aboutsummaryrefslogtreecommitdiff
path: root/apps/power_test/common/idl/chre_power_test_generated.h
blob: df1b812a00cf306a6bcb683acb4eca2102ee882f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
// automatically generated by the FlatBuffers compiler, do not modify


#ifndef FLATBUFFERS_GENERATED_CHREPOWERTEST_CHRE_POWER_TEST_H_
#define FLATBUFFERS_GENERATED_CHREPOWERTEST_CHRE_POWER_TEST_H_

#include "flatbuffers/flatbuffers.h"

namespace chre {
namespace power_test {

struct TimerMessage;
struct TimerMessageBuilder;
struct TimerMessageT;

struct WifiScanMessage;
struct WifiScanMessageBuilder;
struct WifiScanMessageT;

struct GnssLocationMessage;
struct GnssLocationMessageBuilder;
struct GnssLocationMessageT;

struct CellQueryMessage;
struct CellQueryMessageBuilder;
struct CellQueryMessageT;

struct AudioRequestMessage;
struct AudioRequestMessageBuilder;
struct AudioRequestMessageT;

struct SensorRequestMessage;
struct SensorRequestMessageBuilder;
struct SensorRequestMessageT;

struct BreakItMessage;
struct BreakItMessageBuilder;
struct BreakItMessageT;

struct NanoappResponseMessage;
struct NanoappResponseMessageBuilder;
struct NanoappResponseMessageT;

struct GnssMeasurementMessage;
struct GnssMeasurementMessageBuilder;
struct GnssMeasurementMessageT;

/// Indicates which of the following messages is being sent to / from the
/// nanoapp. Use uint as the base type to match the message type in
/// chreMessageFromHostData.
enum class MessageType : uint32_t {
  UNSPECIFIED = 0,
  /// Should be used with TimerMessage
  TIMER_TEST = 1,
  /// Should be used with WifiScanMessage
  WIFI_SCAN_TEST = 2,
  /// Should be used with GnssLocationMessage
  GNSS_LOCATION_TEST = 3,
  /// Should be used with CellQueryMessage
  CELL_QUERY_TEST = 4,
  /// Should be used with AudioRequestMessage
  AUDIO_REQUEST_TEST = 5,
  /// Should be used with SensorRequestMessage
  SENSOR_REQUEST_TEST = 6,
  /// Should be used with BreakItMessage
  BREAK_IT_TEST = 7,
  /// Should be used with NanoappResponseMessage
  NANOAPP_RESPONSE = 8,
  /// Should be used with GnssMeasurementMessage
  GNSS_MEASUREMENT_TEST = 9,
  MIN = UNSPECIFIED,
  MAX = GNSS_MEASUREMENT_TEST
};

inline const MessageType (&EnumValuesMessageType())[10] {
  static const MessageType values[] = {
    MessageType::UNSPECIFIED,
    MessageType::TIMER_TEST,
    MessageType::WIFI_SCAN_TEST,
    MessageType::GNSS_LOCATION_TEST,
    MessageType::CELL_QUERY_TEST,
    MessageType::AUDIO_REQUEST_TEST,
    MessageType::SENSOR_REQUEST_TEST,
    MessageType::BREAK_IT_TEST,
    MessageType::NANOAPP_RESPONSE,
    MessageType::GNSS_MEASUREMENT_TEST
  };
  return values;
}

inline const char * const *EnumNamesMessageType() {
  static const char * const names[11] = {
    "UNSPECIFIED",
    "TIMER_TEST",
    "WIFI_SCAN_TEST",
    "GNSS_LOCATION_TEST",
    "CELL_QUERY_TEST",
    "AUDIO_REQUEST_TEST",
    "SENSOR_REQUEST_TEST",
    "BREAK_IT_TEST",
    "NANOAPP_RESPONSE",
    "GNSS_MEASUREMENT_TEST",
    nullptr
  };
  return names;
}

inline const char *EnumNameMessageType(MessageType e) {
  if (flatbuffers::IsOutRange(e, MessageType::UNSPECIFIED, MessageType::GNSS_MEASUREMENT_TEST)) return "";
  const size_t index = static_cast<size_t>(e);
  return EnumNamesMessageType()[index];
}

/// All the various WiFi scan types that can be interacted with inside the
/// nanoapp. The values used here map directly to values from the CHRE API.
enum class WifiScanType : uint8_t {
  ACTIVE = 0,
  ACTIVE_PLUS_PASSIVE_DFS = 1,
  PASSIVE = 2,
  NO_PREFERENCE = 3,
  MIN = ACTIVE,
  MAX = NO_PREFERENCE
};

inline const WifiScanType (&EnumValuesWifiScanType())[4] {
  static const WifiScanType values[] = {
    WifiScanType::ACTIVE,
    WifiScanType::ACTIVE_PLUS_PASSIVE_DFS,
    WifiScanType::PASSIVE,
    WifiScanType::NO_PREFERENCE
  };
  return values;
}

inline const char * const *EnumNamesWifiScanType() {
  static const char * const names[5] = {
    "ACTIVE",
    "ACTIVE_PLUS_PASSIVE_DFS",
    "PASSIVE",
    "NO_PREFERENCE",
    nullptr
  };
  return names;
}

inline const char *EnumNameWifiScanType(WifiScanType e) {
  if (flatbuffers::IsOutRange(e, WifiScanType::ACTIVE, WifiScanType::NO_PREFERENCE)) return "";
  const size_t index = static_cast<size_t>(e);
  return EnumNamesWifiScanType()[index];
}

/// All the various WiFi radio chain preferences that can be interacted with
/// inside the nanoapp. The values used here map directly to values from the
/// CHRE API.
enum class WifiRadioChain : uint8_t {
  DEFAULT = 0,
  LOW_LATENCY = 1,
  LOW_POWER = 2,
  HIGH_ACCURACY = 3,
  MIN = DEFAULT,
  MAX = HIGH_ACCURACY
};

inline const WifiRadioChain (&EnumValuesWifiRadioChain())[4] {
  static const WifiRadioChain values[] = {
    WifiRadioChain::DEFAULT,
    WifiRadioChain::LOW_LATENCY,
    WifiRadioChain::LOW_POWER,
    WifiRadioChain::HIGH_ACCURACY
  };
  return values;
}

inline const char * const *EnumNamesWifiRadioChain() {
  static const char * const names[5] = {
    "DEFAULT",
    "LOW_LATENCY",
    "LOW_POWER",
    "HIGH_ACCURACY",
    nullptr
  };
  return names;
}

inline const char *EnumNameWifiRadioChain(WifiRadioChain e) {
  if (flatbuffers::IsOutRange(e, WifiRadioChain::DEFAULT, WifiRadioChain::HIGH_ACCURACY)) return "";
  const size_t index = static_cast<size_t>(e);
  return EnumNamesWifiRadioChain()[index];
}

/// All the various WiFi channel sets that can be interacted with inside the
/// nanoapp. The values used here map directly to values from the CHRE API.
enum class WifiChannelSet : uint8_t {
  NON_DFS = 0,
  ALL = 1,
  MIN = NON_DFS,
  MAX = ALL
};

inline const WifiChannelSet (&EnumValuesWifiChannelSet())[2] {
  static const WifiChannelSet values[] = {
    WifiChannelSet::NON_DFS,
    WifiChannelSet::ALL
  };
  return values;
}

inline const char * const *EnumNamesWifiChannelSet() {
  static const char * const names[3] = {
    "NON_DFS",
    "ALL",
    nullptr
  };
  return names;
}

inline const char *EnumNameWifiChannelSet(WifiChannelSet e) {
  if (flatbuffers::IsOutRange(e, WifiChannelSet::NON_DFS, WifiChannelSet::ALL)) return "";
  const size_t index = static_cast<size_t>(e);
  return EnumNamesWifiChannelSet()[index];
}

/// All the various sensors that can be interacted with inside the nanoapp.
/// The values used here map directly to values from the CHRE API
enum class SensorType : uint8_t {
  UNKNOWN = 0,
  ACCELEROMETER = 1,
  INSTANT_MOTION_DETECT = 2,
  STATIONARY_DETECT = 3,
  GYROSCOPE = 6,
  UNCALIBRATED_GYROSCOPE = 7,
  GEOMAGNETIC_FIELD = 8,
  UNCALIBRATED_GEOMAGNETIC_FIELD = 9,
  PRESSURE = 10,
  LIGHT = 12,
  PROXIMITY = 13,
  STEP_DETECT = 23,
  STEP_COUNTER = 24,
  UNCALIBRATED_ACCELEROMETER = 55,
  ACCELEROMETER_TEMPERATURE = 56,
  GYROSCOPE_TEMPERATURE = 57,
  GEOMAGNETIC_FIELD_TEMPERATURE = 58,
  MIN = UNKNOWN,
  MAX = GEOMAGNETIC_FIELD_TEMPERATURE
};

inline const SensorType (&EnumValuesSensorType())[17] {
  static const SensorType values[] = {
    SensorType::UNKNOWN,
    SensorType::ACCELEROMETER,
    SensorType::INSTANT_MOTION_DETECT,
    SensorType::STATIONARY_DETECT,
    SensorType::GYROSCOPE,
    SensorType::UNCALIBRATED_GYROSCOPE,
    SensorType::GEOMAGNETIC_FIELD,
    SensorType::UNCALIBRATED_GEOMAGNETIC_FIELD,
    SensorType::PRESSURE,
    SensorType::LIGHT,
    SensorType::PROXIMITY,
    SensorType::STEP_DETECT,
    SensorType::STEP_COUNTER,
    SensorType::UNCALIBRATED_ACCELEROMETER,
    SensorType::ACCELEROMETER_TEMPERATURE,
    SensorType::GYROSCOPE_TEMPERATURE,
    SensorType::GEOMAGNETIC_FIELD_TEMPERATURE
  };
  return values;
}

inline const char * const *EnumNamesSensorType() {
  static const char * const names[60] = {
    "UNKNOWN",
    "ACCELEROMETER",
    "INSTANT_MOTION_DETECT",
    "STATIONARY_DETECT",
    "",
    "",
    "GYROSCOPE",
    "UNCALIBRATED_GYROSCOPE",
    "GEOMAGNETIC_FIELD",
    "UNCALIBRATED_GEOMAGNETIC_FIELD",
    "PRESSURE",
    "",
    "LIGHT",
    "PROXIMITY",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "STEP_DETECT",
    "STEP_COUNTER",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "",
    "UNCALIBRATED_ACCELEROMETER",
    "ACCELEROMETER_TEMPERATURE",
    "GYROSCOPE_TEMPERATURE",
    "GEOMAGNETIC_FIELD_TEMPERATURE",
    nullptr
  };
  return names;
}

inline const char *EnumNameSensorType(SensorType e) {
  if (flatbuffers::IsOutRange(e, SensorType::UNKNOWN, SensorType::GEOMAGNETIC_FIELD_TEMPERATURE)) return "";
  const size_t index = static_cast<size_t>(e);
  return EnumNamesSensorType()[index];
}

struct TimerMessageT : public flatbuffers::NativeTable {
  typedef TimerMessage TableType;
  bool enable;
  uint64_t wakeup_interval_ns;
  TimerMessageT()
      : enable(false),
        wakeup_interval_ns(0) {
  }
};

/// Represents a message to ask the nanoapp to create a timer that wakes up at
/// the given interval
struct TimerMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef TimerMessageT NativeTableType;
  typedef TimerMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_WAKEUP_INTERVAL_NS = 6
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  uint64_t wakeup_interval_ns() const {
    return GetField<uint64_t>(VT_WAKEUP_INTERVAL_NS, 0);
  }
  bool mutate_wakeup_interval_ns(uint64_t _wakeup_interval_ns) {
    return SetField<uint64_t>(VT_WAKEUP_INTERVAL_NS, _wakeup_interval_ns, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint64_t>(verifier, VT_WAKEUP_INTERVAL_NS) &&
           verifier.EndTable();
  }
  TimerMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(TimerMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<TimerMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const TimerMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct TimerMessageBuilder {
  typedef TimerMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(TimerMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_wakeup_interval_ns(uint64_t wakeup_interval_ns) {
    fbb_.AddElement<uint64_t>(TimerMessage::VT_WAKEUP_INTERVAL_NS, wakeup_interval_ns, 0);
  }
  explicit TimerMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  TimerMessageBuilder &operator=(const TimerMessageBuilder &);
  flatbuffers::Offset<TimerMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<TimerMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<TimerMessage> CreateTimerMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint64_t wakeup_interval_ns = 0) {
  TimerMessageBuilder builder_(_fbb);
  builder_.add_wakeup_interval_ns(wakeup_interval_ns);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<TimerMessage> CreateTimerMessage(flatbuffers::FlatBufferBuilder &_fbb, const TimerMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct WifiScanMessageT : public flatbuffers::NativeTable {
  typedef WifiScanMessage TableType;
  bool enable;
  uint64_t scan_interval_ns;
  chre::power_test::WifiScanType scan_type;
  chre::power_test::WifiRadioChain radio_chain;
  chre::power_test::WifiChannelSet channel_set;
  WifiScanMessageT()
      : enable(false),
        scan_interval_ns(0),
        scan_type(chre::power_test::WifiScanType::ACTIVE),
        radio_chain(chre::power_test::WifiRadioChain::DEFAULT),
        channel_set(chre::power_test::WifiChannelSet::NON_DFS) {
  }
};

/// Represents a message to ask the nanoapp to start or stop WiFi scanning and
/// the scan interval to use if scanning is being started
struct WifiScanMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef WifiScanMessageT NativeTableType;
  typedef WifiScanMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_SCAN_INTERVAL_NS = 6,
    VT_SCAN_TYPE = 8,
    VT_RADIO_CHAIN = 10,
    VT_CHANNEL_SET = 12
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  uint64_t scan_interval_ns() const {
    return GetField<uint64_t>(VT_SCAN_INTERVAL_NS, 0);
  }
  bool mutate_scan_interval_ns(uint64_t _scan_interval_ns) {
    return SetField<uint64_t>(VT_SCAN_INTERVAL_NS, _scan_interval_ns, 0);
  }
  chre::power_test::WifiScanType scan_type() const {
    return static_cast<chre::power_test::WifiScanType>(GetField<uint8_t>(VT_SCAN_TYPE, 0));
  }
  bool mutate_scan_type(chre::power_test::WifiScanType _scan_type) {
    return SetField<uint8_t>(VT_SCAN_TYPE, static_cast<uint8_t>(_scan_type), 0);
  }
  chre::power_test::WifiRadioChain radio_chain() const {
    return static_cast<chre::power_test::WifiRadioChain>(GetField<uint8_t>(VT_RADIO_CHAIN, 0));
  }
  bool mutate_radio_chain(chre::power_test::WifiRadioChain _radio_chain) {
    return SetField<uint8_t>(VT_RADIO_CHAIN, static_cast<uint8_t>(_radio_chain), 0);
  }
  chre::power_test::WifiChannelSet channel_set() const {
    return static_cast<chre::power_test::WifiChannelSet>(GetField<uint8_t>(VT_CHANNEL_SET, 0));
  }
  bool mutate_channel_set(chre::power_test::WifiChannelSet _channel_set) {
    return SetField<uint8_t>(VT_CHANNEL_SET, static_cast<uint8_t>(_channel_set), 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint64_t>(verifier, VT_SCAN_INTERVAL_NS) &&
           VerifyField<uint8_t>(verifier, VT_SCAN_TYPE) &&
           VerifyField<uint8_t>(verifier, VT_RADIO_CHAIN) &&
           VerifyField<uint8_t>(verifier, VT_CHANNEL_SET) &&
           verifier.EndTable();
  }
  WifiScanMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(WifiScanMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<WifiScanMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const WifiScanMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct WifiScanMessageBuilder {
  typedef WifiScanMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(WifiScanMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_scan_interval_ns(uint64_t scan_interval_ns) {
    fbb_.AddElement<uint64_t>(WifiScanMessage::VT_SCAN_INTERVAL_NS, scan_interval_ns, 0);
  }
  void add_scan_type(chre::power_test::WifiScanType scan_type) {
    fbb_.AddElement<uint8_t>(WifiScanMessage::VT_SCAN_TYPE, static_cast<uint8_t>(scan_type), 0);
  }
  void add_radio_chain(chre::power_test::WifiRadioChain radio_chain) {
    fbb_.AddElement<uint8_t>(WifiScanMessage::VT_RADIO_CHAIN, static_cast<uint8_t>(radio_chain), 0);
  }
  void add_channel_set(chre::power_test::WifiChannelSet channel_set) {
    fbb_.AddElement<uint8_t>(WifiScanMessage::VT_CHANNEL_SET, static_cast<uint8_t>(channel_set), 0);
  }
  explicit WifiScanMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  WifiScanMessageBuilder &operator=(const WifiScanMessageBuilder &);
  flatbuffers::Offset<WifiScanMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<WifiScanMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<WifiScanMessage> CreateWifiScanMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint64_t scan_interval_ns = 0,
    chre::power_test::WifiScanType scan_type = chre::power_test::WifiScanType::ACTIVE,
    chre::power_test::WifiRadioChain radio_chain = chre::power_test::WifiRadioChain::DEFAULT,
    chre::power_test::WifiChannelSet channel_set = chre::power_test::WifiChannelSet::NON_DFS) {
  WifiScanMessageBuilder builder_(_fbb);
  builder_.add_scan_interval_ns(scan_interval_ns);
  builder_.add_channel_set(channel_set);
  builder_.add_radio_chain(radio_chain);
  builder_.add_scan_type(scan_type);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<WifiScanMessage> CreateWifiScanMessage(flatbuffers::FlatBufferBuilder &_fbb, const WifiScanMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct GnssLocationMessageT : public flatbuffers::NativeTable {
  typedef GnssLocationMessage TableType;
  bool enable;
  uint32_t scan_interval_millis;
  uint32_t min_time_to_next_fix_millis;
  GnssLocationMessageT()
      : enable(false),
        scan_interval_millis(0),
        min_time_to_next_fix_millis(0) {
  }
};

/// Represents a message to ask the nanoapp to start or stop Gnss location
/// sampling at the requested interval
struct GnssLocationMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef GnssLocationMessageT NativeTableType;
  typedef GnssLocationMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_SCAN_INTERVAL_MILLIS = 6,
    VT_MIN_TIME_TO_NEXT_FIX_MILLIS = 8
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  uint32_t scan_interval_millis() const {
    return GetField<uint32_t>(VT_SCAN_INTERVAL_MILLIS, 0);
  }
  bool mutate_scan_interval_millis(uint32_t _scan_interval_millis) {
    return SetField<uint32_t>(VT_SCAN_INTERVAL_MILLIS, _scan_interval_millis, 0);
  }
  uint32_t min_time_to_next_fix_millis() const {
    return GetField<uint32_t>(VT_MIN_TIME_TO_NEXT_FIX_MILLIS, 0);
  }
  bool mutate_min_time_to_next_fix_millis(uint32_t _min_time_to_next_fix_millis) {
    return SetField<uint32_t>(VT_MIN_TIME_TO_NEXT_FIX_MILLIS, _min_time_to_next_fix_millis, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint32_t>(verifier, VT_SCAN_INTERVAL_MILLIS) &&
           VerifyField<uint32_t>(verifier, VT_MIN_TIME_TO_NEXT_FIX_MILLIS) &&
           verifier.EndTable();
  }
  GnssLocationMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(GnssLocationMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<GnssLocationMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const GnssLocationMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct GnssLocationMessageBuilder {
  typedef GnssLocationMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(GnssLocationMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_scan_interval_millis(uint32_t scan_interval_millis) {
    fbb_.AddElement<uint32_t>(GnssLocationMessage::VT_SCAN_INTERVAL_MILLIS, scan_interval_millis, 0);
  }
  void add_min_time_to_next_fix_millis(uint32_t min_time_to_next_fix_millis) {
    fbb_.AddElement<uint32_t>(GnssLocationMessage::VT_MIN_TIME_TO_NEXT_FIX_MILLIS, min_time_to_next_fix_millis, 0);
  }
  explicit GnssLocationMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  GnssLocationMessageBuilder &operator=(const GnssLocationMessageBuilder &);
  flatbuffers::Offset<GnssLocationMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<GnssLocationMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<GnssLocationMessage> CreateGnssLocationMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint32_t scan_interval_millis = 0,
    uint32_t min_time_to_next_fix_millis = 0) {
  GnssLocationMessageBuilder builder_(_fbb);
  builder_.add_min_time_to_next_fix_millis(min_time_to_next_fix_millis);
  builder_.add_scan_interval_millis(scan_interval_millis);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<GnssLocationMessage> CreateGnssLocationMessage(flatbuffers::FlatBufferBuilder &_fbb, const GnssLocationMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct CellQueryMessageT : public flatbuffers::NativeTable {
  typedef CellQueryMessage TableType;
  bool enable;
  uint64_t query_interval_ns;
  CellQueryMessageT()
      : enable(false),
        query_interval_ns(0) {
  }
};

/// Represents a message to ask the nanoapp to start or stop querying the cell
/// modem for the latest cell scan results on the given interval
struct CellQueryMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef CellQueryMessageT NativeTableType;
  typedef CellQueryMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_QUERY_INTERVAL_NS = 6
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  uint64_t query_interval_ns() const {
    return GetField<uint64_t>(VT_QUERY_INTERVAL_NS, 0);
  }
  bool mutate_query_interval_ns(uint64_t _query_interval_ns) {
    return SetField<uint64_t>(VT_QUERY_INTERVAL_NS, _query_interval_ns, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint64_t>(verifier, VT_QUERY_INTERVAL_NS) &&
           verifier.EndTable();
  }
  CellQueryMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(CellQueryMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<CellQueryMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const CellQueryMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct CellQueryMessageBuilder {
  typedef CellQueryMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(CellQueryMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_query_interval_ns(uint64_t query_interval_ns) {
    fbb_.AddElement<uint64_t>(CellQueryMessage::VT_QUERY_INTERVAL_NS, query_interval_ns, 0);
  }
  explicit CellQueryMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  CellQueryMessageBuilder &operator=(const CellQueryMessageBuilder &);
  flatbuffers::Offset<CellQueryMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<CellQueryMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<CellQueryMessage> CreateCellQueryMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint64_t query_interval_ns = 0) {
  CellQueryMessageBuilder builder_(_fbb);
  builder_.add_query_interval_ns(query_interval_ns);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<CellQueryMessage> CreateCellQueryMessage(flatbuffers::FlatBufferBuilder &_fbb, const CellQueryMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct AudioRequestMessageT : public flatbuffers::NativeTable {
  typedef AudioRequestMessage TableType;
  bool enable;
  uint64_t buffer_duration_ns;
  AudioRequestMessageT()
      : enable(false),
        buffer_duration_ns(0) {
  }
};

/// Represents a message to ask the nanoapp to start / stop requesting Audio
/// data buffered at given interval. Note: If there is more than one audio
/// source, the nanoapp will only request audio from the first source.
struct AudioRequestMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef AudioRequestMessageT NativeTableType;
  typedef AudioRequestMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_BUFFER_DURATION_NS = 6
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  /// The buffer duration is also used as the interval for how often
  /// the buffer should be delivered to the nanoapp.
  uint64_t buffer_duration_ns() const {
    return GetField<uint64_t>(VT_BUFFER_DURATION_NS, 0);
  }
  bool mutate_buffer_duration_ns(uint64_t _buffer_duration_ns) {
    return SetField<uint64_t>(VT_BUFFER_DURATION_NS, _buffer_duration_ns, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint64_t>(verifier, VT_BUFFER_DURATION_NS) &&
           verifier.EndTable();
  }
  AudioRequestMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(AudioRequestMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<AudioRequestMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const AudioRequestMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct AudioRequestMessageBuilder {
  typedef AudioRequestMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(AudioRequestMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_buffer_duration_ns(uint64_t buffer_duration_ns) {
    fbb_.AddElement<uint64_t>(AudioRequestMessage::VT_BUFFER_DURATION_NS, buffer_duration_ns, 0);
  }
  explicit AudioRequestMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  AudioRequestMessageBuilder &operator=(const AudioRequestMessageBuilder &);
  flatbuffers::Offset<AudioRequestMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<AudioRequestMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<AudioRequestMessage> CreateAudioRequestMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint64_t buffer_duration_ns = 0) {
  AudioRequestMessageBuilder builder_(_fbb);
  builder_.add_buffer_duration_ns(buffer_duration_ns);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<AudioRequestMessage> CreateAudioRequestMessage(flatbuffers::FlatBufferBuilder &_fbb, const AudioRequestMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct SensorRequestMessageT : public flatbuffers::NativeTable {
  typedef SensorRequestMessage TableType;
  bool enable;
  chre::power_test::SensorType sensor;
  uint64_t sampling_interval_ns;
  uint64_t latency_ns;
  SensorRequestMessageT()
      : enable(false),
        sensor(chre::power_test::SensorType::UNKNOWN),
        sampling_interval_ns(0),
        latency_ns(0) {
  }
};

/// Represents a message to ask the nanoapp to start / stop sampling / batching
/// a given sensor
struct SensorRequestMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef SensorRequestMessageT NativeTableType;
  typedef SensorRequestMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_SENSOR = 6,
    VT_SAMPLING_INTERVAL_NS = 8,
    VT_LATENCY_NS = 10
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  chre::power_test::SensorType sensor() const {
    return static_cast<chre::power_test::SensorType>(GetField<uint8_t>(VT_SENSOR, 0));
  }
  bool mutate_sensor(chre::power_test::SensorType _sensor) {
    return SetField<uint8_t>(VT_SENSOR, static_cast<uint8_t>(_sensor), 0);
  }
  uint64_t sampling_interval_ns() const {
    return GetField<uint64_t>(VT_SAMPLING_INTERVAL_NS, 0);
  }
  bool mutate_sampling_interval_ns(uint64_t _sampling_interval_ns) {
    return SetField<uint64_t>(VT_SAMPLING_INTERVAL_NS, _sampling_interval_ns, 0);
  }
  uint64_t latency_ns() const {
    return GetField<uint64_t>(VT_LATENCY_NS, 0);
  }
  bool mutate_latency_ns(uint64_t _latency_ns) {
    return SetField<uint64_t>(VT_LATENCY_NS, _latency_ns, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint8_t>(verifier, VT_SENSOR) &&
           VerifyField<uint64_t>(verifier, VT_SAMPLING_INTERVAL_NS) &&
           VerifyField<uint64_t>(verifier, VT_LATENCY_NS) &&
           verifier.EndTable();
  }
  SensorRequestMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(SensorRequestMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<SensorRequestMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const SensorRequestMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct SensorRequestMessageBuilder {
  typedef SensorRequestMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(SensorRequestMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_sensor(chre::power_test::SensorType sensor) {
    fbb_.AddElement<uint8_t>(SensorRequestMessage::VT_SENSOR, static_cast<uint8_t>(sensor), 0);
  }
  void add_sampling_interval_ns(uint64_t sampling_interval_ns) {
    fbb_.AddElement<uint64_t>(SensorRequestMessage::VT_SAMPLING_INTERVAL_NS, sampling_interval_ns, 0);
  }
  void add_latency_ns(uint64_t latency_ns) {
    fbb_.AddElement<uint64_t>(SensorRequestMessage::VT_LATENCY_NS, latency_ns, 0);
  }
  explicit SensorRequestMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  SensorRequestMessageBuilder &operator=(const SensorRequestMessageBuilder &);
  flatbuffers::Offset<SensorRequestMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<SensorRequestMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<SensorRequestMessage> CreateSensorRequestMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    chre::power_test::SensorType sensor = chre::power_test::SensorType::UNKNOWN,
    uint64_t sampling_interval_ns = 0,
    uint64_t latency_ns = 0) {
  SensorRequestMessageBuilder builder_(_fbb);
  builder_.add_latency_ns(latency_ns);
  builder_.add_sampling_interval_ns(sampling_interval_ns);
  builder_.add_sensor(sensor);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<SensorRequestMessage> CreateSensorRequestMessage(flatbuffers::FlatBufferBuilder &_fbb, const SensorRequestMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct BreakItMessageT : public flatbuffers::NativeTable {
  typedef BreakItMessage TableType;
  bool enable;
  BreakItMessageT()
      : enable(false) {
  }
};

/// Represents a message to enable / disable break-it mode inside the nanoapp.
/// Break-it mode enables WiFi / GNSS / Cell to be queried every second and
/// enables all sensors at their fastest sampling rate.
struct BreakItMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef BreakItMessageT NativeTableType;
  typedef BreakItMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           verifier.EndTable();
  }
  BreakItMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(BreakItMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<BreakItMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const BreakItMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct BreakItMessageBuilder {
  typedef BreakItMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(BreakItMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  explicit BreakItMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  BreakItMessageBuilder &operator=(const BreakItMessageBuilder &);
  flatbuffers::Offset<BreakItMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<BreakItMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<BreakItMessage> CreateBreakItMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false) {
  BreakItMessageBuilder builder_(_fbb);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<BreakItMessage> CreateBreakItMessage(flatbuffers::FlatBufferBuilder &_fbb, const BreakItMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct NanoappResponseMessageT : public flatbuffers::NativeTable {
  typedef NanoappResponseMessage TableType;
  bool success;
  NanoappResponseMessageT()
      : success(false) {
  }
};

/// Indicates whether the nanoapp successfully performed the requested action.
/// Any failures will be printed to the logs.
struct NanoappResponseMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef NanoappResponseMessageT NativeTableType;
  typedef NanoappResponseMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_SUCCESS = 4
  };
  bool success() const {
    return GetField<uint8_t>(VT_SUCCESS, 0) != 0;
  }
  bool mutate_success(bool _success) {
    return SetField<uint8_t>(VT_SUCCESS, static_cast<uint8_t>(_success), 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_SUCCESS) &&
           verifier.EndTable();
  }
  NanoappResponseMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(NanoappResponseMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<NanoappResponseMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const NanoappResponseMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct NanoappResponseMessageBuilder {
  typedef NanoappResponseMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_success(bool success) {
    fbb_.AddElement<uint8_t>(NanoappResponseMessage::VT_SUCCESS, static_cast<uint8_t>(success), 0);
  }
  explicit NanoappResponseMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  NanoappResponseMessageBuilder &operator=(const NanoappResponseMessageBuilder &);
  flatbuffers::Offset<NanoappResponseMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<NanoappResponseMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<NanoappResponseMessage> CreateNanoappResponseMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool success = false) {
  NanoappResponseMessageBuilder builder_(_fbb);
  builder_.add_success(success);
  return builder_.Finish();
}

flatbuffers::Offset<NanoappResponseMessage> CreateNanoappResponseMessage(flatbuffers::FlatBufferBuilder &_fbb, const NanoappResponseMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

struct GnssMeasurementMessageT : public flatbuffers::NativeTable {
  typedef GnssMeasurementMessage TableType;
  bool enable;
  uint32_t min_interval_millis;
  GnssMeasurementMessageT()
      : enable(false),
        min_interval_millis(0) {
  }
};

/// Represents a message to ask the nanoapp to start or stop Gnss measurement
/// sampling at the requested interval
struct GnssMeasurementMessage FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
  typedef GnssMeasurementMessageT NativeTableType;
  typedef GnssMeasurementMessageBuilder Builder;
  enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
    VT_ENABLE = 4,
    VT_MIN_INTERVAL_MILLIS = 6
  };
  bool enable() const {
    return GetField<uint8_t>(VT_ENABLE, 0) != 0;
  }
  bool mutate_enable(bool _enable) {
    return SetField<uint8_t>(VT_ENABLE, static_cast<uint8_t>(_enable), 0);
  }
  uint32_t min_interval_millis() const {
    return GetField<uint32_t>(VT_MIN_INTERVAL_MILLIS, 0);
  }
  bool mutate_min_interval_millis(uint32_t _min_interval_millis) {
    return SetField<uint32_t>(VT_MIN_INTERVAL_MILLIS, _min_interval_millis, 0);
  }
  bool Verify(flatbuffers::Verifier &verifier) const {
    return VerifyTableStart(verifier) &&
           VerifyField<uint8_t>(verifier, VT_ENABLE) &&
           VerifyField<uint32_t>(verifier, VT_MIN_INTERVAL_MILLIS) &&
           verifier.EndTable();
  }
  GnssMeasurementMessageT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  void UnPackTo(GnssMeasurementMessageT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
  static flatbuffers::Offset<GnssMeasurementMessage> Pack(flatbuffers::FlatBufferBuilder &_fbb, const GnssMeasurementMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};

struct GnssMeasurementMessageBuilder {
  typedef GnssMeasurementMessage Table;
  flatbuffers::FlatBufferBuilder &fbb_;
  flatbuffers::uoffset_t start_;
  void add_enable(bool enable) {
    fbb_.AddElement<uint8_t>(GnssMeasurementMessage::VT_ENABLE, static_cast<uint8_t>(enable), 0);
  }
  void add_min_interval_millis(uint32_t min_interval_millis) {
    fbb_.AddElement<uint32_t>(GnssMeasurementMessage::VT_MIN_INTERVAL_MILLIS, min_interval_millis, 0);
  }
  explicit GnssMeasurementMessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
        : fbb_(_fbb) {
    start_ = fbb_.StartTable();
  }
  GnssMeasurementMessageBuilder &operator=(const GnssMeasurementMessageBuilder &);
  flatbuffers::Offset<GnssMeasurementMessage> Finish() {
    const auto end = fbb_.EndTable(start_);
    auto o = flatbuffers::Offset<GnssMeasurementMessage>(end);
    return o;
  }
};

inline flatbuffers::Offset<GnssMeasurementMessage> CreateGnssMeasurementMessage(
    flatbuffers::FlatBufferBuilder &_fbb,
    bool enable = false,
    uint32_t min_interval_millis = 0) {
  GnssMeasurementMessageBuilder builder_(_fbb);
  builder_.add_min_interval_millis(min_interval_millis);
  builder_.add_enable(enable);
  return builder_.Finish();
}

flatbuffers::Offset<GnssMeasurementMessage> CreateGnssMeasurementMessage(flatbuffers::FlatBufferBuilder &_fbb, const GnssMeasurementMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);

inline TimerMessageT *TimerMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::TimerMessageT> _o = std::unique_ptr<chre::power_test::TimerMessageT>(new TimerMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void TimerMessage::UnPackTo(TimerMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = wakeup_interval_ns(); _o->wakeup_interval_ns = _e; }
}

inline flatbuffers::Offset<TimerMessage> TimerMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TimerMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateTimerMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<TimerMessage> CreateTimerMessage(flatbuffers::FlatBufferBuilder &_fbb, const TimerMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TimerMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _wakeup_interval_ns = _o->wakeup_interval_ns;
  return chre::power_test::CreateTimerMessage(
      _fbb,
      _enable,
      _wakeup_interval_ns);
}

inline WifiScanMessageT *WifiScanMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::WifiScanMessageT> _o = std::unique_ptr<chre::power_test::WifiScanMessageT>(new WifiScanMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void WifiScanMessage::UnPackTo(WifiScanMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = scan_interval_ns(); _o->scan_interval_ns = _e; }
  { auto _e = scan_type(); _o->scan_type = _e; }
  { auto _e = radio_chain(); _o->radio_chain = _e; }
  { auto _e = channel_set(); _o->channel_set = _e; }
}

inline flatbuffers::Offset<WifiScanMessage> WifiScanMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const WifiScanMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateWifiScanMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<WifiScanMessage> CreateWifiScanMessage(flatbuffers::FlatBufferBuilder &_fbb, const WifiScanMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const WifiScanMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _scan_interval_ns = _o->scan_interval_ns;
  auto _scan_type = _o->scan_type;
  auto _radio_chain = _o->radio_chain;
  auto _channel_set = _o->channel_set;
  return chre::power_test::CreateWifiScanMessage(
      _fbb,
      _enable,
      _scan_interval_ns,
      _scan_type,
      _radio_chain,
      _channel_set);
}

inline GnssLocationMessageT *GnssLocationMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::GnssLocationMessageT> _o = std::unique_ptr<chre::power_test::GnssLocationMessageT>(new GnssLocationMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void GnssLocationMessage::UnPackTo(GnssLocationMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = scan_interval_millis(); _o->scan_interval_millis = _e; }
  { auto _e = min_time_to_next_fix_millis(); _o->min_time_to_next_fix_millis = _e; }
}

inline flatbuffers::Offset<GnssLocationMessage> GnssLocationMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GnssLocationMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateGnssLocationMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<GnssLocationMessage> CreateGnssLocationMessage(flatbuffers::FlatBufferBuilder &_fbb, const GnssLocationMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GnssLocationMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _scan_interval_millis = _o->scan_interval_millis;
  auto _min_time_to_next_fix_millis = _o->min_time_to_next_fix_millis;
  return chre::power_test::CreateGnssLocationMessage(
      _fbb,
      _enable,
      _scan_interval_millis,
      _min_time_to_next_fix_millis);
}

inline CellQueryMessageT *CellQueryMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::CellQueryMessageT> _o = std::unique_ptr<chre::power_test::CellQueryMessageT>(new CellQueryMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void CellQueryMessage::UnPackTo(CellQueryMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = query_interval_ns(); _o->query_interval_ns = _e; }
}

inline flatbuffers::Offset<CellQueryMessage> CellQueryMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const CellQueryMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateCellQueryMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<CellQueryMessage> CreateCellQueryMessage(flatbuffers::FlatBufferBuilder &_fbb, const CellQueryMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const CellQueryMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _query_interval_ns = _o->query_interval_ns;
  return chre::power_test::CreateCellQueryMessage(
      _fbb,
      _enable,
      _query_interval_ns);
}

inline AudioRequestMessageT *AudioRequestMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::AudioRequestMessageT> _o = std::unique_ptr<chre::power_test::AudioRequestMessageT>(new AudioRequestMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void AudioRequestMessage::UnPackTo(AudioRequestMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = buffer_duration_ns(); _o->buffer_duration_ns = _e; }
}

inline flatbuffers::Offset<AudioRequestMessage> AudioRequestMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const AudioRequestMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateAudioRequestMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<AudioRequestMessage> CreateAudioRequestMessage(flatbuffers::FlatBufferBuilder &_fbb, const AudioRequestMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const AudioRequestMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _buffer_duration_ns = _o->buffer_duration_ns;
  return chre::power_test::CreateAudioRequestMessage(
      _fbb,
      _enable,
      _buffer_duration_ns);
}

inline SensorRequestMessageT *SensorRequestMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::SensorRequestMessageT> _o = std::unique_ptr<chre::power_test::SensorRequestMessageT>(new SensorRequestMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void SensorRequestMessage::UnPackTo(SensorRequestMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = sensor(); _o->sensor = _e; }
  { auto _e = sampling_interval_ns(); _o->sampling_interval_ns = _e; }
  { auto _e = latency_ns(); _o->latency_ns = _e; }
}

inline flatbuffers::Offset<SensorRequestMessage> SensorRequestMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SensorRequestMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateSensorRequestMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<SensorRequestMessage> CreateSensorRequestMessage(flatbuffers::FlatBufferBuilder &_fbb, const SensorRequestMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SensorRequestMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _sensor = _o->sensor;
  auto _sampling_interval_ns = _o->sampling_interval_ns;
  auto _latency_ns = _o->latency_ns;
  return chre::power_test::CreateSensorRequestMessage(
      _fbb,
      _enable,
      _sensor,
      _sampling_interval_ns,
      _latency_ns);
}

inline BreakItMessageT *BreakItMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::BreakItMessageT> _o = std::unique_ptr<chre::power_test::BreakItMessageT>(new BreakItMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void BreakItMessage::UnPackTo(BreakItMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
}

inline flatbuffers::Offset<BreakItMessage> BreakItMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BreakItMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateBreakItMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<BreakItMessage> CreateBreakItMessage(flatbuffers::FlatBufferBuilder &_fbb, const BreakItMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BreakItMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  return chre::power_test::CreateBreakItMessage(
      _fbb,
      _enable);
}

inline NanoappResponseMessageT *NanoappResponseMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::NanoappResponseMessageT> _o = std::unique_ptr<chre::power_test::NanoappResponseMessageT>(new NanoappResponseMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void NanoappResponseMessage::UnPackTo(NanoappResponseMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = success(); _o->success = _e; }
}

inline flatbuffers::Offset<NanoappResponseMessage> NanoappResponseMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const NanoappResponseMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateNanoappResponseMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<NanoappResponseMessage> CreateNanoappResponseMessage(flatbuffers::FlatBufferBuilder &_fbb, const NanoappResponseMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const NanoappResponseMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _success = _o->success;
  return chre::power_test::CreateNanoappResponseMessage(
      _fbb,
      _success);
}

inline GnssMeasurementMessageT *GnssMeasurementMessage::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
  std::unique_ptr<chre::power_test::GnssMeasurementMessageT> _o = std::unique_ptr<chre::power_test::GnssMeasurementMessageT>(new GnssMeasurementMessageT());
  UnPackTo(_o.get(), _resolver);
  return _o.release();
}

inline void GnssMeasurementMessage::UnPackTo(GnssMeasurementMessageT *_o, const flatbuffers::resolver_function_t *_resolver) const {
  (void)_o;
  (void)_resolver;
  { auto _e = enable(); _o->enable = _e; }
  { auto _e = min_interval_millis(); _o->min_interval_millis = _e; }
}

inline flatbuffers::Offset<GnssMeasurementMessage> GnssMeasurementMessage::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GnssMeasurementMessageT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
  return CreateGnssMeasurementMessage(_fbb, _o, _rehasher);
}

inline flatbuffers::Offset<GnssMeasurementMessage> CreateGnssMeasurementMessage(flatbuffers::FlatBufferBuilder &_fbb, const GnssMeasurementMessageT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
  (void)_rehasher;
  (void)_o;
  struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GnssMeasurementMessageT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
  auto _enable = _o->enable;
  auto _min_interval_millis = _o->min_interval_millis;
  return chre::power_test::CreateGnssMeasurementMessage(
      _fbb,
      _enable,
      _min_interval_millis);
}

}  // namespace power_test
}  // namespace chre

#endif  // FLATBUFFERS_GENERATED_CHREPOWERTEST_CHRE_POWER_TEST_H_