/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace android::fs_mgr; using android::base::unique_fd; using SparsePtr = std::unique_ptr; class ImageExtractor final { public: ImageExtractor(unique_fd&& image_fd, std::unique_ptr&& metadata, std::unordered_set&& partitions, const std::string& output_dir); bool Extract(); private: bool BuildPartitionList(); bool ExtractPartition(const LpMetadataPartition* partition); bool ExtractExtent(const LpMetadataExtent& extent, int output_fd); unique_fd image_fd_; std::unique_ptr metadata_; std::unordered_set partitions_; std::string output_dir_; std::unordered_map partition_map_; }; // Note that "sparse" here refers to filesystem sparse, not the Android sparse // file format. class SparseWriter final { public: SparseWriter(int output_fd, int image_fd, uint32_t block_size); bool WriteExtent(const LpMetadataExtent& extent); bool Finish(); private: bool WriteBlock(const uint8_t* data); int output_fd_; int image_fd_; uint32_t block_size_; off_t hole_size_ = 0; }; /* Prints program usage to |where|. */ static int usage(int /* argc */, char* argv[]) { fprintf(stderr, "%s - command-line tool for extracting partition images from super\n" "\n" "Usage:\n" " %s [options...] SUPER_IMAGE [OUTPUT_DIR]\n" "\n" "Options:\n" " -p, --partition=NAME Extract the named partition. This can\n" " be specified multiple times.\n" " -S, --slot=NUM Slot number (default is 0).\n", argv[0], argv[0]); return EX_USAGE; } int main(int argc, char* argv[]) { // clang-format off struct option options[] = { { "partition", required_argument, nullptr, 'p' }, { "slot", required_argument, nullptr, 'S' }, { nullptr, 0, nullptr, 0 }, }; // clang-format on uint32_t slot_num = 0; std::unordered_set partitions; int rv, index; while ((rv = getopt_long_only(argc, argv, "+p:sh", options, &index)) != -1) { switch (rv) { case 'h': usage(argc, argv); return EX_OK; case '?': std::cerr << "Unrecognized argument.\n"; return usage(argc, argv); case 'S': if (!android::base::ParseUint(optarg, &slot_num)) { std::cerr << "Slot must be a valid unsigned number.\n"; return usage(argc, argv); } break; case 'p': partitions.emplace(optarg); break; } } if (optind + 1 > argc) { std::cerr << "Missing super image argument.\n"; return usage(argc, argv); } std::string super_path = argv[optind++]; std::string output_dir = "."; if (optind + 1 <= argc) { output_dir = argv[optind++]; } if (optind < argc) { std::cerr << "Unrecognized command-line arguments.\n"; return usage(argc, argv); } // Done reading arguments; open super.img. PartitionOpener will decorate // relative paths with /dev/block/by-name, so get an absolute path here. std::string abs_super_path; if (!android::base::Realpath(super_path, &abs_super_path)) { std::cerr << "realpath failed: " << super_path << ": " << strerror(errno) << "\n"; return EX_OSERR; } unique_fd fd(open(super_path.c_str(), O_RDONLY | O_CLOEXEC)); if (fd < 0) { std::cerr << "open failed: " << abs_super_path << ": " << strerror(errno) << "\n"; return EX_OSERR; } auto metadata = ReadMetadata(abs_super_path, slot_num); if (!metadata) { SparsePtr ptr(sparse_file_import(fd, false, false), sparse_file_destroy); if (ptr) { std::cerr << "This image appears to be a sparse image. It must be " "unsparsed to be" << " unpacked.\n"; return EX_USAGE; } std::cerr << "Image does not appear to be in super-partition format.\n"; return EX_USAGE; } ImageExtractor extractor(std::move(fd), std::move(metadata), std::move(partitions), output_dir); if (!extractor.Extract()) { return EX_SOFTWARE; } return EX_OK; } ImageExtractor::ImageExtractor(unique_fd&& image_fd, std::unique_ptr&& metadata, std::unordered_set&& partitions, const std::string& output_dir) : image_fd_(std::move(image_fd)), metadata_(std::move(metadata)), partitions_(std::move(partitions)), output_dir_(output_dir) {} bool ImageExtractor::Extract() { if (!BuildPartitionList()) { return false; } for (const auto& [name, info] : partition_map_) { if (!ExtractPartition(info)) { return false; } } return true; } bool ImageExtractor::BuildPartitionList() { bool extract_all = partitions_.empty(); for (const auto& partition : metadata_->partitions) { auto name = GetPartitionName(partition); if (extract_all || partitions_.count(name)) { partition_map_[name] = &partition; partitions_.erase(name); } } if (!extract_all && !partitions_.empty()) { std::cerr << "Could not find partition: " << *partitions_.begin() << "\n"; return false; } return true; } bool ImageExtractor::ExtractPartition(const LpMetadataPartition* partition) { // Validate the extents and find the total image size. uint64_t total_size = 0; for (uint32_t i = 0; i < partition->num_extents; i++) { uint32_t index = partition->first_extent_index + i; const LpMetadataExtent& extent = metadata_->extents[index]; if (extent.target_type != LP_TARGET_TYPE_LINEAR) { std::cerr << "Unsupported target type in extent: " << extent.target_type << "\n"; return false; } if (extent.target_source != 0) { std::cerr << "Split super devices are not supported.\n"; return false; } total_size += extent.num_sectors * LP_SECTOR_SIZE; } // Make a temporary file so we can import it with sparse_file_read. std::string output_path = output_dir_ + "/" + GetPartitionName(*partition) + ".img"; unique_fd output_fd(open(output_path.c_str(), O_RDWR | O_CLOEXEC | O_CREAT | O_TRUNC, 0644)); if (output_fd < 0) { std::cerr << "open failed: " << output_path << ": " << strerror(errno) << "\n"; return false; } SparseWriter writer(output_fd, image_fd_, metadata_->geometry.logical_block_size); // Extract each extent into output_fd. for (uint32_t i = 0; i < partition->num_extents; i++) { uint32_t index = partition->first_extent_index + i; const LpMetadataExtent& extent = metadata_->extents[index]; if (!writer.WriteExtent(extent)) { return false; } } return writer.Finish(); } SparseWriter::SparseWriter(int output_fd, int image_fd, uint32_t block_size) : output_fd_(output_fd), image_fd_(image_fd), block_size_(block_size) {} bool SparseWriter::WriteExtent(const LpMetadataExtent& extent) { auto buffer = std::make_unique(block_size_); off_t super_offset = extent.target_data * LP_SECTOR_SIZE; if (lseek(image_fd_, super_offset, SEEK_SET) < 0) { std::cerr << "image lseek failed: " << strerror(errno) << "\n"; return false; } uint64_t remaining_bytes = extent.num_sectors * LP_SECTOR_SIZE; while (remaining_bytes) { if (remaining_bytes < block_size_) { std::cerr << "extent is not block-aligned\n"; return false; } if (!android::base::ReadFully(image_fd_, buffer.get(), block_size_)) { std::cerr << "read failed: " << strerror(errno) << "\n"; return false; } if (!WriteBlock(buffer.get())) { return false; } remaining_bytes -= block_size_; } return true; } static bool ShouldSkipChunk(const uint8_t* data, size_t len) { for (size_t i = 0; i < len; i++) { if (data[i] != 0) { return false; } } return true; } bool SparseWriter::WriteBlock(const uint8_t* data) { if (ShouldSkipChunk(data, block_size_)) { hole_size_ += block_size_; return true; } if (hole_size_) { if (lseek(output_fd_, hole_size_, SEEK_CUR) < 0) { std::cerr << "lseek failed: " << strerror(errno) << "\n"; return false; } hole_size_ = 0; } if (!android::base::WriteFully(output_fd_, data, block_size_)) { std::cerr << "write failed: " << strerror(errno) << "\n"; return false; } return true; } bool SparseWriter::Finish() { if (hole_size_) { off_t offset = lseek(output_fd_, 0, SEEK_CUR); if (offset < 0) { std::cerr << "lseek failed: " << strerror(errno) << "\n"; return false; } if (ftruncate(output_fd_, offset + hole_size_) < 0) { std::cerr << "ftruncate failed: " << strerror(errno) << "\n"; return false; } } return true; }