/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "command.h" #include "environment.h" #include "event_selection_set.h" #include "get_test_data.h" #include "record.h" #include "record_file.h" #include "test_util.h" #include "thread_tree.h" using namespace PerfFileFormat; static std::unique_ptr RecordCmd() { return CreateCommandInstance("record"); } static bool RunRecordCmd(std::vector v, const char* output_file = nullptr) { std::unique_ptr tmpfile; std::string out_file; if (output_file != nullptr) { out_file = output_file; } else { tmpfile.reset(new TemporaryFile); out_file = tmpfile->path; } v.insert(v.end(), {"-o", out_file, "sleep", SLEEP_SEC}); return RecordCmd()->Run(v); } TEST(record_cmd, no_options) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({})); } TEST(record_cmd, system_wide_option) { TEST_REQUIRE_HW_COUNTER(); TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a"}))); } void CheckEventType(const std::string& record_file, const std::string event_type, uint64_t sample_period, uint64_t sample_freq) { const EventType* type = FindEventTypeByName(event_type); ASSERT_TRUE(type != nullptr); std::unique_ptr reader = RecordFileReader::CreateInstance(record_file); ASSERT_TRUE(reader); std::vector attrs = reader->AttrSection(); for (auto& attr : attrs) { if (attr.attr->type == type->type && attr.attr->config == type->config) { if (attr.attr->freq == 0) { ASSERT_EQ(sample_period, attr.attr->sample_period); ASSERT_EQ(sample_freq, 0u); } else { ASSERT_EQ(sample_period, 0u); ASSERT_EQ(sample_freq, attr.attr->sample_freq); } return; } } FAIL(); } TEST(record_cmd, sample_period_option) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"-c", "100000"}, tmpfile.path)); CheckEventType(tmpfile.path, "cpu-cycles", 100000u, 0); } TEST(record_cmd, event_option) { ASSERT_TRUE(RunRecordCmd({"-e", "cpu-clock"})); } TEST(record_cmd, freq_option) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"-f", "99"}, tmpfile.path)); CheckEventType(tmpfile.path, "cpu-cycles", 0, 99u); ASSERT_TRUE(RunRecordCmd({"-e", "cpu-clock", "-f", "99"}, tmpfile.path)); CheckEventType(tmpfile.path, "cpu-clock", 0, 99u); ASSERT_FALSE(RunRecordCmd({"-f", std::to_string(UINT_MAX)})); } TEST(record_cmd, multiple_freq_or_sample_period_option) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"-f", "99", "-e", "cpu-cycles", "-c", "1000000", "-e", "cpu-clock"}, tmpfile.path)); CheckEventType(tmpfile.path, "cpu-cycles", 0, 99u); CheckEventType(tmpfile.path, "cpu-clock", 1000000u, 0u); } TEST(record_cmd, output_file_option) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "sleep", SLEEP_SEC})); } TEST(record_cmd, dump_kernel_mmap) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader != nullptr); std::vector> records = reader->DataSection(); ASSERT_GT(records.size(), 0U); bool have_kernel_mmap = false; for (auto& record : records) { if (record->type() == PERF_RECORD_MMAP) { const MmapRecord* mmap_record = static_cast(record.get()); if (strcmp(mmap_record->filename, DEFAULT_KERNEL_MMAP_NAME) == 0 || strcmp(mmap_record->filename, DEFAULT_KERNEL_MMAP_NAME_PERF) == 0) { have_kernel_mmap = true; break; } } } ASSERT_TRUE(have_kernel_mmap); } TEST(record_cmd, dump_build_id_feature) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader != nullptr); const FileHeader& file_header = reader->FileHeader(); ASSERT_TRUE(file_header.features[FEAT_BUILD_ID / 8] & (1 << (FEAT_BUILD_ID % 8))); ASSERT_GT(reader->FeatureSectionDescriptors().size(), 0u); } TEST(record_cmd, tracepoint_event) { TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a", "-e", "sched:sched_switch"}))); } TEST(record_cmd, rN_event) { TEST_REQUIRE_HW_COUNTER(); OMIT_TEST_ON_NON_NATIVE_ABIS(); size_t event_number; if (GetBuildArch() == ARCH_ARM64 || GetBuildArch() == ARCH_ARM) { // As in D5.10.2 of the ARMv8 manual, ARM defines the event number space for PMU. part of the // space is for common event numbers (which will stay the same for all ARM chips), part of the // space is for implementation defined events. Here 0x08 is a common event for instructions. event_number = 0x08; } else if (GetBuildArch() == ARCH_X86_32 || GetBuildArch() == ARCH_X86_64) { // As in volume 3 chapter 19 of the Intel manual, 0x00c0 is the event number for instruction. event_number = 0x00c0; } else { GTEST_LOG_(INFO) << "Omit arch " << GetBuildArch(); return; } std::string event_name = android::base::StringPrintf("r%zx", event_number); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"-e", event_name}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); std::vector attrs = reader->AttrSection(); ASSERT_EQ(1u, attrs.size()); ASSERT_EQ(PERF_TYPE_RAW, attrs[0].attr->type); ASSERT_EQ(event_number, attrs[0].attr->config); } TEST(record_cmd, branch_sampling) { TEST_REQUIRE_HW_COUNTER(); if (IsBranchSamplingSupported()) { ASSERT_TRUE(RunRecordCmd({"-b"})); ASSERT_TRUE(RunRecordCmd({"-j", "any,any_call,any_ret,ind_call"})); ASSERT_TRUE(RunRecordCmd({"-j", "any,k"})); ASSERT_TRUE(RunRecordCmd({"-j", "any,u"})); ASSERT_FALSE(RunRecordCmd({"-j", "u"})); } else { GTEST_LOG_(INFO) << "This test does nothing as branch stack sampling is " "not supported on this device."; } } TEST(record_cmd, event_modifier) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles:u"})); } TEST(record_cmd, fp_callchain_sampling) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--call-graph", "fp"})); } TEST(record_cmd, fp_callchain_sampling_warning_on_arm) { TEST_REQUIRE_HW_COUNTER(); if (GetBuildArch() != ARCH_ARM) { GTEST_LOG_(INFO) << "This test does nothing as it only tests on arm arch."; return; } ASSERT_EXIT( { exit(RunRecordCmd({"--call-graph", "fp"}) ? 0 : 1); }, testing::ExitedWithCode(0), "doesn't work well on arm"); } TEST(record_cmd, system_wide_fp_callchain_sampling) { TEST_REQUIRE_HW_COUNTER(); TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a", "--call-graph", "fp"}))); } bool IsInNativeAbi() { static int in_native_abi = -1; if (in_native_abi == -1) { FILE* fp = popen("uname -m", "re"); char buf[40]; memset(buf, '\0', sizeof(buf)); CHECK_EQ(fgets(buf, sizeof(buf), fp), buf); pclose(fp); std::string s = buf; in_native_abi = 1; if (GetBuildArch() == ARCH_X86_32 || GetBuildArch() == ARCH_X86_64) { if (s.find("86") == std::string::npos) { in_native_abi = 0; } } else if (GetBuildArch() == ARCH_ARM || GetBuildArch() == ARCH_ARM64) { if (s.find("arm") == std::string::npos && s.find("aarch64") == std::string::npos) { in_native_abi = 0; } } } return in_native_abi == 1; } bool HasHardwareCounter() { static int has_hw_counter = -1; if (has_hw_counter == -1) { has_hw_counter = 1; #if defined(__arm__) std::string cpu_info; if (android::base::ReadFileToString("/proc/cpuinfo", &cpu_info)) { std::string hardware = GetHardwareFromCpuInfo(cpu_info); if (std::regex_search(hardware, std::regex(R"(i\.MX6.*Quad)")) || std::regex_search(hardware, std::regex(R"(SC7731e)")) ) { has_hw_counter = 0; } } #endif } return has_hw_counter == 1; } TEST(record_cmd, dwarf_callchain_sampling) { TEST_REQUIRE_HW_COUNTER(); OMIT_TEST_ON_NON_NATIVE_ABIS(); ASSERT_TRUE(IsDwarfCallChainSamplingSupported()); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf"})); ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf,16384"})); ASSERT_FALSE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf,65536"})); ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g"})); } TEST(record_cmd, system_wide_dwarf_callchain_sampling) { TEST_REQUIRE_HW_COUNTER(); OMIT_TEST_ON_NON_NATIVE_ABIS(); ASSERT_TRUE(IsDwarfCallChainSamplingSupported()); TEST_IN_ROOT(RunRecordCmd({"-a", "--call-graph", "dwarf"})); } TEST(record_cmd, no_unwind_option) { TEST_REQUIRE_HW_COUNTER(); OMIT_TEST_ON_NON_NATIVE_ABIS(); ASSERT_TRUE(IsDwarfCallChainSamplingSupported()); ASSERT_TRUE(RunRecordCmd({"--call-graph", "dwarf", "--no-unwind"})); ASSERT_FALSE(RunRecordCmd({"--no-unwind"})); } TEST(record_cmd, post_unwind_option) { TEST_REQUIRE_HW_COUNTER(); OMIT_TEST_ON_NON_NATIVE_ABIS(); ASSERT_TRUE(IsDwarfCallChainSamplingSupported()); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind"})); ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind=yes"})); ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind=no"})); } TEST(record_cmd, existing_processes) { TEST_REQUIRE_HW_COUNTER(); std::vector> workloads; CreateProcesses(2, &workloads); std::string pid_list = android::base::StringPrintf( "%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid()); ASSERT_TRUE(RunRecordCmd({"-p", pid_list})); } TEST(record_cmd, existing_threads) { TEST_REQUIRE_HW_COUNTER(); std::vector> workloads; CreateProcesses(2, &workloads); // Process id can also be used as thread id in linux. std::string tid_list = android::base::StringPrintf( "%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid()); ASSERT_TRUE(RunRecordCmd({"-t", tid_list})); } TEST(record_cmd, no_monitored_threads) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_FALSE(RecordCmd()->Run({"-o", tmpfile.path})); ASSERT_FALSE(RecordCmd()->Run({"-o", tmpfile.path, ""})); } TEST(record_cmd, more_than_one_event_types) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles,cpu-clock"})); ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles", "-e", "cpu-clock"})); } TEST(record_cmd, mmap_page_option) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"-m", "1"})); ASSERT_FALSE(RunRecordCmd({"-m", "0"})); ASSERT_FALSE(RunRecordCmd({"-m", "7"})); } static void CheckKernelSymbol(const std::string& path, bool need_kallsyms, bool* success) { *success = false; std::unique_ptr reader = RecordFileReader::CreateInstance(path); ASSERT_TRUE(reader != nullptr); std::vector> records = reader->DataSection(); bool has_kernel_symbol_records = false; for (const auto& record : records) { if (record->type() == SIMPLE_PERF_RECORD_KERNEL_SYMBOL) { has_kernel_symbol_records = true; } } bool require_kallsyms = need_kallsyms && CheckKernelSymbolAddresses(); ASSERT_EQ(require_kallsyms, has_kernel_symbol_records); *success = true; } TEST(record_cmd, kernel_symbol) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols"}, tmpfile.path)); bool success; CheckKernelSymbol(tmpfile.path, true, &success); ASSERT_TRUE(success); ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols", "--no-dump-kernel-symbols"}, tmpfile.path)); CheckKernelSymbol(tmpfile.path, false, &success); ASSERT_TRUE(success); } // Check if dumped symbols in perf.data matches our expectation. static bool CheckDumpedSymbols(const std::string& path, bool allow_dumped_symbols) { std::unique_ptr reader = RecordFileReader::CreateInstance(path); if (!reader) { return false; } std::string file_path; uint32_t file_type; uint64_t min_vaddr; uint64_t file_offset_of_min_vaddr; std::vector symbols; std::vector dex_file_offsets; size_t read_pos = 0; bool has_dumped_symbols = false; while (reader->ReadFileFeature(read_pos, &file_path, &file_type, &min_vaddr, &file_offset_of_min_vaddr, &symbols, &dex_file_offsets)) { if (!symbols.empty()) { has_dumped_symbols = true; } } // It is possible that there are no samples hitting functions having symbols. // So "allow_dumped_symbols = true" doesn't guarantee "has_dumped_symbols = true". if (!allow_dumped_symbols && has_dumped_symbols) { return false; } return true; } TEST(record_cmd, no_dump_symbols) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({}, tmpfile.path)); ASSERT_TRUE(CheckDumpedSymbols(tmpfile.path, true)); ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols", "--no-dump-kernel-symbols"}, tmpfile.path)); ASSERT_TRUE(CheckDumpedSymbols(tmpfile.path, false)); OMIT_TEST_ON_NON_NATIVE_ABIS(); ASSERT_TRUE(IsDwarfCallChainSamplingSupported()); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g"}, tmpfile.path)); ASSERT_TRUE(CheckDumpedSymbols(tmpfile.path, true)); ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g", "--no-dump-symbols", "--no-dump-kernel-symbols"}, tmpfile.path)); ASSERT_TRUE(CheckDumpedSymbols(tmpfile.path, false)); } TEST(record_cmd, dump_kernel_symbols) { TEST_REQUIRE_HW_COUNTER(); if (!IsRoot()) { GTEST_LOG_(INFO) << "Test requires root privilege"; return; } TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"-a", "-o", tmpfile.path, "sleep", "1"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader != nullptr); std::map section_map = reader->FeatureSectionDescriptors(); ASSERT_NE(section_map.find(FEAT_FILE), section_map.end()); std::string file_path; uint32_t file_type; uint64_t min_vaddr; uint64_t file_offset_of_min_vaddr; std::vector symbols; std::vector dex_file_offsets; size_t read_pos = 0; bool has_kernel_symbols = false; while (reader->ReadFileFeature(read_pos, &file_path, &file_type, &min_vaddr, &file_offset_of_min_vaddr, &symbols, &dex_file_offsets)) { if (file_type == DSO_KERNEL && !symbols.empty()) { has_kernel_symbols = true; } } ASSERT_TRUE(has_kernel_symbols); } TEST(record_cmd, group_option) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--group", "cpu-cycles,cpu-clock", "-m", "16"})); ASSERT_TRUE(RunRecordCmd({"--group", "cpu-cycles,cpu-clock", "--group", "cpu-cycles:u,cpu-clock:u", "--group", "cpu-cycles:k,cpu-clock:k", "-m", "16"})); } TEST(record_cmd, symfs_option) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--symfs", "/"})); } TEST(record_cmd, duration_option) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"--duration", "1.2", "-p", std::to_string(getpid()), "-o", tmpfile.path, "--in-app"})); ASSERT_TRUE( RecordCmd()->Run({"--duration", "1", "-o", tmpfile.path, "sleep", "2"})); } TEST(record_cmd, support_modifier_for_clock_events) { for (const std::string& e : {"cpu-clock", "task-clock"}) { for (const std::string& m : {"u", "k"}) { ASSERT_TRUE(RunRecordCmd({"-e", e + ":" + m})) << "event " << e << ":" << m; } } } TEST(record_cmd, handle_SIGHUP) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; int pipefd[2]; ASSERT_EQ(0, pipe(pipefd)); int read_fd = pipefd[0]; int write_fd = pipefd[1]; char data[8] = {}; std::thread thread([&]() { android::base::ReadFully(read_fd, data, 7); kill(getpid(), SIGHUP); }); ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "--start_profiling_fd", std::to_string(write_fd), "sleep", "1000000"})); thread.join(); close(write_fd); close(read_fd); ASSERT_STREQ(data, "STARTED"); } TEST(record_cmd, stop_when_no_more_targets) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; std::atomic tid(0); std::thread thread([&]() { tid = gettid(); sleep(1); }); thread.detach(); while (tid == 0); ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-t", std::to_string(tid), "--in-app"})); } TEST(record_cmd, donot_stop_when_having_targets) { TEST_REQUIRE_HW_COUNTER(); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); uint64_t start_time_in_ns = GetSystemClock(); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--duration", "3"})); uint64_t end_time_in_ns = GetSystemClock(); ASSERT_GT(end_time_in_ns - start_time_in_ns, static_cast(2e9)); } TEST(record_cmd, start_profiling_fd_option) { TEST_REQUIRE_HW_COUNTER(); int pipefd[2]; ASSERT_EQ(0, pipe(pipefd)); int read_fd = pipefd[0]; int write_fd = pipefd[1]; ASSERT_EXIT( { close(read_fd); exit(RunRecordCmd({"--start_profiling_fd", std::to_string(write_fd)}) ? 0 : 1); }, testing::ExitedWithCode(0), ""); close(write_fd); std::string s; ASSERT_TRUE(android::base::ReadFdToString(read_fd, &s)); close(read_fd); ASSERT_EQ("STARTED", s); } TEST(record_cmd, record_meta_info_feature) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); std::unordered_map info_map; ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map)); ASSERT_NE(info_map.find("simpleperf_version"), info_map.end()); ASSERT_NE(info_map.find("timestamp"), info_map.end()); #if defined(__ANDROID__) ASSERT_NE(info_map.find("product_props"), info_map.end()); ASSERT_NE(info_map.find("android_version"), info_map.end()); #endif } // See http://b/63135835. TEST(record_cmd, cpu_clock_for_a_long_time) { std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run( {"-e", "cpu-clock", "-o", tmpfile.path, "-p", pid, "--duration", "3"})); } TEST(record_cmd, dump_regs_for_tracepoint_events) { TEST_REQUIRE_HW_COUNTER(); TEST_REQUIRE_HOST_ROOT(); OMIT_TEST_ON_NON_NATIVE_ABIS(); // Check if the kernel can dump registers for tracepoint events. // If not, probably a kernel patch below is missing: // "5b09a094f2 arm64: perf: Fix callchain parse error with kernel tracepoint events" ASSERT_TRUE(IsDumpingRegsForTracepointEventsSupported()); } TEST(record_cmd, trace_offcpu_option) { TEST_REQUIRE_HW_COUNTER(); // On linux host, we need root privilege to read tracepoint events. TEST_REQUIRE_HOST_ROOT(); OMIT_TEST_ON_NON_NATIVE_ABIS(); TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"--trace-offcpu", "-f", "1000"}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); std::unordered_map info_map; ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map)); ASSERT_EQ(info_map["trace_offcpu"], "true"); CheckEventType(tmpfile.path, "sched:sched_switch", 1u, 0u); } TEST(record_cmd, exit_with_parent_option) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--exit-with-parent"})); } TEST(record_cmd, clockid_option) { TEST_REQUIRE_HW_COUNTER(); if (!IsSettingClockIdSupported()) { ASSERT_FALSE(RunRecordCmd({"--clockid", "monotonic"})); } else { TemporaryFile tmpfile; ASSERT_TRUE(RunRecordCmd({"--clockid", "monotonic"}, tmpfile.path)); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); std::unordered_map info_map; ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map)); ASSERT_EQ(info_map["clockid"], "monotonic"); } } TEST(record_cmd, generate_samples_by_hw_counters) { TEST_REQUIRE_HW_COUNTER(); std::vector events = {"cpu-cycles", "instructions"}; for (auto& event : events) { TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-e", event, "-o", tmpfile.path, "sleep", "1"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); bool has_sample = false; ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr r) { if (r->type() == PERF_RECORD_SAMPLE) { has_sample = true; } return true; })); ASSERT_TRUE(has_sample); } } TEST(record_cmd, callchain_joiner_options) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--no-callchain-joiner"})); ASSERT_TRUE(RunRecordCmd({"--callchain-joiner-min-matching-nodes", "2"})); } TEST(record_cmd, dashdash) { TEST_REQUIRE_HW_COUNTER(); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "--", "sleep", "1"})); } TEST(record_cmd, size_limit_option) { TEST_REQUIRE_HW_COUNTER(); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--size-limit", "1k", "--duration", "1"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); ASSERT_GT(reader->FileHeader().data.size, 1000u); ASSERT_LT(reader->FileHeader().data.size, 2000u); ASSERT_FALSE(RunRecordCmd({"--size-limit", "0"})); } TEST(record_cmd, support_mmap2) { // mmap2 is supported in kernel >= 3.16. If not supported, please cherry pick below kernel // patches: // 13d7a2410fa637 perf: Add attr->mmap2 attribute to an event // f972eb63b1003f perf: Pass protection and flags bits through mmap2 interface. TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(IsMmap2Supported()); } TEST(record_cmd, kernel_bug_making_zero_dyn_size) { // Test a kernel bug that makes zero dyn_size in kernel < 3.13. If it fails, please cherry pick // below kernel patch: 0a196848ca365e perf: Fix arch_perf_out_copy_user default TEST_REQUIRE_HW_COUNTER(); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--call-graph", "dwarf,8", "--no-unwind", "--duration", "1"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); bool has_sample = false; ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr r) { if (r->type() == PERF_RECORD_SAMPLE && !r->InKernel()) { SampleRecord* sr = static_cast(r.get()); if (sr->stack_user_data.dyn_size == 0) { return false; } has_sample = true; } return true; })); ASSERT_TRUE(has_sample); } TEST(record_cmd, kernel_bug_making_zero_dyn_size_for_kernel_samples) { // Test a kernel bug that makes zero dyn_size for syscalls of 32-bit applications in 64-bit // kernels. If it fails, please cherry pick below kernel patch: // 02e184476eff8 perf/core: Force USER_DS when recording user stack data TEST_REQUIRE_HW_COUNTER(); TEST_REQUIRE_HOST_ROOT(); std::vector> workloads; CreateProcesses(1, &workloads); std::string pid = std::to_string(workloads[0]->GetPid()); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-e", "sched:sched_switch", "-o", tmpfile.path, "-p", pid, "--call-graph", "dwarf,8", "--no-unwind", "--duration", "1"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); bool has_sample = false; ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr r) { if (r->type() == PERF_RECORD_SAMPLE && r->InKernel()) { SampleRecord* sr = static_cast(r.get()); if (sr->stack_user_data.dyn_size == 0) { return false; } has_sample = true; } return true; })); ASSERT_TRUE(has_sample); } TEST(record_cmd, cpu_percent_option) { TEST_REQUIRE_HW_COUNTER(); ASSERT_TRUE(RunRecordCmd({"--cpu-percent", "50"})); ASSERT_FALSE(RunRecordCmd({"--cpu-percent", "0"})); ASSERT_FALSE(RunRecordCmd({"--cpu-percent", "101"})); } static void TestRecordingApps(const std::string& app_name) { // Bring the app to foreground to avoid no samples. ASSERT_TRUE(Workload::RunCmd({"am", "start", app_name + "/.MainActivity"})); TemporaryFile tmpfile; ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "--app", app_name, "-g", "--duration", "3"})); std::unique_ptr reader = RecordFileReader::CreateInstance(tmpfile.path); ASSERT_TRUE(reader); // Check if having samples. bool has_sample = false; ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr r) { if (r->type() == PERF_RECORD_SAMPLE) { has_sample = true; } return true; })); ASSERT_TRUE(has_sample); // Check if we can profile Java code by looking for a Java method name in dumped symbols, which // is app_name + ".MainActivity$1.run". const std::string expected_class_name = app_name + ".MainActivity"; const std::string expected_method_name = "run"; std::string file_path; uint32_t file_type; uint64_t min_vaddr; uint64_t file_offset_of_min_vaddr; std::vector symbols; std::vector dex_file_offsets; size_t read_pos = 0; bool has_java_symbol = false; ASSERT_TRUE(reader->HasFeature(FEAT_FILE)); while (reader->ReadFileFeature(read_pos, &file_path, &file_type, &min_vaddr, &file_offset_of_min_vaddr, &symbols, &dex_file_offsets)) { for (const auto& symbol : symbols) { const char* name = symbol.DemangledName(); if (strstr(name, expected_class_name.c_str()) != nullptr && strstr(name, expected_method_name.c_str()) != nullptr) { has_java_symbol = true; } } } ASSERT_TRUE(has_java_symbol); } TEST(record_cmd, app_option_for_debuggable_app) { TEST_REQUIRE_HW_COUNTER(); TEST_REQUIRE_APPS(); TestRecordingApps("com.android.simpleperf.debuggable"); } TEST(record_cmd, app_option_for_profileable_app) { TEST_REQUIRE_HW_COUNTER(); TEST_REQUIRE_APPS(); TestRecordingApps("com.android.simpleperf.profileable"); }