4503599627370496)
+ >>> Fraction(2.25)
+ Fraction(9, 4)
+ >>> Fraction(Decimal('1.47'))
+ Fraction(147, 100)
+
+ """
+ self = super(Fraction, cls).__new__(cls)
+
+ if denominator is None:
+ if isinstance(numerator, Rational):
+ self._numerator = numerator.numerator
+ self._denominator = numerator.denominator
+ return self
+
+ elif isinstance(numerator, float):
+ # Exact conversion from float
+ value = Fraction.from_float(numerator)
+ self._numerator = value._numerator
+ self._denominator = value._denominator
+ return self
+
+ elif isinstance(numerator, Decimal):
+ value = Fraction.from_decimal(numerator)
+ self._numerator = value._numerator
+ self._denominator = value._denominator
+ return self
+
+ elif isinstance(numerator, basestring):
+ # Handle construction from strings.
+ m = _RATIONAL_FORMAT.match(numerator)
+ if m is None:
+ raise ValueError('Invalid literal for Fraction: %r' %
+ numerator)
+ numerator = int(m.group('num') or '0')
+ denom = m.group('denom')
+ if denom:
+ denominator = int(denom)
+ else:
+ denominator = 1
+ decimal = m.group('decimal')
+ if decimal:
+ scale = 10**len(decimal)
+ numerator = numerator * scale + int(decimal)
+ denominator *= scale
+ exp = m.group('exp')
+ if exp:
+ exp = int(exp)
+ if exp >= 0:
+ numerator *= 10**exp
+ else:
+ denominator *= 10**-exp
+ if m.group('sign') == '-':
+ numerator = -numerator
+
+ else:
+ raise TypeError("argument should be a string "
+ "or a Rational instance")
+
+ elif (isinstance(numerator, Rational) and
+ isinstance(denominator, Rational)):
+ numerator, denominator = (
+ numerator.numerator * denominator.denominator,
+ denominator.numerator * numerator.denominator
+ )
+ else:
+ raise TypeError("both arguments should be "
+ "Rational instances")
+
+ if denominator == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
+ g = gcd(numerator, denominator)
+ self._numerator = numerator // g
+ self._denominator = denominator // g
+ return self
+
+ @classmethod
+ def from_float(cls, f):
+ """Converts a finite float to a rational number, exactly.
+
+ Beware that Fraction.from_float(0.3) != Fraction(3, 10).
+
+ """
+ if isinstance(f, numbers.Integral):
+ return cls(f)
+ elif not isinstance(f, float):
+ raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
+ (cls.__name__, f, type(f).__name__))
+ if math.isnan(f) or math.isinf(f):
+ raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
+ return cls(*f.as_integer_ratio())
+
+ @classmethod
+ def from_decimal(cls, dec):
+ """Converts a finite Decimal instance to a rational number, exactly."""
+ from decimal import Decimal
+ if isinstance(dec, numbers.Integral):
+ dec = Decimal(int(dec))
+ elif not isinstance(dec, Decimal):
+ raise TypeError(
+ "%s.from_decimal() only takes Decimals, not %r (%s)" %
+ (cls.__name__, dec, type(dec).__name__))
+ if not dec.is_finite():
+ # Catches infinities and nans.
+ raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
+ sign, digits, exp = dec.as_tuple()
+ digits = int(''.join(map(str, digits)))
+ if sign:
+ digits = -digits
+ if exp >= 0:
+ return cls(digits * 10 ** exp)
+ else:
+ return cls(digits, 10 ** -exp)
+
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(4321, 8765).limit_denominator(10000)
+ Fraction(4321, 8765)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
+ if self._denominator <= max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self._numerator, self._denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
+ break
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+
+ k = (max_denominator-q0)//q1
+ bound1 = Fraction(p0+k*p1, q0+k*q1)
+ bound2 = Fraction(p1, q1)
+ if abs(bound2 - self) <= abs(bound1-self):
+ return bound2
+ else:
+ return bound1
+
+ @property
+ def numerator(a):
+ return a._numerator
+
+ @property
+ def denominator(a):
+ return a._denominator
+
+ def __repr__(self):
+ """repr(self)"""
+ return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
+
+ def __str__(self):
+ """str(self)"""
+ if self._denominator == 1:
+ return str(self._numerator)
+ else:
+ return '%s/%s' % (self._numerator, self._denominator)
+
+ def _operator_fallbacks(monomorphic_operator, fallback_operator):
+ """Generates forward and reverse operators given a purely-rational
+ operator and a function from the operator module.
+
+ Use this like:
+ __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
+
+ In general, we want to implement the arithmetic operations so
+ that mixed-mode operations either call an implementation whose
+ author knew about the types of both arguments, or convert both
+ to the nearest built in type and do the operation there. In
+ Fraction, that means that we define __add__ and __radd__ as:
+
+ def __add__(self, other):
+ # Both types have numerators/denominator attributes,
+ # so do the operation directly
+ if isinstance(other, (int, long, Fraction)):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ # float and complex don't have those operations, but we
+ # know about those types, so special case them.
+ elif isinstance(other, float):
+ return float(self) + other
+ elif isinstance(other, complex):
+ return complex(self) + other
+ # Let the other type take over.
+ return NotImplemented
+
+ def __radd__(self, other):
+ # radd handles more types than add because there's
+ # nothing left to fall back to.
+ if isinstance(other, Rational):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ elif isinstance(other, Real):
+ return float(other) + float(self)
+ elif isinstance(other, Complex):
+ return complex(other) + complex(self)
+ return NotImplemented
+
+
+ There are 5 different cases for a mixed-type addition on
+ Fraction. I'll refer to all of the above code that doesn't
+ refer to Fraction, float, or complex as "boilerplate". 'r'
+ will be an instance of Fraction, which is a subtype of
+ Rational (r : Fraction <: Rational), and b : B <:
+ Complex. The first three involve 'r + b':
+
+ 1. If B <: Fraction, int, float, or complex, we handle
+ that specially, and all is well.
+ 2. If Fraction falls back to the boilerplate code, and it
+ were to return a value from __add__, we'd miss the
+ possibility that B defines a more intelligent __radd__,
+ so the boilerplate should return NotImplemented from
+ __add__. In particular, we don't handle Rational
+ here, even though we could get an exact answer, in case
+ the other type wants to do something special.
+ 3. If B <: Fraction, Python tries B.__radd__ before
+ Fraction.__add__. This is ok, because it was
+ implemented with knowledge of Fraction, so it can
+ handle those instances before delegating to Real or
+ Complex.
+
+ The next two situations describe 'b + r'. We assume that b
+ didn't know about Fraction in its implementation, and that it
+ uses similar boilerplate code:
+
+ 4. If B <: Rational, then __radd_ converts both to the
+ builtin rational type (hey look, that's us) and
+ proceeds.
+ 5. Otherwise, __radd__ tries to find the nearest common
+ base ABC, and fall back to its builtin type. Since this
+ class doesn't subclass a concrete type, there's no
+ implementation to fall back to, so we need to try as
+ hard as possible to return an actual value, or the user
+ will get a TypeError.
+
+ """
+ def forward(a, b):
+ if isinstance(b, (int, long, Fraction)):
+ return monomorphic_operator(a, b)
+ elif isinstance(b, float):
+ return fallback_operator(float(a), b)
+ elif isinstance(b, complex):
+ return fallback_operator(complex(a), b)
+ else:
+ return NotImplemented
+ forward.__name__ = '__' + fallback_operator.__name__ + '__'
+ forward.__doc__ = monomorphic_operator.__doc__
+
+ def reverse(b, a):
+ if isinstance(a, Rational):
+ # Includes ints.
+ return monomorphic_operator(a, b)
+ elif isinstance(a, numbers.Real):
+ return fallback_operator(float(a), float(b))
+ elif isinstance(a, numbers.Complex):
+ return fallback_operator(complex(a), complex(b))
+ else:
+ return NotImplemented
+ reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
+ reverse.__doc__ = monomorphic_operator.__doc__
+
+ return forward, reverse
+
+ def _add(a, b):
+ """a + b"""
+ return Fraction(a.numerator * b.denominator +
+ b.numerator * a.denominator,
+ a.denominator * b.denominator)
+
+ __add__, __radd__ = _operator_fallbacks(_add, operator.add)
+
+ def _sub(a, b):
+ """a - b"""
+ return Fraction(a.numerator * b.denominator -
+ b.numerator * a.denominator,
+ a.denominator * b.denominator)
+
+ __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
+
+ def _mul(a, b):
+ """a * b"""
+ return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
+
+ __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
+
+ def _div(a, b):
+ """a / b"""
+ return Fraction(a.numerator * b.denominator,
+ a.denominator * b.numerator)
+
+ __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
+ __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
+
+ def __floordiv__(a, b):
+ """a // b"""
+ # Will be math.floor(a / b) in 3.0.
+ div = a / b
+ if isinstance(div, Rational):
+ # trunc(math.floor(div)) doesn't work if the rational is
+ # more precise than a float because the intermediate
+ # rounding may cross an integer boundary.
+ return div.numerator // div.denominator
+ else:
+ return math.floor(div)
+
+ def __rfloordiv__(b, a):
+ """a // b"""
+ # Will be math.floor(a / b) in 3.0.
+ div = a / b
+ if isinstance(div, Rational):
+ # trunc(math.floor(div)) doesn't work if the rational is
+ # more precise than a float because the intermediate
+ # rounding may cross an integer boundary.
+ return div.numerator // div.denominator
+ else:
+ return math.floor(div)
+
+ def __mod__(a, b):
+ """a % b"""
+ div = a // b
+ return a - b * div
+
+ def __rmod__(b, a):
+ """a % b"""
+ div = a // b
+ return a - b * div
+
+ def __pow__(a, b):
+ """a ** b
+
+ If b is not an integer, the result will be a float or complex
+ since roots are generally irrational. If b is an integer, the
+ result will be rational.
+
+ """
+ if isinstance(b, Rational):
+ if b.denominator == 1:
+ power = b.numerator
+ if power >= 0:
+ return Fraction(a._numerator ** power,
+ a._denominator ** power)
+ else:
+ return Fraction(a._denominator ** -power,
+ a._numerator ** -power)
+ else:
+ # A fractional power will generally produce an
+ # irrational number.
+ return float(a) ** float(b)
+ else:
+ return float(a) ** b
+
+ def __rpow__(b, a):
+ """a ** b"""
+ if b._denominator == 1 and b._numerator >= 0:
+ # If a is an int, keep it that way if possible.
+ return a ** b._numerator
+
+ if isinstance(a, Rational):
+ return Fraction(a.numerator, a.denominator) ** b
+
+ if b._denominator == 1:
+ return a ** b._numerator
+
+ return a ** float(b)
+
+ def __pos__(a):
+ """+a: Coerces a subclass instance to Fraction"""
+ return Fraction(a._numerator, a._denominator)
+
+ def __neg__(a):
+ """-a"""
+ return Fraction(-a._numerator, a._denominator)
+
+ def __abs__(a):
+ """abs(a)"""
+ return Fraction(abs(a._numerator), a._denominator)
+
+ def __trunc__(a):
+ """trunc(a)"""
+ if a._numerator < 0:
+ return -(-a._numerator // a._denominator)
+ else:
+ return a._numerator // a._denominator
+
+ def __hash__(self):
+ """hash(self)
+
+ Tricky because values that are exactly representable as a
+ float must have the same hash as that float.
+
+ """
+ # XXX since this method is expensive, consider caching the result
+ if self._denominator == 1:
+ # Get integers right.
+ return hash(self._numerator)
+ # Expensive check, but definitely correct.
+ if self == float(self):
+ return hash(float(self))
+ else:
+ # Use tuple's hash to avoid a high collision rate on
+ # simple fractions.
+ return hash((self._numerator, self._denominator))
+
+ def __eq__(a, b):
+ """a == b"""
+ if isinstance(b, Rational):
+ return (a._numerator == b.numerator and
+ a._denominator == b.denominator)
+ if isinstance(b, numbers.Complex) and b.imag == 0:
+ b = b.real
+ if isinstance(b, float):
+ if math.isnan(b) or math.isinf(b):
+ # comparisons with an infinity or nan should behave in
+ # the same way for any finite a, so treat a as zero.
+ return 0.0 == b
+ else:
+ return a == a.from_float(b)
+ else:
+ # Since a doesn't know how to compare with b, let's give b
+ # a chance to compare itself with a.
+ return NotImplemented
+
+ def _richcmp(self, other, op):
+ """Helper for comparison operators, for internal use only.
+
+ Implement comparison between a Rational instance `self`, and
+ either another Rational instance or a float `other`. If
+ `other` is not a Rational instance or a float, return
+ NotImplemented. `op` should be one of the six standard
+ comparison operators.
+
+ """
+ # convert other to a Rational instance where reasonable.
+ if isinstance(other, Rational):
+ return op(self._numerator * other.denominator,
+ self._denominator * other.numerator)
+ # comparisons with complex should raise a TypeError, for consistency
+ # with int<->complex, float<->complex, and complex<->complex comparisons.
+ if isinstance(other, complex):
+ raise TypeError("no ordering relation is defined for complex numbers")
+ if isinstance(other, float):
+ if math.isnan(other) or math.isinf(other):
+ return op(0.0, other)
+ else:
+ return op(self, self.from_float(other))
+ else:
+ return NotImplemented
+
+ def __lt__(a, b):
+ """a < b"""
+ return a._richcmp(b, operator.lt)
+
+ def __gt__(a, b):
+ """a > b"""
+ return a._richcmp(b, operator.gt)
+
+ def __le__(a, b):
+ """a <= b"""
+ return a._richcmp(b, operator.le)
+
+ def __ge__(a, b):
+ """a >= b"""
+ return a._richcmp(b, operator.ge)
+
+ def __nonzero__(a):
+ """a != 0"""
+ return a._numerator != 0
+
+ # support for pickling, copy, and deepcopy
+
+ def __reduce__(self):
+ return (self.__class__, (str(self),))
+
+ def __copy__(self):
+ if type(self) == Fraction:
+ return self # I'm immutable; therefore I am my own clone
+ return self.__class__(self._numerator, self._denominator)
+
+ def __deepcopy__(self, memo):
+ if type(self) == Fraction:
+ return self # My components are also immutable
+ return self.__class__(self._numerator, self._denominator)