aboutsummaryrefslogtreecommitdiff
path: root/stack/a2dp/a2dp_sbc_encoder.cc
blob: 577346212c1a6989d0d3a386394c333ea48071c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/******************************************************************************
 *
 *  Copyright 2016 The Android Open Source Project
 *  Copyright 2009-2012 Broadcom Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at:
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 ******************************************************************************/

#define LOG_TAG "a2dp_sbc_encoder"

#include "a2dp_sbc_encoder.h"

#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

#include "a2dp_sbc.h"
#include "a2dp_sbc_up_sample.h"
#include "bt_common.h"
#include "common/time_util.h"
#include "embdrv/sbc/encoder/include/sbc_encoder.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"

/* Buffer pool */
#define A2DP_SBC_BUFFER_SIZE BT_DEFAULT_BUFFER_SIZE

// A2DP SBC encoder interval in milliseconds.
#define A2DP_SBC_ENCODER_INTERVAL_MS 20

/* High quality quality setting @ 44.1 khz */
#define A2DP_SBC_DEFAULT_BITRATE 328

#define A2DP_SBC_NON_EDR_MAX_RATE 229

#define A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK 3

#define A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1 119
#define A2DP_SBC_MAX_HQ_FRAME_SIZE_48 115

/* Define the bitrate step when trying to match bitpool value */
#define A2DP_SBC_BITRATE_STEP 5

/* Readability constants */
#define A2DP_SBC_FRAME_HEADER_SIZE_BYTES 4  // A2DP Spec v1.3, 12.4, Table 12.12
#define A2DP_SBC_SCALE_FACTOR_BITS 4        // A2DP Spec v1.3, 12.4, Table 12.13

/* offset */
#if (BTA_AV_CO_CP_SCMS_T == TRUE)
/* A2DP header will contain a CP header of size 1 */
#define A2DP_HDR_SIZE 2
#define A2DP_SBC_OFFSET (AVDT_MEDIA_OFFSET + A2DP_SBC_MPL_HDR_LEN + 1)
#else
#define A2DP_HDR_SIZE 1
#define A2DP_SBC_OFFSET (AVDT_MEDIA_OFFSET + A2DP_SBC_MPL_HDR_LEN)
#endif

typedef struct {
  uint32_t aa_frame_counter;
  int32_t aa_feed_counter;
  int32_t aa_feed_residue;
  uint32_t counter;
  uint32_t bytes_per_tick;              // pcm bytes read each media task tick
  uint64_t last_frame_timestamp_100ns;  // values in 1/10 microseconds
} tA2DP_SBC_FEEDING_STATE;

typedef struct {
  uint64_t session_start_us;

  size_t media_read_total_expected_packets;
  size_t media_read_total_expected_reads_count;
  size_t media_read_total_expected_read_bytes;

  size_t media_read_total_dropped_packets;
  size_t media_read_total_actual_reads_count;
  size_t media_read_total_actual_read_bytes;

  size_t media_read_total_expected_frames;
  size_t media_read_total_dropped_frames;
} a2dp_sbc_encoder_stats_t;

typedef struct {
  a2dp_source_read_callback_t read_callback;
  a2dp_source_enqueue_callback_t enqueue_callback;
  uint16_t TxAaMtuSize;
  uint8_t tx_sbc_frames;
  bool is_peer_edr;         /* True if the peer device supports EDR */
  bool peer_supports_3mbps; /* True if the peer device supports 3Mbps EDR */
  uint16_t peer_mtu;        /* MTU of the A2DP peer */
  uint32_t timestamp;       /* Timestamp for the A2DP frames */
  SBC_ENC_PARAMS sbc_encoder_params;
  tA2DP_FEEDING_PARAMS feeding_params;
  tA2DP_SBC_FEEDING_STATE feeding_state;
  int16_t pcmBuffer[SBC_MAX_PCM_BUFFER_SIZE];

  a2dp_sbc_encoder_stats_t stats;
} tA2DP_SBC_ENCODER_CB;

static tA2DP_SBC_ENCODER_CB a2dp_sbc_encoder_cb;

static void a2dp_sbc_encoder_update(uint16_t peer_mtu,
                                    A2dpCodecConfig* a2dp_codec_config,
                                    bool* p_restart_input,
                                    bool* p_restart_output,
                                    bool* p_config_updated);
static bool a2dp_sbc_read_feeding(uint32_t* bytes);
static void a2dp_sbc_encode_frames(uint8_t nb_frame);
static void a2dp_sbc_get_num_frame_iteration(uint8_t* num_of_iterations,
                                             uint8_t* num_of_frames,
                                             uint64_t timestamp_us);
static uint8_t calculate_max_frames_per_packet(void);
static uint16_t a2dp_sbc_source_rate();
static uint32_t a2dp_sbc_frame_length(void);

bool A2DP_LoadEncoderSbc(void) {
  // Nothing to do - the library is statically linked
  return true;
}

void A2DP_UnloadEncoderSbc(void) {
  // Nothing to do - the library is statically linked
}

void a2dp_sbc_encoder_init(const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params,
                           A2dpCodecConfig* a2dp_codec_config,
                           a2dp_source_read_callback_t read_callback,
                           a2dp_source_enqueue_callback_t enqueue_callback) {
  memset(&a2dp_sbc_encoder_cb, 0, sizeof(a2dp_sbc_encoder_cb));

  a2dp_sbc_encoder_cb.stats.session_start_us =
      bluetooth::common::time_get_os_boottime_us();

  a2dp_sbc_encoder_cb.read_callback = read_callback;
  a2dp_sbc_encoder_cb.enqueue_callback = enqueue_callback;
  a2dp_sbc_encoder_cb.is_peer_edr = p_peer_params->is_peer_edr;
  a2dp_sbc_encoder_cb.peer_supports_3mbps = p_peer_params->peer_supports_3mbps;
  a2dp_sbc_encoder_cb.peer_mtu = p_peer_params->peer_mtu;
  a2dp_sbc_encoder_cb.timestamp = 0;

  // NOTE: Ignore the restart_input / restart_output flags - this initization
  // happens when the connection is (re)started.
  bool restart_input = false;
  bool restart_output = false;
  bool config_updated = false;
  a2dp_sbc_encoder_update(a2dp_sbc_encoder_cb.peer_mtu, a2dp_codec_config,
                          &restart_input, &restart_output, &config_updated);
}

bool A2dpCodecConfigSbcSource::updateEncoderUserConfig(
    const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params, bool* p_restart_input,
    bool* p_restart_output, bool* p_config_updated) {
  a2dp_sbc_encoder_cb.is_peer_edr = p_peer_params->is_peer_edr;
  a2dp_sbc_encoder_cb.peer_supports_3mbps = p_peer_params->peer_supports_3mbps;
  a2dp_sbc_encoder_cb.peer_mtu = p_peer_params->peer_mtu;
  a2dp_sbc_encoder_cb.timestamp = 0;

  if (a2dp_sbc_encoder_cb.peer_mtu == 0) {
    LOG_ERROR(LOG_TAG,
              "%s: Cannot update the codec encoder for %s: "
              "invalid peer MTU",
              __func__, name().c_str());
    return false;
  }

  a2dp_sbc_encoder_update(a2dp_sbc_encoder_cb.peer_mtu, this, p_restart_input,
                          p_restart_output, p_config_updated);
  return true;
}

// Update the A2DP SBC encoder.
// |peer_mtu| is the peer MTU.
// |a2dp_codec_config| is the A2DP codec to use for the update.
static void a2dp_sbc_encoder_update(uint16_t peer_mtu,
                                    A2dpCodecConfig* a2dp_codec_config,
                                    bool* p_restart_input,
                                    bool* p_restart_output,
                                    bool* p_config_updated) {
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  uint8_t codec_info[AVDT_CODEC_SIZE];
  uint16_t s16SamplingFreq;
  int16_t s16BitPool = 0;
  int16_t s16BitRate;
  int16_t s16FrameLen;
  uint8_t protect = 0;
  int min_bitpool;
  int max_bitpool;

  *p_restart_input = false;
  *p_restart_output = false;
  *p_config_updated = false;
  if (!a2dp_codec_config->copyOutOtaCodecConfig(codec_info)) {
    LOG_ERROR(LOG_TAG,
              "%s: Cannot update the codec encoder for %s: "
              "invalid codec config",
              __func__, a2dp_codec_config->name().c_str());
    return;
  }
  const uint8_t* p_codec_info = codec_info;
  min_bitpool = A2DP_GetMinBitpoolSbc(p_codec_info);
  max_bitpool = A2DP_GetMaxBitpoolSbc(p_codec_info);

  // The feeding parameters
  tA2DP_FEEDING_PARAMS* p_feeding_params = &a2dp_sbc_encoder_cb.feeding_params;
  p_feeding_params->sample_rate = A2DP_GetTrackSampleRateSbc(p_codec_info);
  p_feeding_params->bits_per_sample =
      a2dp_codec_config->getAudioBitsPerSample();
  p_feeding_params->channel_count = A2DP_GetTrackChannelCountSbc(p_codec_info);
  LOG_DEBUG(LOG_TAG, "%s: sample_rate=%u bits_per_sample=%u channel_count=%u",
            __func__, p_feeding_params->sample_rate,
            p_feeding_params->bits_per_sample, p_feeding_params->channel_count);
  a2dp_sbc_feeding_reset();

  // The codec parameters
  p_encoder_params->s16ChannelMode = A2DP_GetChannelModeCodeSbc(p_codec_info);
  p_encoder_params->s16NumOfSubBands =
      A2DP_GetNumberOfSubbandsSbc(p_codec_info);
  p_encoder_params->s16NumOfBlocks = A2DP_GetNumberOfBlocksSbc(p_codec_info);
  p_encoder_params->s16AllocationMethod =
      A2DP_GetAllocationMethodCodeSbc(p_codec_info);
  p_encoder_params->s16SamplingFreq =
      A2DP_GetSamplingFrequencyCodeSbc(p_codec_info);
  p_encoder_params->s16NumOfChannels =
      A2DP_GetTrackChannelCountSbc(p_codec_info);

  // Reset invalid parameters
  if (!p_encoder_params->s16NumOfSubBands) {
    LOG_WARN(LOG_TAG, "%s: SubBands are set to 0, resetting to max (%d)",
             __func__, SBC_MAX_NUM_OF_SUBBANDS);
    p_encoder_params->s16NumOfSubBands = SBC_MAX_NUM_OF_SUBBANDS;
  }
  if (!p_encoder_params->s16NumOfBlocks) {
    LOG_WARN(LOG_TAG, "%s: Blocks are set to 0, resetting to max (%d)",
             __func__, SBC_MAX_NUM_OF_BLOCKS);
    p_encoder_params->s16NumOfBlocks = SBC_MAX_NUM_OF_BLOCKS;
  }
  if (!p_encoder_params->s16NumOfChannels) {
    LOG_WARN(LOG_TAG, "%s: Channels are set to 0, resetting to max (%d)",
             __func__, SBC_MAX_NUM_OF_CHANNELS);
    p_encoder_params->s16NumOfChannels = SBC_MAX_NUM_OF_CHANNELS;
  }

  uint16_t mtu_size = A2DP_SBC_BUFFER_SIZE - A2DP_SBC_OFFSET - sizeof(BT_HDR);
  if (mtu_size < peer_mtu) {
    a2dp_sbc_encoder_cb.TxAaMtuSize = mtu_size;
  } else {
    a2dp_sbc_encoder_cb.TxAaMtuSize = peer_mtu;
  }

  if (p_encoder_params->s16SamplingFreq == SBC_sf16000)
    s16SamplingFreq = 16000;
  else if (p_encoder_params->s16SamplingFreq == SBC_sf32000)
    s16SamplingFreq = 32000;
  else if (p_encoder_params->s16SamplingFreq == SBC_sf44100)
    s16SamplingFreq = 44100;
  else
    s16SamplingFreq = 48000;

  // Set the initial target bit rate
  p_encoder_params->u16BitRate = a2dp_sbc_source_rate();

  LOG_DEBUG(LOG_TAG, "%s: MTU=%d, peer_mtu=%d min_bitpool=%d max_bitpool=%d",
            __func__, a2dp_sbc_encoder_cb.TxAaMtuSize, peer_mtu, min_bitpool,
            max_bitpool);
  LOG_DEBUG(LOG_TAG,
            "%s: ChannelMode=%d, NumOfSubBands=%d, NumOfBlocks=%d, "
            "AllocationMethod=%d, BitRate=%d, SamplingFreq=%d BitPool=%d",
            __func__, p_encoder_params->s16ChannelMode,
            p_encoder_params->s16NumOfSubBands,
            p_encoder_params->s16NumOfBlocks,
            p_encoder_params->s16AllocationMethod, p_encoder_params->u16BitRate,
            s16SamplingFreq, p_encoder_params->s16BitPool);

  do {
    if ((p_encoder_params->s16ChannelMode == SBC_JOINT_STEREO) ||
        (p_encoder_params->s16ChannelMode == SBC_STEREO)) {
      s16BitPool = (int16_t)((p_encoder_params->u16BitRate *
                              p_encoder_params->s16NumOfSubBands * 1000 /
                              s16SamplingFreq) -
                             ((32 + (4 * p_encoder_params->s16NumOfSubBands *
                                     p_encoder_params->s16NumOfChannels) +
                               ((p_encoder_params->s16ChannelMode - 2) *
                                p_encoder_params->s16NumOfSubBands)) /
                              p_encoder_params->s16NumOfBlocks));

      s16FrameLen = 4 +
                    (4 * p_encoder_params->s16NumOfSubBands *
                     p_encoder_params->s16NumOfChannels) /
                        8 +
                    (((p_encoder_params->s16ChannelMode - 2) *
                      p_encoder_params->s16NumOfSubBands) +
                     (p_encoder_params->s16NumOfBlocks * s16BitPool)) /
                        8;

      s16BitRate = (8 * s16FrameLen * s16SamplingFreq) /
                   (p_encoder_params->s16NumOfSubBands *
                    p_encoder_params->s16NumOfBlocks * 1000);

      if (s16BitRate > p_encoder_params->u16BitRate) s16BitPool--;

      if (p_encoder_params->s16NumOfSubBands == 8)
        s16BitPool = (s16BitPool > 255) ? 255 : s16BitPool;
      else
        s16BitPool = (s16BitPool > 128) ? 128 : s16BitPool;
    } else {
      s16BitPool =
          (int16_t)(((p_encoder_params->s16NumOfSubBands *
                      p_encoder_params->u16BitRate * 1000) /
                     (s16SamplingFreq * p_encoder_params->s16NumOfChannels)) -
                    (((32 / p_encoder_params->s16NumOfChannels) +
                      (4 * p_encoder_params->s16NumOfSubBands)) /
                     p_encoder_params->s16NumOfBlocks));

      p_encoder_params->s16BitPool =
          (s16BitPool > (16 * p_encoder_params->s16NumOfSubBands))
              ? (16 * p_encoder_params->s16NumOfSubBands)
              : s16BitPool;
    }

    if (s16BitPool < 0) s16BitPool = 0;

    LOG_DEBUG(LOG_TAG, "%s: bitpool candidate: %d (%d kbps)", __func__,
              s16BitPool, p_encoder_params->u16BitRate);

    if (s16BitPool > max_bitpool) {
      LOG_DEBUG(LOG_TAG, "%s: computed bitpool too large (%d)", __func__,
                s16BitPool);
      /* Decrease bitrate */
      p_encoder_params->u16BitRate -= A2DP_SBC_BITRATE_STEP;
      /* Record that we have decreased the bitrate */
      protect |= 1;
    } else if (s16BitPool < min_bitpool) {
      LOG_WARN(LOG_TAG, "%s: computed bitpool too small (%d)", __func__,
               s16BitPool);

      /* Increase bitrate */
      uint16_t previous_u16BitRate = p_encoder_params->u16BitRate;
      p_encoder_params->u16BitRate += A2DP_SBC_BITRATE_STEP;
      /* Record that we have increased the bitrate */
      protect |= 2;
      /* Check over-flow */
      if (p_encoder_params->u16BitRate < previous_u16BitRate) protect |= 3;
    } else {
      break;
    }
    /* In case we have already increased and decreased the bitrate, just stop */
    if (protect == 3) {
      LOG_ERROR(LOG_TAG, "%s: could not find bitpool in range", __func__);
      break;
    }
  } while (true);

  /* Finally update the bitpool in the encoder structure */
  p_encoder_params->s16BitPool = s16BitPool;

  LOG_DEBUG(LOG_TAG, "%s: final bit rate %d, final bit pool %d", __func__,
            p_encoder_params->u16BitRate, p_encoder_params->s16BitPool);

  /* Reset the SBC encoder */
  SBC_Encoder_Init(&a2dp_sbc_encoder_cb.sbc_encoder_params);
  a2dp_sbc_encoder_cb.tx_sbc_frames = calculate_max_frames_per_packet();
}

void a2dp_sbc_encoder_cleanup(void) {
  memset(&a2dp_sbc_encoder_cb, 0, sizeof(a2dp_sbc_encoder_cb));
}

void a2dp_sbc_feeding_reset(void) {
  /* By default, just clear the entire state */
  memset(&a2dp_sbc_encoder_cb.feeding_state, 0,
         sizeof(a2dp_sbc_encoder_cb.feeding_state));

  a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick =
      (a2dp_sbc_encoder_cb.feeding_params.sample_rate *
       a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8 *
       a2dp_sbc_encoder_cb.feeding_params.channel_count *
       A2DP_SBC_ENCODER_INTERVAL_MS) /
      1000;

  LOG_DEBUG(LOG_TAG, "%s: PCM bytes per tick %u", __func__,
            a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick);
}

void a2dp_sbc_feeding_flush(void) {
  a2dp_sbc_encoder_cb.feeding_state.counter = 0;
  a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue = 0;
}

uint64_t a2dp_sbc_get_encoder_interval_ms(void) {
  return A2DP_SBC_ENCODER_INTERVAL_MS;
}

void a2dp_sbc_send_frames(uint64_t timestamp_us) {
  uint8_t nb_frame = 0;
  uint8_t nb_iterations = 0;

  a2dp_sbc_get_num_frame_iteration(&nb_iterations, &nb_frame, timestamp_us);
  LOG_VERBOSE(LOG_TAG, "%s: Sending %d frames per iteration, %d iterations",
              __func__, nb_frame, nb_iterations);
  if (nb_frame == 0) return;

  for (uint8_t counter = 0; counter < nb_iterations; counter++) {
    // Transcode frame and enqueue
    a2dp_sbc_encode_frames(nb_frame);
  }
}

// Obtains the number of frames to send and number of iterations
// to be used. |num_of_iterations| and |num_of_frames| parameters
// are used as output param for returning the respective values.
static void a2dp_sbc_get_num_frame_iteration(uint8_t* num_of_iterations,
                                             uint8_t* num_of_frames,
                                             uint64_t timestamp_us) {
  uint8_t nof = 0;
  uint8_t noi = 1;

  uint32_t projected_nof = 0;
  uint32_t pcm_bytes_per_frame =
      a2dp_sbc_encoder_cb.sbc_encoder_params.s16NumOfSubBands *
      a2dp_sbc_encoder_cb.sbc_encoder_params.s16NumOfBlocks *
      a2dp_sbc_encoder_cb.feeding_params.channel_count *
      a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8;
  LOG_VERBOSE(LOG_TAG, "%s: pcm_bytes_per_frame %u", __func__,
              pcm_bytes_per_frame);

  uint32_t hecto_ns_this_tick = A2DP_SBC_ENCODER_INTERVAL_MS * 10000;
  uint64_t* last_100ns =
      &a2dp_sbc_encoder_cb.feeding_state.last_frame_timestamp_100ns;
  uint64_t now_100ns = timestamp_us * 10;
  if (*last_100ns != 0) {
    hecto_ns_this_tick = (now_100ns - *last_100ns);
  }
  *last_100ns = now_100ns;

  uint32_t bytes_this_tick = a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick *
                             hecto_ns_this_tick /
                             (A2DP_SBC_ENCODER_INTERVAL_MS * 10000);
  a2dp_sbc_encoder_cb.feeding_state.counter += bytes_this_tick;
  // Without this erratum, there was a three microseocnd shift per tick which
  // would cause one SBC frame mismatched after every 20 seconds
  uint32_t erratum_100ns =
      ceil(1.0f * A2DP_SBC_ENCODER_INTERVAL_MS * 10000 * bytes_this_tick /
           a2dp_sbc_encoder_cb.feeding_state.bytes_per_tick);
  if (erratum_100ns < hecto_ns_this_tick) {
    LOG_VERBOSE(LOG_TAG,
                "%s: hecto_ns_this_tick=%d, bytes=%d, erratum_100ns=%d",
                __func__, hecto_ns_this_tick, bytes_this_tick, erratum_100ns);
    *last_100ns -= hecto_ns_this_tick - erratum_100ns;
  }

  /* Calculate the number of frames pending for this media tick */
  projected_nof =
      a2dp_sbc_encoder_cb.feeding_state.counter / pcm_bytes_per_frame;
  // Update the stats
  a2dp_sbc_encoder_cb.stats.media_read_total_expected_frames += projected_nof;

  if (projected_nof > MAX_PCM_FRAME_NUM_PER_TICK) {
    LOG_WARN(LOG_TAG, "%s: limiting frames to be sent from %d to %d", __func__,
             projected_nof, MAX_PCM_FRAME_NUM_PER_TICK);

    // Update the stats
    size_t delta = projected_nof - MAX_PCM_FRAME_NUM_PER_TICK;
    a2dp_sbc_encoder_cb.stats.media_read_total_dropped_frames += delta;

    projected_nof = MAX_PCM_FRAME_NUM_PER_TICK;
  }

  LOG_VERBOSE(LOG_TAG, "%s: frames for available PCM data %u", __func__,
              projected_nof);

  if (a2dp_sbc_encoder_cb.is_peer_edr) {
    if (!a2dp_sbc_encoder_cb.tx_sbc_frames) {
      LOG_ERROR(LOG_TAG, "%s: tx_sbc_frames not updated, update from here",
                __func__);
      a2dp_sbc_encoder_cb.tx_sbc_frames = calculate_max_frames_per_packet();
    }

    nof = a2dp_sbc_encoder_cb.tx_sbc_frames;
    if (!nof) {
      LOG_ERROR(LOG_TAG,
                "%s: number of frames not updated, set calculated values",
                __func__);
      nof = projected_nof;
      noi = 1;
    } else {
      if (nof < projected_nof) {
        noi = projected_nof / nof;  // number of iterations would vary
        if (noi > A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK) {
          LOG_ERROR(LOG_TAG, "%s: Audio Congestion (iterations:%d > max (%d))",
                    __func__, noi, A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK);
          noi = A2DP_SBC_MAX_PCM_ITER_NUM_PER_TICK;
          a2dp_sbc_encoder_cb.feeding_state.counter =
              noi * nof * pcm_bytes_per_frame;
        }
        projected_nof = nof;
      } else {
        noi = 1;  // number of iterations is 1
        LOG_VERBOSE(LOG_TAG, "%s: reducing frames for available PCM data",
                    __func__);
        nof = projected_nof;
      }
    }
  } else {
    // For BR cases nof will be same as the value retrieved at projected_nof
    LOG_VERBOSE(LOG_TAG, "%s: headset BR, number of frames %u", __func__, nof);
    if (projected_nof > MAX_PCM_FRAME_NUM_PER_TICK) {
      LOG_ERROR(LOG_TAG, "%s: Audio Congestion (frames: %d > max (%d))",
                __func__, projected_nof, MAX_PCM_FRAME_NUM_PER_TICK);

      // Update the stats
      size_t delta = projected_nof - MAX_PCM_FRAME_NUM_PER_TICK;
      a2dp_sbc_encoder_cb.stats.media_read_total_dropped_frames += delta;

      projected_nof = MAX_PCM_FRAME_NUM_PER_TICK;
      a2dp_sbc_encoder_cb.feeding_state.counter =
          noi * projected_nof * pcm_bytes_per_frame;
    }
    nof = projected_nof;
  }
  a2dp_sbc_encoder_cb.feeding_state.counter -= noi * nof * pcm_bytes_per_frame;
  LOG_VERBOSE(LOG_TAG, "%s: effective num of frames %u, iterations %u",
              __func__, nof, noi);

  *num_of_frames = nof;
  *num_of_iterations = noi;
}

static void a2dp_sbc_encode_frames(uint8_t nb_frame) {
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  uint8_t remain_nb_frame = nb_frame;
  uint16_t blocm_x_subband =
      p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks;

  uint8_t last_frame_len = 0;

  while (nb_frame) {
    BT_HDR* p_buf = (BT_HDR*)osi_malloc(A2DP_SBC_BUFFER_SIZE);
    uint32_t bytes_read = 0;

    p_buf->offset = A2DP_SBC_OFFSET;
    p_buf->len = 0;
    p_buf->layer_specific = 0;
    a2dp_sbc_encoder_cb.stats.media_read_total_expected_packets++;

    do {
      /* Fill allocated buffer with 0 */
      memset(a2dp_sbc_encoder_cb.pcmBuffer, 0,
             blocm_x_subband * p_encoder_params->s16NumOfChannels);
      //
      // Read the PCM data and encode it. If necessary, upsample the data.
      //
      uint32_t num_bytes = 0;
      if (a2dp_sbc_read_feeding(&num_bytes)) {
        uint8_t* output = (uint8_t*)(p_buf + 1) + p_buf->offset + p_buf->len;
        int16_t* input = a2dp_sbc_encoder_cb.pcmBuffer;
        uint16_t output_len = SBC_Encode(p_encoder_params, input, output);
        last_frame_len = output_len;

        /* Update SBC frame length */
        p_buf->len += output_len;
        nb_frame--;
        p_buf->layer_specific++;

        bytes_read += num_bytes;
      } else {
        LOG_WARN(LOG_TAG, "%s: underflow %d, %d", __func__, nb_frame,
                 a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue);
        a2dp_sbc_encoder_cb.feeding_state.counter +=
            nb_frame * p_encoder_params->s16NumOfSubBands *
            p_encoder_params->s16NumOfBlocks *
            a2dp_sbc_encoder_cb.feeding_params.channel_count *
            a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8;
        /* no more pcm to read */
        nb_frame = 0;
      }
    } while (
        ((p_buf->len + last_frame_len) < a2dp_sbc_encoder_cb.TxAaMtuSize) &&
        (p_buf->layer_specific < 0x0F) && nb_frame);

    if (p_buf->len) {
      /*
       * Timestamp of the media packet header represent the TS of the
       * first SBC frame, i.e the timestamp before including this frame.
       */
      *((uint32_t*)(p_buf + 1)) = a2dp_sbc_encoder_cb.timestamp;

      a2dp_sbc_encoder_cb.timestamp += p_buf->layer_specific * blocm_x_subband;

      uint8_t done_nb_frame = remain_nb_frame - nb_frame;
      remain_nb_frame = nb_frame;
      if (!a2dp_sbc_encoder_cb.enqueue_callback(p_buf, done_nb_frame,
                                                bytes_read))
        return;
    } else {
      a2dp_sbc_encoder_cb.stats.media_read_total_dropped_packets++;
      osi_free(p_buf);
    }
  }
}

static bool a2dp_sbc_read_feeding(uint32_t* bytes_read) {
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  uint16_t blocm_x_subband =
      p_encoder_params->s16NumOfSubBands * p_encoder_params->s16NumOfBlocks;
  uint32_t read_size;
  uint32_t sbc_sampling = 48000;
  uint32_t src_samples;
  uint16_t bytes_needed = blocm_x_subband * p_encoder_params->s16NumOfChannels *
                          a2dp_sbc_encoder_cb.feeding_params.bits_per_sample /
                          8;
  static uint16_t up_sampled_buffer[SBC_MAX_NUM_FRAME * SBC_MAX_NUM_OF_BLOCKS *
                                    SBC_MAX_NUM_OF_CHANNELS *
                                    SBC_MAX_NUM_OF_SUBBANDS * 2];
  static uint16_t read_buffer[SBC_MAX_NUM_FRAME * SBC_MAX_NUM_OF_BLOCKS *
                              SBC_MAX_NUM_OF_CHANNELS *
                              SBC_MAX_NUM_OF_SUBBANDS];
  uint32_t src_size_used;
  uint32_t dst_size_used;
  bool fract_needed;
  int32_t fract_max;
  int32_t fract_threshold;
  uint32_t nb_byte_read;

  /* Get the SBC sampling rate */
  switch (p_encoder_params->s16SamplingFreq) {
    case SBC_sf48000:
      sbc_sampling = 48000;
      break;
    case SBC_sf44100:
      sbc_sampling = 44100;
      break;
    case SBC_sf32000:
      sbc_sampling = 32000;
      break;
    case SBC_sf16000:
      sbc_sampling = 16000;
      break;
  }

  a2dp_sbc_encoder_cb.stats.media_read_total_expected_reads_count++;
  if (sbc_sampling == a2dp_sbc_encoder_cb.feeding_params.sample_rate) {
    read_size =
        bytes_needed - a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue;
    a2dp_sbc_encoder_cb.stats.media_read_total_expected_read_bytes += read_size;
    nb_byte_read = a2dp_sbc_encoder_cb.read_callback(
        ((uint8_t*)a2dp_sbc_encoder_cb.pcmBuffer) +
            a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
        read_size);
    a2dp_sbc_encoder_cb.stats.media_read_total_actual_read_bytes +=
        nb_byte_read;

    *bytes_read = nb_byte_read;
    if (nb_byte_read != read_size) {
      a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue += nb_byte_read;
      return false;
    }
    a2dp_sbc_encoder_cb.stats.media_read_total_actual_reads_count++;
    a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue = 0;
    return true;
  }

  /*
   * Some Feeding PCM frequencies require to split the number of sample
   * to read.
   * E.g 128 / 6 = 21.3333 => read 22 and 21 and 21 => max = 2; threshold = 0
   */
  fract_needed = false; /* Default */
  switch (a2dp_sbc_encoder_cb.feeding_params.sample_rate) {
    case 32000:
    case 8000:
      fract_needed = true;
      fract_max = 2;       /* 0, 1 and 2 */
      fract_threshold = 0; /* Add one for the first */
      break;
    case 16000:
      fract_needed = true;
      fract_max = 2;       /* 0, 1 and 2 */
      fract_threshold = 1; /* Add one for the first two frames*/
      break;
  }

  /* Compute number of sample to read from source */
  src_samples = blocm_x_subband;
  src_samples *= a2dp_sbc_encoder_cb.feeding_params.sample_rate;
  src_samples /= sbc_sampling;

  /* The previous division may have a remainder not null */
  if (fract_needed) {
    if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter <= fract_threshold) {
      src_samples++; /* for every read before threshold add one sample */
    }

    /* do nothing if counter >= threshold */
    a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter++; /* one more read */
    if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter > fract_max) {
      a2dp_sbc_encoder_cb.feeding_state.aa_feed_counter = 0;
    }
  }

  /* Compute number of bytes to read from source */
  read_size = src_samples;
  read_size *= a2dp_sbc_encoder_cb.feeding_params.channel_count;
  read_size *= (a2dp_sbc_encoder_cb.feeding_params.bits_per_sample / 8);
  a2dp_sbc_encoder_cb.stats.media_read_total_expected_read_bytes += read_size;

  /* Read Data from UIPC channel */
  nb_byte_read =
      a2dp_sbc_encoder_cb.read_callback((uint8_t*)read_buffer, read_size);
  a2dp_sbc_encoder_cb.stats.media_read_total_actual_read_bytes += nb_byte_read;

  if (nb_byte_read < read_size) {
    if (nb_byte_read == 0) return false;

    /* Fill the unfilled part of the read buffer with silence (0) */
    memset(((uint8_t*)read_buffer) + nb_byte_read, 0, read_size - nb_byte_read);
    nb_byte_read = read_size;
  }
  a2dp_sbc_encoder_cb.stats.media_read_total_actual_reads_count++;

  /* Initialize PCM up-sampling engine */
  a2dp_sbc_init_up_sample(a2dp_sbc_encoder_cb.feeding_params.sample_rate,
                          sbc_sampling,
                          a2dp_sbc_encoder_cb.feeding_params.bits_per_sample,
                          a2dp_sbc_encoder_cb.feeding_params.channel_count);

  /*
   * Re-sample the read buffer.
   * The output PCM buffer will be stereo, 16 bit per sample.
   */
  dst_size_used = a2dp_sbc_up_sample(
      (uint8_t*)read_buffer,
      (uint8_t*)up_sampled_buffer +
          a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
      nb_byte_read, sizeof(up_sampled_buffer) -
                        a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue,
      &src_size_used);

  /* update the residue */
  a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue += dst_size_used;

  /* only copy the pcm sample when we have up-sampled enough PCM */
  if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue < bytes_needed)
    return false;

  /* Copy the output pcm samples in SBC encoding buffer */
  memcpy((uint8_t*)a2dp_sbc_encoder_cb.pcmBuffer, (uint8_t*)up_sampled_buffer,
         bytes_needed);
  /* update the residue */
  a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue -= bytes_needed;

  if (a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue != 0) {
    memcpy((uint8_t*)up_sampled_buffer,
           (uint8_t*)up_sampled_buffer + bytes_needed,
           a2dp_sbc_encoder_cb.feeding_state.aa_feed_residue);
  }
  return true;
}

static uint8_t calculate_max_frames_per_packet(void) {
  uint16_t effective_mtu_size = a2dp_sbc_encoder_cb.TxAaMtuSize;
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  uint16_t result = 0;
  uint32_t frame_len;

  LOG_VERBOSE(LOG_TAG, "%s: original AVDTP MTU size: %d", __func__,
              a2dp_sbc_encoder_cb.TxAaMtuSize);
  if (a2dp_sbc_encoder_cb.is_peer_edr &&
      !a2dp_sbc_encoder_cb.peer_supports_3mbps) {
    // This condition would be satisfied only if the remote device is
    // EDR and supports only 2 Mbps, but the effective AVDTP MTU size
    // exceeds the 2DH5 packet size.
    LOG_VERBOSE(LOG_TAG,
                "%s: The remote device is EDR but does not support 3 Mbps",
                __func__);

    if (effective_mtu_size > MAX_2MBPS_AVDTP_MTU) {
      LOG_WARN(LOG_TAG, "%s: Restricting AVDTP MTU size to %d", __func__,
               MAX_2MBPS_AVDTP_MTU);
      effective_mtu_size = MAX_2MBPS_AVDTP_MTU;
      a2dp_sbc_encoder_cb.TxAaMtuSize = effective_mtu_size;
    }
  }

  if (!p_encoder_params->s16NumOfSubBands) {
    LOG_ERROR(LOG_TAG, "%s: SubBands are set to 0, resetting to %d", __func__,
              SBC_MAX_NUM_OF_SUBBANDS);
    p_encoder_params->s16NumOfSubBands = SBC_MAX_NUM_OF_SUBBANDS;
  }
  if (!p_encoder_params->s16NumOfBlocks) {
    LOG_ERROR(LOG_TAG, "%s: Blocks are set to 0, resetting to %d", __func__,
              SBC_MAX_NUM_OF_BLOCKS);
    p_encoder_params->s16NumOfBlocks = SBC_MAX_NUM_OF_BLOCKS;
  }
  if (!p_encoder_params->s16NumOfChannels) {
    LOG_ERROR(LOG_TAG, "%s: Channels are set to 0, resetting to %d", __func__,
              SBC_MAX_NUM_OF_CHANNELS);
    p_encoder_params->s16NumOfChannels = SBC_MAX_NUM_OF_CHANNELS;
  }

  frame_len = a2dp_sbc_frame_length();

  LOG_VERBOSE(LOG_TAG, "%s: Effective Tx MTU to be considered: %d", __func__,
              effective_mtu_size);

  switch (p_encoder_params->s16SamplingFreq) {
    case SBC_sf44100:
      if (frame_len == 0) {
        LOG_ERROR(LOG_TAG,
                  "%s: Calculating frame length, resetting it to default %d",
                  __func__, A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1);
        frame_len = A2DP_SBC_MAX_HQ_FRAME_SIZE_44_1;
      }
      result = (effective_mtu_size - A2DP_HDR_SIZE) / frame_len;
      LOG_VERBOSE(LOG_TAG, "%s: Max number of SBC frames: %d", __func__,
                  result);
      break;

    case SBC_sf48000:
      if (frame_len == 0) {
        LOG_ERROR(LOG_TAG,
                  "%s: Calculating frame length, resetting it to default %d",
                  __func__, A2DP_SBC_MAX_HQ_FRAME_SIZE_48);
        frame_len = A2DP_SBC_MAX_HQ_FRAME_SIZE_48;
      }
      result = (effective_mtu_size - A2DP_HDR_SIZE) / frame_len;
      LOG_VERBOSE(LOG_TAG, "%s: Max number of SBC frames: %d", __func__,
                  result);
      break;

    default:
      LOG_ERROR(LOG_TAG, "%s: Max number of SBC frames: %d", __func__, result);
      break;
  }
  return result;
}

static uint16_t a2dp_sbc_source_rate() {
  uint16_t rate = A2DP_SBC_DEFAULT_BITRATE;

  /* restrict bitrate if a2dp link is non-edr */
  if (!a2dp_sbc_encoder_cb.is_peer_edr) {
    rate = A2DP_SBC_NON_EDR_MAX_RATE;
    LOG_VERBOSE(LOG_TAG, "%s: non-edr a2dp sink detected, restrict rate to %d",
                __func__, rate);
  }

  return rate;
}

static uint32_t a2dp_sbc_frame_length(void) {
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  uint32_t frame_len = 0;

  LOG_VERBOSE(LOG_TAG,
              "%s: channel mode: %d, sub-band: %d, number of block: %d, "
              "bitpool: %d, sampling frequency: %d, num channels: %d",
              __func__, p_encoder_params->s16ChannelMode,
              p_encoder_params->s16NumOfSubBands,
              p_encoder_params->s16NumOfBlocks, p_encoder_params->s16BitPool,
              p_encoder_params->s16SamplingFreq,
              p_encoder_params->s16NumOfChannels);

  switch (p_encoder_params->s16ChannelMode) {
    case SBC_MONO:
      FALLTHROUGH_INTENDED; /* FALLTHROUGH */
    case SBC_DUAL:
      frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
                  ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS *
                              p_encoder_params->s16NumOfSubBands *
                              p_encoder_params->s16NumOfChannels) /
                   CHAR_BIT) +
                  ((uint32_t)(p_encoder_params->s16NumOfBlocks *
                              p_encoder_params->s16NumOfChannels *
                              p_encoder_params->s16BitPool) /
                   CHAR_BIT);
      break;
    case SBC_STEREO:
      frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
                  ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS *
                              p_encoder_params->s16NumOfSubBands *
                              p_encoder_params->s16NumOfChannels) /
                   CHAR_BIT) +
                  ((uint32_t)(p_encoder_params->s16NumOfBlocks *
                              p_encoder_params->s16BitPool) /
                   CHAR_BIT);
      break;
    case SBC_JOINT_STEREO:
      frame_len = A2DP_SBC_FRAME_HEADER_SIZE_BYTES +
                  ((uint32_t)(A2DP_SBC_SCALE_FACTOR_BITS *
                              p_encoder_params->s16NumOfSubBands *
                              p_encoder_params->s16NumOfChannels) /
                   CHAR_BIT) +
                  ((uint32_t)(p_encoder_params->s16NumOfSubBands +
                              (p_encoder_params->s16NumOfBlocks *
                               p_encoder_params->s16BitPool)) /
                   CHAR_BIT);
      break;
    default:
      LOG_VERBOSE(LOG_TAG, "%s: Invalid channel number: %d", __func__,
                  p_encoder_params->s16ChannelMode);
      break;
  }
  LOG_VERBOSE(LOG_TAG, "%s: calculated frame length: %d", __func__, frame_len);
  return frame_len;
}

uint32_t a2dp_sbc_get_bitrate() {
  SBC_ENC_PARAMS* p_encoder_params = &a2dp_sbc_encoder_cb.sbc_encoder_params;
  LOG_DEBUG(LOG_TAG, "%s: bit rate %d ", __func__,
            p_encoder_params->u16BitRate);
  return p_encoder_params->u16BitRate * 1000;
}

uint64_t A2dpCodecConfigSbcSource::encoderIntervalMs() const {
  return a2dp_sbc_get_encoder_interval_ms();
}

int A2dpCodecConfigSbcSource::getEffectiveMtu() const {
  return a2dp_sbc_encoder_cb.TxAaMtuSize;
}

void A2dpCodecConfigSbcSource::debug_codec_dump(int fd) {
  a2dp_sbc_encoder_stats_t* stats = &a2dp_sbc_encoder_cb.stats;

  A2dpCodecConfig::debug_codec_dump(fd);

  dprintf(fd,
          "  Packet counts (expected/dropped)                        : %zu / "
          "%zu\n",
          stats->media_read_total_expected_packets,
          stats->media_read_total_dropped_packets);

  dprintf(fd,
          "  PCM read counts (expected/actual)                       : %zu / "
          "%zu\n",
          stats->media_read_total_expected_reads_count,
          stats->media_read_total_actual_reads_count);

  dprintf(fd,
          "  PCM read bytes (expected/actual)                        : %zu / "
          "%zu\n",
          stats->media_read_total_expected_read_bytes,
          stats->media_read_total_actual_read_bytes);

  dprintf(fd,
          "  Frames counts (expected/dropped)                        : %zu / "
          "%zu\n",
          stats->media_read_total_expected_frames,
          stats->media_read_total_dropped_frames);
}