summaryrefslogtreecommitdiff
path: root/init/selinux.cpp
blob: f8971705d658949f97481f60c7a3a995b6fcf49c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// This file contains the functions that initialize SELinux during boot as well as helper functions
// for SELinux operation for init.

// When the system boots, there is no SEPolicy present and init is running in the kernel domain.
// Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on
// this SEPolicy, and finally exec()'s itself to run in the proper domain.

// The SEPolicy on Android comes in two variants: monolithic and split.

// The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy
// file located at /sepolicy and is directly loaded into the kernel SELinux subsystem.

// The split policy is for supporting treble devices.  It splits the SEPolicy across files on
// /system/etc/selinux (the 'plat' portion of the policy) and /vendor/etc/selinux (the 'nonplat'
// portion of the policy).  This is necessary to allow the system image to be updated independently
// of the vendor image, while maintaining contributions from both partitions in the SEPolicy.  This
// is especially important for VTS testing, where the SEPolicy on the Google System Image may not be
// identical to the system image shipped on a vendor's device.

// The split SEPolicy is loaded as described below:
// 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or
//    /odm/etc/selinux/precompiled_sepolicy if odm parition is present.  Stored along with this file
//    are the sha256 hashes of the parts of the SEPolicy on /system and /product that were used to
//    compile this precompiled policy.  The system partition contains a similar sha256 of the parts
//    of the SEPolicy that it currently contains.  Symmetrically, product paritition contains a
//    sha256 of its SEPolicy.  System loads this precompiled_sepolicy directly if and only if hashes
//    for system policy match and hashes for product policy match.
// 2) If these hashes do not match, then either /system or /product (or both) have been updated out
//    of sync with /vendor and the init needs to compile the SEPolicy.  /system contains the
//    SEPolicy compiler, secilc, and it is used by the LoadSplitPolicy() function below to compile
//    the SEPolicy to a temp directory and load it.  That function contains even more documentation
//    with the specific implementation details of how the SEPolicy is compiled if needed.

#include "selinux.h"

#include <android/api-level.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/unique_fd.h>
#include <cutils/android_reboot.h>
#include <fs_avb/fs_avb.h>
#include <selinux/android.h>

#include "debug_ramdisk.h"
#include "reboot_utils.h"
#include "util.h"

using namespace std::string_literals;

using android::base::ParseInt;
using android::base::Timer;
using android::base::unique_fd;
using android::fs_mgr::AvbHandle;

namespace android {
namespace init {

namespace {

selabel_handle* sehandle = nullptr;

enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING };

EnforcingStatus StatusFromCmdline() {
    EnforcingStatus status = SELINUX_ENFORCING;

    import_kernel_cmdline(false,
                          [&](const std::string& key, const std::string& value, bool in_qemu) {
                              if (key == "androidboot.selinux" && value == "permissive") {
                                  status = SELINUX_PERMISSIVE;
                              }
                          });

    return status;
}

bool IsEnforcing() {
    if (ALLOW_PERMISSIVE_SELINUX) {
        return StatusFromCmdline() == SELINUX_ENFORCING;
    }
    return true;
}

// Forks, executes the provided program in the child, and waits for the completion in the parent.
// Child's stderr is captured and logged using LOG(ERROR).
bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) {
    // Create a pipe used for redirecting child process's output.
    // * pipe_fds[0] is the FD the parent will use for reading.
    // * pipe_fds[1] is the FD the child will use for writing.
    int pipe_fds[2];
    if (pipe(pipe_fds) == -1) {
        PLOG(ERROR) << "Failed to create pipe";
        return false;
    }

    pid_t child_pid = fork();
    if (child_pid == -1) {
        PLOG(ERROR) << "Failed to fork for " << filename;
        return false;
    }

    if (child_pid == 0) {
        // fork succeeded -- this is executing in the child process

        // Close the pipe FD not used by this process
        close(pipe_fds[0]);

        // Redirect stderr to the pipe FD provided by the parent
        if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
            PLOG(ERROR) << "Failed to redirect stderr of " << filename;
            _exit(127);
            return false;
        }
        close(pipe_fds[1]);

        if (execv(filename, argv) == -1) {
            PLOG(ERROR) << "Failed to execve " << filename;
            return false;
        }
        // Unreachable because execve will have succeeded and replaced this code
        // with child process's code.
        _exit(127);
        return false;
    } else {
        // fork succeeded -- this is executing in the original/parent process

        // Close the pipe FD not used by this process
        close(pipe_fds[1]);

        // Log the redirected output of the child process.
        // It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
        // As a result, we're buffering all output and logging it in one go at the end of the
        // invocation, instead of logging it as it comes in.
        const int child_out_fd = pipe_fds[0];
        std::string child_output;
        if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
            PLOG(ERROR) << "Failed to capture full output of " << filename;
        }
        close(child_out_fd);
        if (!child_output.empty()) {
            // Log captured output, line by line, because LOG expects to be invoked for each line
            std::istringstream in(child_output);
            std::string line;
            while (std::getline(in, line)) {
                LOG(ERROR) << filename << ": " << line;
            }
        }

        // Wait for child to terminate
        int status;
        if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
            PLOG(ERROR) << "Failed to wait for " << filename;
            return false;
        }

        if (WIFEXITED(status)) {
            int status_code = WEXITSTATUS(status);
            if (status_code == 0) {
                return true;
            } else {
                LOG(ERROR) << filename << " exited with status " << status_code;
            }
        } else if (WIFSIGNALED(status)) {
            LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
        } else if (WIFSTOPPED(status)) {
            LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
        } else {
            LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
        }

        return false;
    }
}

bool ReadFirstLine(const char* file, std::string* line) {
    line->clear();

    std::string contents;
    if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
        return false;
    }
    std::istringstream in(contents);
    std::getline(in, *line);
    return true;
}

bool FindPrecompiledSplitPolicy(std::string* file) {
    file->clear();
    // If there is an odm partition, precompiled_sepolicy will be in
    // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux.
    static constexpr const char vendor_precompiled_sepolicy[] =
        "/vendor/etc/selinux/precompiled_sepolicy";
    static constexpr const char odm_precompiled_sepolicy[] =
        "/odm/etc/selinux/precompiled_sepolicy";
    if (access(odm_precompiled_sepolicy, R_OK) == 0) {
        *file = odm_precompiled_sepolicy;
    } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) {
        *file = vendor_precompiled_sepolicy;
    } else {
        PLOG(INFO) << "No precompiled sepolicy";
        return false;
    }
    std::string actual_plat_id;
    if (!ReadFirstLine("/system/etc/selinux/plat_sepolicy_and_mapping.sha256", &actual_plat_id)) {
        PLOG(INFO) << "Failed to read "
                      "/system/etc/selinux/plat_sepolicy_and_mapping.sha256";
        return false;
    }
    std::string actual_product_id;
    if (!ReadFirstLine("/product/etc/selinux/product_sepolicy_and_mapping.sha256",
                       &actual_product_id)) {
        PLOG(INFO) << "Failed to read "
                      "/product/etc/selinux/product_sepolicy_and_mapping.sha256";
        return false;
    }

    std::string precompiled_plat_id;
    std::string precompiled_plat_sha256 = *file + ".plat_sepolicy_and_mapping.sha256";
    if (!ReadFirstLine(precompiled_plat_sha256.c_str(), &precompiled_plat_id)) {
        PLOG(INFO) << "Failed to read " << precompiled_plat_sha256;
        file->clear();
        return false;
    }
    std::string precompiled_product_id;
    std::string precompiled_product_sha256 = *file + ".product_sepolicy_and_mapping.sha256";
    if (!ReadFirstLine(precompiled_product_sha256.c_str(), &precompiled_product_id)) {
        PLOG(INFO) << "Failed to read " << precompiled_product_sha256;
        file->clear();
        return false;
    }
    if (actual_plat_id.empty() || actual_plat_id != precompiled_plat_id ||
        actual_product_id.empty() || actual_product_id != precompiled_product_id) {
        file->clear();
        return false;
    }
    return true;
}

bool GetVendorMappingVersion(std::string* plat_vers) {
    if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) {
        PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt";
        return false;
    }
    if (plat_vers->empty()) {
        LOG(ERROR) << "No version present in plat_sepolicy_vers.txt";
        return false;
    }
    return true;
}

constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";

bool IsSplitPolicyDevice() {
    return access(plat_policy_cil_file, R_OK) != -1;
}

bool LoadSplitPolicy() {
    // IMPLEMENTATION NOTE: Split policy consists of three CIL files:
    // * platform -- policy needed due to logic contained in the system image,
    // * non-platform -- policy needed due to logic contained in the vendor image,
    // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
    //   with newer versions of platform policy.
    //
    // secilc is invoked to compile the above three policy files into a single monolithic policy
    // file. This file is then loaded into the kernel.

    // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil.
    const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
    bool use_userdebug_policy =
            ((force_debuggable_env && "true"s == force_debuggable_env) &&
             AvbHandle::IsDeviceUnlocked() && access(kDebugRamdiskSEPolicy, F_OK) == 0);
    if (use_userdebug_policy) {
        LOG(WARNING) << "Using userdebug system sepolicy";
    }

    // Load precompiled policy from vendor image, if a matching policy is found there. The policy
    // must match the platform policy on the system image.
    std::string precompiled_sepolicy_file;
    // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil.
    // Thus it cannot use the precompiled policy from vendor image.
    if (!use_userdebug_policy && FindPrecompiledSplitPolicy(&precompiled_sepolicy_file)) {
        unique_fd fd(open(precompiled_sepolicy_file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
        if (fd != -1) {
            if (selinux_android_load_policy_from_fd(fd, precompiled_sepolicy_file.c_str()) < 0) {
                LOG(ERROR) << "Failed to load SELinux policy from " << precompiled_sepolicy_file;
                return false;
            }
            return true;
        }
    }
    // No suitable precompiled policy could be loaded

    LOG(INFO) << "Compiling SELinux policy";

    // We store the output of the compilation on /dev because this is the most convenient tmpfs
    // storage mount available this early in the boot sequence.
    char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
    unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
    if (compiled_sepolicy_fd < 0) {
        PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
        return false;
    }

    // Determine which mapping file to include
    std::string vend_plat_vers;
    if (!GetVendorMappingVersion(&vend_plat_vers)) {
        return false;
    }
    std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil");

    std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers +
                                     ".compat.cil");
    if (access(plat_compat_cil_file.c_str(), F_OK) == -1) {
        plat_compat_cil_file.clear();
    }

    std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil");
    if (access(product_policy_cil_file.c_str(), F_OK) == -1) {
        product_policy_cil_file.clear();
    }

    std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil");
    if (access(product_mapping_file.c_str(), F_OK) == -1) {
        product_mapping_file.clear();
    }

    // vendor_sepolicy.cil and plat_pub_versioned.cil are the new design to replace
    // nonplat_sepolicy.cil.
    std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil");
    std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil");

    if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) {
        // For backward compatibility.
        // TODO: remove this after no device is using nonplat_sepolicy.cil.
        vendor_policy_cil_file = "/vendor/etc/selinux/nonplat_sepolicy.cil";
        plat_pub_versioned_cil_file.clear();
    } else if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) {
        LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file;
        return false;
    }

    // odm_sepolicy.cil is default but optional.
    std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil");
    if (access(odm_policy_cil_file.c_str(), F_OK) == -1) {
        odm_policy_cil_file.clear();
    }
    const std::string version_as_string = std::to_string(SEPOLICY_VERSION);

    // clang-format off
    std::vector<const char*> compile_args {
        "/system/bin/secilc",
        use_userdebug_policy ? kDebugRamdiskSEPolicy: plat_policy_cil_file,
        "-m", "-M", "true", "-G", "-N",
        "-c", version_as_string.c_str(),
        plat_mapping_file.c_str(),
        "-o", compiled_sepolicy,
        // We don't care about file_contexts output by the compiler
        "-f", "/sys/fs/selinux/null",  // /dev/null is not yet available
    };
    // clang-format on

    if (!plat_compat_cil_file.empty()) {
        compile_args.push_back(plat_compat_cil_file.c_str());
    }
    if (!product_policy_cil_file.empty()) {
        compile_args.push_back(product_policy_cil_file.c_str());
    }
    if (!product_mapping_file.empty()) {
        compile_args.push_back(product_mapping_file.c_str());
    }
    if (!plat_pub_versioned_cil_file.empty()) {
        compile_args.push_back(plat_pub_versioned_cil_file.c_str());
    }
    if (!vendor_policy_cil_file.empty()) {
        compile_args.push_back(vendor_policy_cil_file.c_str());
    }
    if (!odm_policy_cil_file.empty()) {
        compile_args.push_back(odm_policy_cil_file.c_str());
    }
    compile_args.push_back(nullptr);

    if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) {
        unlink(compiled_sepolicy);
        return false;
    }
    unlink(compiled_sepolicy);

    LOG(INFO) << "Loading compiled SELinux policy";
    if (selinux_android_load_policy_from_fd(compiled_sepolicy_fd, compiled_sepolicy) < 0) {
        LOG(ERROR) << "Failed to load SELinux policy from " << compiled_sepolicy;
        return false;
    }

    return true;
}

bool LoadMonolithicPolicy() {
    LOG(VERBOSE) << "Loading SELinux policy from monolithic file";
    if (selinux_android_load_policy() < 0) {
        PLOG(ERROR) << "Failed to load monolithic SELinux policy";
        return false;
    }
    return true;
}

bool LoadPolicy() {
    return IsSplitPolicyDevice() ? LoadSplitPolicy() : LoadMonolithicPolicy();
}

void SelinuxInitialize() {
    LOG(INFO) << "Loading SELinux policy";
    if (!LoadPolicy()) {
        LOG(FATAL) << "Unable to load SELinux policy";
    }

    bool kernel_enforcing = (security_getenforce() == 1);
    bool is_enforcing = IsEnforcing();
    if (kernel_enforcing != is_enforcing) {
        if (security_setenforce(is_enforcing)) {
            PLOG(FATAL) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false");
        }
    }

    if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result) {
        LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error();
    }
}

}  // namespace

// The files and directories that were created before initial sepolicy load or
// files on ramdisk need to have their security context restored to the proper
// value. This must happen before /dev is populated by ueventd.
void SelinuxRestoreContext() {
    LOG(INFO) << "Running restorecon...";
    selinux_android_restorecon("/dev", 0);
    selinux_android_restorecon("/dev/kmsg", 0);
    if constexpr (WORLD_WRITABLE_KMSG) {
        selinux_android_restorecon("/dev/kmsg_debug", 0);
    }
    selinux_android_restorecon("/dev/null", 0);
    selinux_android_restorecon("/dev/ptmx", 0);
    selinux_android_restorecon("/dev/socket", 0);
    selinux_android_restorecon("/dev/random", 0);
    selinux_android_restorecon("/dev/urandom", 0);
    selinux_android_restorecon("/dev/__properties__", 0);

    selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
    selinux_android_restorecon("/dev/device-mapper", 0);

    selinux_android_restorecon("/apex", 0);
}

int SelinuxKlogCallback(int type, const char* fmt, ...) {
    android::base::LogSeverity severity = android::base::ERROR;
    if (type == SELINUX_WARNING) {
        severity = android::base::WARNING;
    } else if (type == SELINUX_INFO) {
        severity = android::base::INFO;
    }
    char buf[1024];
    va_list ap;
    va_start(ap, fmt);
    vsnprintf(buf, sizeof(buf), fmt, ap);
    va_end(ap);
    android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf);
    return 0;
}

// This function sets up SELinux logging to be written to kmsg, to match init's logging.
void SelinuxSetupKernelLogging() {
    selinux_callback cb;
    cb.func_log = SelinuxKlogCallback;
    selinux_set_callback(SELINUX_CB_LOG, cb);
}

// This function returns the Android version with which the vendor SEPolicy was compiled.
// It is used for version checks such as whether or not vendor_init should be used
int SelinuxGetVendorAndroidVersion() {
    if (!IsSplitPolicyDevice()) {
        // If this device does not split sepolicy files, it's not a Treble device and therefore,
        // we assume it's always on the latest platform.
        return __ANDROID_API_FUTURE__;
    }

    std::string version;
    if (!GetVendorMappingVersion(&version)) {
        LOG(FATAL) << "Could not read vendor SELinux version";
    }

    int major_version;
    std::string major_version_str(version, 0, version.find('.'));
    if (!ParseInt(major_version_str, &major_version)) {
        PLOG(FATAL) << "Failed to parse the vendor sepolicy major version " << major_version_str;
    }

    return major_version;
}

// This function initializes SELinux then execs init to run in the init SELinux context.
int SetupSelinux(char** argv) {
    android::base::InitLogging(argv, &android::base::KernelLogger, [](const char*) {
        RebootSystem(ANDROID_RB_RESTART2, "bootloader");
    });

    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    boot_clock::time_point start_time = boot_clock::now();

    // Set up SELinux, loading the SELinux policy.
    SelinuxSetupKernelLogging();
    SelinuxInitialize();

    // We're in the kernel domain and want to transition to the init domain.  File systems that
    // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
    // but other file systems do.  In particular, this is needed for ramdisks such as the
    // recovery image for A/B devices.
    if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
        PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
    }

    setenv("SELINUX_STARTED_AT", std::to_string(start_time.time_since_epoch().count()).c_str(), 1);

    const char* path = "/system/bin/init";
    const char* args[] = {path, "second_stage", nullptr};
    execv(path, const_cast<char**>(args));

    // execv() only returns if an error happened, in which case we
    // panic and never return from this function.
    PLOG(FATAL) << "execv(\"" << path << "\") failed";

    return 1;
}

// selinux_android_file_context_handle() takes on the order of 10+ms to run, so we want to cache
// its value.  selinux_android_restorecon() also needs an sehandle for file context look up.  It
// will create and store its own copy, but selinux_android_set_sehandle() can be used to provide
// one, thus eliminating an extra call to selinux_android_file_context_handle().
void SelabelInitialize() {
    sehandle = selinux_android_file_context_handle();
    selinux_android_set_sehandle(sehandle);
}

// A C++ wrapper around selabel_lookup() using the cached sehandle.
// If sehandle is null, this returns success with an empty context.
bool SelabelLookupFileContext(const std::string& key, int type, std::string* result) {
    result->clear();

    if (!sehandle) return true;

    char* context;
    if (selabel_lookup(sehandle, &context, key.c_str(), type) != 0) {
        return false;
    }
    *result = context;
    free(context);
    return true;
}

// A C++ wrapper around selabel_lookup_best_match() using the cached sehandle.
// If sehandle is null, this returns success with an empty context.
bool SelabelLookupFileContextBestMatch(const std::string& key,
                                       const std::vector<std::string>& aliases, int type,
                                       std::string* result) {
    result->clear();

    if (!sehandle) return true;

    std::vector<const char*> c_aliases;
    for (const auto& alias : aliases) {
        c_aliases.emplace_back(alias.c_str());
    }
    c_aliases.emplace_back(nullptr);

    char* context;
    if (selabel_lookup_best_match(sehandle, &context, key.c_str(), &c_aliases[0], type) != 0) {
        return false;
    }
    *result = context;
    free(context);
    return true;
}

}  // namespace init
}  // namespace android