summaryrefslogtreecommitdiff
path: root/lib/python2.7/site-packages/setoolsgui/networkx/generators/tests/test_classic.py
blob: 96ca367f87896ef7523136361d9f1a3c2ee271bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python
"""
====================
Generators - Classic
====================

Unit tests for various classic graph generators in generators/classic.py
"""
from nose.tools import *
from networkx import *
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
is_isomorphic=graph_could_be_isomorphic

class TestGeneratorClassic():
    def test_balanced_tree(self):
        # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
        for r,h in [(2,2),(3,3),(6,2)]:
            t=balanced_tree(r,h)
            order=t.order()
            assert_true(order==(r**(h+1)-1)/(r-1))
            assert_true(is_connected(t)) 
            assert_true(t.size()==order-1)
            dh = degree_histogram(t)
            assert_equal(dh[0],0) # no nodes of 0 
            assert_equal(dh[1],r**h) # nodes of degree 1 are leaves
            assert_equal(dh[r],1)  # root is degree r
            assert_equal(dh[r+1],order-r**h-1)# everyone else is degree r+1
            assert_equal(len(dh),r+2)

    def test_balanced_tree_star(self):
        # balanced_tree(r,1) is the r-star
        t=balanced_tree(r=2,h=1)
        assert_true(is_isomorphic(t,star_graph(2)))
        t=balanced_tree(r=5,h=1)
        assert_true(is_isomorphic(t,star_graph(5)))
        t=balanced_tree(r=10,h=1)
        assert_true(is_isomorphic(t,star_graph(10)))

    def test_full_rary_tree(self):
        r=2
        n=9
        t=full_rary_tree(r,n)
        assert_equal(t.order(),n)
        assert_true(is_connected(t))
        dh = degree_histogram(t)
        assert_equal(dh[0],0) # no nodes of 0 
        assert_equal(dh[1],5) # nodes of degree 1 are leaves
        assert_equal(dh[r],1)  # root is degree r
        assert_equal(dh[r+1],9-5-1) # everyone else is degree r+1
        assert_equal(len(dh),r+2)

    def test_full_rary_tree_balanced(self):
        t=full_rary_tree(2,15)
        th=balanced_tree(2,3)
        assert_true(is_isomorphic(t,th))

    def test_full_rary_tree_path(self):
        t=full_rary_tree(1,10)
        assert_true(is_isomorphic(t,path_graph(10)))

    def test_full_rary_tree_empty(self):
        t=full_rary_tree(0,10)
        assert_true(is_isomorphic(t,empty_graph(10)))
        t=full_rary_tree(3,0)
        assert_true(is_isomorphic(t,empty_graph(0)))

    def test_full_rary_tree_3_20(self):
        t=full_rary_tree(3,20)
        assert_equal(t.order(),20)

    def test_barbell_graph(self):
        # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
        # number of edges = 2*(number_of_edges(m1-complete graph) + m2 + 1
        m1=3; m2=5
        b=barbell_graph(m1,m2)
        assert_true(number_of_nodes(b)==2*m1+m2)
        assert_true(number_of_edges(b)==m1*(m1-1) + m2 + 1)
        assert_equal(b.name, 'barbell_graph(3,5)')

        m1=4; m2=10
        b=barbell_graph(m1,m2)
        assert_true(number_of_nodes(b)==2*m1+m2)
        assert_true(number_of_edges(b)==m1*(m1-1) + m2 + 1)
        assert_equal(b.name, 'barbell_graph(4,10)')

        m1=3; m2=20
        b=barbell_graph(m1,m2)
        assert_true(number_of_nodes(b)==2*m1+m2)
        assert_true(number_of_edges(b)==m1*(m1-1) + m2 + 1)
        assert_equal(b.name, 'barbell_graph(3,20)')

        # Raise NetworkXError if m1<2
        m1=1; m2=20
        assert_raises(networkx.exception.NetworkXError, barbell_graph, m1, m2)

        # Raise NetworkXError if m2<0
        m1=5; m2=-2
        assert_raises(networkx.exception.NetworkXError, barbell_graph, m1, m2)

        # barbell_graph(2,m) = path_graph(m+4)
        m1=2; m2=5
        b=barbell_graph(m1,m2)
        assert_true(is_isomorphic(b, path_graph(m2+4)))

        m1=2; m2=10
        b=barbell_graph(m1,m2)
        assert_true(is_isomorphic(b, path_graph(m2+4)))

        m1=2; m2=20
        b=barbell_graph(m1,m2)
        assert_true(is_isomorphic(b, path_graph(m2+4)))

        assert_raises(networkx.exception.NetworkXError, barbell_graph, m1, m2, 
                      create_using=DiGraph())
        
        mb=barbell_graph(m1, m2, create_using=MultiGraph())
        assert_true(mb.edges()==b.edges())

    def test_complete_graph(self):
        # complete_graph(m) is a connected graph with 
        # m nodes and  m*(m+1)/2 edges
        for m in [0, 1, 3, 5]:
            g = complete_graph(m)
            assert_true(number_of_nodes(g) == m)
            assert_true(number_of_edges(g) == m * (m - 1) // 2)

        
        mg=complete_graph(m, create_using=MultiGraph())
        assert_true(mg.edges()==g.edges())

    def test_complete_digraph(self):
        # complete_graph(m) is a connected graph with 
        # m nodes and  m*(m+1)/2 edges
        for m in [0, 1, 3, 5]:
            g = complete_graph(m,create_using=nx.DiGraph())
            assert_true(number_of_nodes(g) == m)
            assert_true(number_of_edges(g) == m * (m - 1))

    def test_complete_bipartite_graph(self):
        G=complete_bipartite_graph(0,0)
        assert_true(is_isomorphic( G, null_graph() ))
        
        for i in [1, 5]:
            G=complete_bipartite_graph(i,0)
            assert_true(is_isomorphic( G, empty_graph(i) ))
            G=complete_bipartite_graph(0,i)
            assert_true(is_isomorphic( G, empty_graph(i) ))

        G=complete_bipartite_graph(2,2)
        assert_true(is_isomorphic( G, cycle_graph(4) ))

        G=complete_bipartite_graph(1,5)
        assert_true(is_isomorphic( G, star_graph(5) ))

        G=complete_bipartite_graph(5,1)
        assert_true(is_isomorphic( G, star_graph(5) ))

        # complete_bipartite_graph(m1,m2) is a connected graph with
        # m1+m2 nodes and  m1*m2 edges
        for m1, m2 in [(5, 11), (7, 3)]:
            G=complete_bipartite_graph(m1,m2)
            assert_equal(number_of_nodes(G), m1 + m2)
            assert_equal(number_of_edges(G), m1 * m2)

        assert_raises(networkx.exception.NetworkXError,
                      complete_bipartite_graph, 7, 3, create_using=DiGraph())
        
        mG=complete_bipartite_graph(7, 3, create_using=MultiGraph())
        assert_equal(mG.edges(), G.edges())

    def test_circular_ladder_graph(self):
        G=circular_ladder_graph(5)
        assert_raises(networkx.exception.NetworkXError, circular_ladder_graph,
                      5, create_using=DiGraph())
        mG=circular_ladder_graph(5, create_using=MultiGraph())
        assert_equal(mG.edges(), G.edges())

    def test_cycle_graph(self):
        G=cycle_graph(4)
        assert_equal(sorted(G.edges()), [(0, 1), (0, 3), (1, 2), (2, 3)])
        mG=cycle_graph(4, create_using=MultiGraph())
        assert_equal(sorted(mG.edges()), [(0, 1), (0, 3), (1, 2), (2, 3)])
        G=cycle_graph(4, create_using=DiGraph())
        assert_false(G.has_edge(2,1))
        assert_true(G.has_edge(1,2))
        
    def test_dorogovtsev_goltsev_mendes_graph(self):
        G=dorogovtsev_goltsev_mendes_graph(0)
        assert_equal(G.edges(), [(0, 1)])
        assert_equal(G.nodes(), [0, 1])
        G=dorogovtsev_goltsev_mendes_graph(1)
        assert_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
        assert_equal(average_clustering(G), 1.0)
        assert_equal(list(triangles(G).values()), [1, 1, 1])
        G=dorogovtsev_goltsev_mendes_graph(10)
        assert_equal(number_of_nodes(G), 29526)
        assert_equal(number_of_edges(G), 59049)
        assert_equal(G.degree(0), 1024)
        assert_equal(G.degree(1), 1024)
        assert_equal(G.degree(2), 1024)

        assert_raises(networkx.exception.NetworkXError,
                      dorogovtsev_goltsev_mendes_graph, 7,
                      create_using=DiGraph())
        assert_raises(networkx.exception.NetworkXError,
                      dorogovtsev_goltsev_mendes_graph, 7,
                      create_using=MultiGraph())

    def test_empty_graph(self):
        G=empty_graph()
        assert_equal(number_of_nodes(G), 0)
        G=empty_graph(42)
        assert_equal(number_of_nodes(G), 42)
        assert_equal(number_of_edges(G), 0)
        assert_equal(G.name, 'empty_graph(42)')

        # create empty digraph
        G=empty_graph(42,create_using=DiGraph(name="duh"))
        assert_equal(number_of_nodes(G), 42)
        assert_equal(number_of_edges(G), 0)
        assert_equal(G.name, 'empty_graph(42)')
        assert_true(isinstance(G,DiGraph))

        # create empty multigraph
        G=empty_graph(42,create_using=MultiGraph(name="duh"))
        assert_equal(number_of_nodes(G), 42)
        assert_equal(number_of_edges(G), 0)
        assert_equal(G.name, 'empty_graph(42)')
        assert_true(isinstance(G,MultiGraph))
        
        # create empty graph from another
        pete=petersen_graph()
        G=empty_graph(42,create_using=pete)
        assert_equal(number_of_nodes(G), 42)
        assert_equal(number_of_edges(G), 0)
        assert_equal(G.name, 'empty_graph(42)')
        assert_true(isinstance(G,Graph))
        
    def test_grid_2d_graph(self):
        n=5;m=6
        G=grid_2d_graph(n,m)
        assert_equal(number_of_nodes(G), n*m)
        assert_equal(degree_histogram(G), [0,0,4,2*(n+m)-8,(n-2)*(m-2)])
        DG=grid_2d_graph(n,m, create_using=DiGraph())
        assert_equal(DG.succ, G.adj)
        assert_equal(DG.pred, G.adj)
        MG=grid_2d_graph(n,m, create_using=MultiGraph())
        assert_equal(MG.edges(), G.edges())
        
    def test_grid_graph(self):
        """grid_graph([n,m]) is a connected simple graph with the
        following properties:
        number_of_nodes=n*m
        degree_histogram=[0,0,4,2*(n+m)-8,(n-2)*(m-2)]
        """
        for n, m in [(3, 5), (5, 3), (4, 5), (5, 4)]:
            dim=[n,m]
            g=grid_graph(dim)
            assert_equal(number_of_nodes(g), n*m)
            assert_equal(degree_histogram(g), [0,0,4,2*(n+m)-8,(n-2)*(m-2)])
            assert_equal(dim,[n,m])
        
        for n, m in [(1, 5), (5, 1)]:
            dim=[n,m]
            g=grid_graph(dim)
            assert_equal(number_of_nodes(g), n*m)
            assert_true(is_isomorphic(g,path_graph(5)))
            assert_equal(dim,[n,m])

#        mg=grid_graph([n,m], create_using=MultiGraph())
#        assert_equal(mg.edges(), g.edges())

    def test_hypercube_graph(self):
        for n, G in [(0, null_graph()), (1, path_graph(2)),
                     (2, cycle_graph(4)), (3, cubical_graph())]:
            g=hypercube_graph(n)
            assert_true(is_isomorphic(g, G))

        g=hypercube_graph(4)
        assert_equal(degree_histogram(g), [0, 0, 0, 0, 16])
        g=hypercube_graph(5)
        assert_equal(degree_histogram(g), [0, 0, 0, 0, 0, 32])
        g=hypercube_graph(6)
        assert_equal(degree_histogram(g), [0, 0, 0, 0, 0, 0, 64])
        
#        mg=hypercube_graph(6, create_using=MultiGraph())
#        assert_equal(mg.edges(), g.edges())

    def test_ladder_graph(self):
        for i, G in [(0, empty_graph(0)), (1, path_graph(2)),
                     (2, hypercube_graph(2)), (10, grid_graph([2,10]))]:
            assert_true(is_isomorphic(ladder_graph(i), G))

        assert_raises(networkx.exception.NetworkXError,
                      ladder_graph, 2, create_using=DiGraph())
        
        g = ladder_graph(2)
        mg=ladder_graph(2, create_using=MultiGraph())
        assert_equal(mg.edges(), g.edges())

    def test_lollipop_graph(self):
        # number of nodes = m1 + m2
        # number of edges = number_of_edges(complete_graph(m1)) + m2
        for m1, m2 in [(3, 5), (4, 10), (3, 20)]:
            b=lollipop_graph(m1,m2)
            assert_equal(number_of_nodes(b), m1+m2)
            assert_equal(number_of_edges(b), m1*(m1-1)/2 + m2)
            assert_equal(b.name,
                         'lollipop_graph(' + str(m1) + ',' + str(m2) + ')')

        # Raise NetworkXError if m<2
        assert_raises(networkx.exception.NetworkXError,
                      lollipop_graph, 1, 20)

        # Raise NetworkXError if n<0
        assert_raises(networkx.exception.NetworkXError,
                      lollipop_graph, 5, -2)

        # lollipop_graph(2,m) = path_graph(m+2)
        for m1, m2 in [(2, 5), (2, 10), (2, 20)]:
            b=lollipop_graph(m1,m2)
            assert_true(is_isomorphic(b, path_graph(m2+2)))

        assert_raises(networkx.exception.NetworkXError,
                      lollipop_graph, m1, m2, create_using=DiGraph())
        
        mb=lollipop_graph(m1, m2, create_using=MultiGraph())
        assert_true(mb.edges(), b.edges())

    def test_null_graph(self):
        assert_equal(number_of_nodes(null_graph()), 0)

    def test_path_graph(self):
        p=path_graph(0)
        assert_true(is_isomorphic(p, null_graph()))
        assert_equal(p.name, 'path_graph(0)')

        p=path_graph(1)
        assert_true(is_isomorphic( p, empty_graph(1)))
        assert_equal(p.name, 'path_graph(1)')

        p=path_graph(10)
        assert_true(is_connected(p))
        assert_equal(sorted(list(p.degree().values())),
                     [1, 1, 2, 2, 2, 2, 2, 2, 2, 2])
        assert_equal(p.order()-1, p.size())

        dp=path_graph(3, create_using=DiGraph())
        assert_true(dp.has_edge(0,1))
        assert_false(dp.has_edge(1,0))
        
        mp=path_graph(10, create_using=MultiGraph())
        assert_true(mp.edges()==p.edges())

    def test_periodic_grid_2d_graph(self):
        g=grid_2d_graph(0,0, periodic=True)
        assert_equal(g.degree(), {})

        for m, n, G in [(2, 2, cycle_graph(4)), (1, 7, cycle_graph(7)),
                     (7, 1, cycle_graph(7)), (2, 5, circular_ladder_graph(5)),
                     (5, 2, circular_ladder_graph(5)), (2, 4, cubical_graph()),
                     (4, 2, cubical_graph())]:
            g=grid_2d_graph(m,n, periodic=True)
            assert_true(is_isomorphic(g, G))

        DG=grid_2d_graph(4, 2, periodic=True, create_using=DiGraph())
        assert_equal(DG.succ,g.adj)
        assert_equal(DG.pred,g.adj)
        MG=grid_2d_graph(4, 2, periodic=True, create_using=MultiGraph())
        assert_equal(MG.edges(),g.edges())

    def test_star_graph(self):
        assert_true(is_isomorphic(star_graph(0), empty_graph(1)))
        assert_true(is_isomorphic(star_graph(1), path_graph(2)))
        assert_true(is_isomorphic(star_graph(2), path_graph(3)))
        
        s=star_graph(10)
        assert_equal(sorted(list(s.degree().values())),
                     [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10])
        
        assert_raises(networkx.exception.NetworkXError,
                      star_graph, 10, create_using=DiGraph())
        
        ms=star_graph(10, create_using=MultiGraph())
        assert_true(ms.edges()==s.edges())

    def test_trivial_graph(self):
        assert_equal(number_of_nodes(trivial_graph()), 1)

    def test_wheel_graph(self):
        for n, G in [(0, null_graph()), (1, empty_graph(1)),
                     (2, path_graph(2)), (3, complete_graph(3)),
                     (4, complete_graph(4))]:
            g=wheel_graph(n)
            assert_true(is_isomorphic( g, G))
        
        assert_equal(g.name, 'wheel_graph(4)')

        g=wheel_graph(10)
        assert_equal(sorted(list(g.degree().values())),
                     [3, 3, 3, 3, 3, 3, 3, 3, 3, 9])
        
        assert_raises(networkx.exception.NetworkXError,
                      wheel_graph, 10, create_using=DiGraph())
        
        mg=wheel_graph(10, create_using=MultiGraph())
        assert_equal(mg.edges(), g.edges())