/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "command.h" #include "environment.h" #include "event_attr.h" #include "event_fd.h" #include "event_selection_set.h" #include "event_type.h" #include "scoped_signal_handler.h" #include "utils.h" #include "workload.h" static std::vector default_measured_event_types{ "cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend", "instructions", "branch-instructions", "branch-misses", "task-clock", "context-switches", "page-faults", }; static volatile bool signaled; static void signal_handler(int) { signaled = true; } class StatCommand : public Command { public: StatCommand() : Command("stat", "gather performance counter information", "Usage: simpleperf stat [options] [command [command-args]]\n" " Gather performance counter information of running [command].\n" " -a Collect system-wide information.\n" " --cpu cpu_item1,cpu_item2,...\n" " Collect information only on the selected cpus. cpu_item can\n" " be a cpu number like 1, or a cpu range like 0-3.\n" " -e event1[:modifier1],event2[:modifier2],...\n" " Select the event list to count. Use `simpleperf list` to find\n" " all possible event names. Modifiers can be added to define\n" " how the event should be monitored. Possible modifiers are:\n" " u - monitor user space events only\n" " k - monitor kernel space events only\n" " --no-inherit\n" " Don't stat created child threads/processes.\n" " -p pid1,pid2,...\n" " Stat events on existing processes. Mutually exclusive with -a.\n" " -t tid1,tid2,...\n" " Stat events on existing threads. Mutually exclusive with -a.\n" " --verbose Show result in verbose mode.\n"), verbose_mode_(false), system_wide_collection_(false), child_inherit_(true) { signaled = false; scoped_signal_handler_.reset( new ScopedSignalHandler({SIGCHLD, SIGINT, SIGTERM}, signal_handler)); } bool Run(const std::vector& args); private: bool ParseOptions(const std::vector& args, std::vector* non_option_args); bool AddMeasuredEventType(const std::string& event_type_name); bool AddDefaultMeasuredEventTypes(); bool SetEventSelection(); bool ShowCounters(const std::vector& counters, double duration_in_sec); bool verbose_mode_; bool system_wide_collection_; bool child_inherit_; std::vector monitored_threads_; std::vector cpus_; std::vector measured_event_types_; EventSelectionSet event_selection_set_; std::unique_ptr scoped_signal_handler_; }; bool StatCommand::Run(const std::vector& args) { if (!CheckPerfEventLimit()) { return false; } // 1. Parse options, and use default measured event types if not given. std::vector workload_args; if (!ParseOptions(args, &workload_args)) { return false; } if (measured_event_types_.empty()) { if (!AddDefaultMeasuredEventTypes()) { return false; } } if (!SetEventSelection()) { return false; } // 2. Create workload. std::unique_ptr workload; if (!workload_args.empty()) { workload = Workload::CreateWorkload(workload_args); if (workload == nullptr) { return false; } } if (!system_wide_collection_ && monitored_threads_.empty()) { if (workload != nullptr) { monitored_threads_.push_back(workload->GetPid()); event_selection_set_.SetEnableOnExec(true); } else { LOG(ERROR) << "No threads to monitor. Try `simpleperf help stat` for help\n"; return false; } } // 3. Open perf_event_files. if (system_wide_collection_) { if (!event_selection_set_.OpenEventFilesForCpus(cpus_)) { return false; } } else { if (cpus_.empty()) { cpus_ = {-1}; } if (!event_selection_set_.OpenEventFilesForThreadsOnCpus(monitored_threads_, cpus_)) { return false; } } // 4. Count events while workload running. auto start_time = std::chrono::steady_clock::now(); if (workload != nullptr && !workload->Start()) { return false; } while (!signaled) { sleep(1); } auto end_time = std::chrono::steady_clock::now(); // 5. Read and print counters. std::vector counters; if (!event_selection_set_.ReadCounters(&counters)) { return false; } double duration_in_sec = std::chrono::duration_cast>(end_time - start_time).count(); if (!ShowCounters(counters, duration_in_sec)) { return false; } return true; } bool StatCommand::ParseOptions(const std::vector& args, std::vector* non_option_args) { std::set tid_set; size_t i; for (i = 0; i < args.size() && args[i].size() > 0 && args[i][0] == '-'; ++i) { if (args[i] == "-a") { system_wide_collection_ = true; } else if (args[i] == "--cpu") { if (!NextArgumentOrError(args, &i)) { return false; } cpus_ = GetCpusFromString(args[i]); } else if (args[i] == "-e") { if (!NextArgumentOrError(args, &i)) { return false; } std::vector event_types = android::base::Split(args[i], ","); for (auto& event_type : event_types) { if (!AddMeasuredEventType(event_type)) { return false; } } } else if (args[i] == "--no-inherit") { child_inherit_ = false; } else if (args[i] == "-p") { if (!NextArgumentOrError(args, &i)) { return false; } if (!GetValidThreadsFromProcessString(args[i], &tid_set)) { return false; } } else if (args[i] == "-t") { if (!NextArgumentOrError(args, &i)) { return false; } if (!GetValidThreadsFromThreadString(args[i], &tid_set)) { return false; } } else if (args[i] == "--verbose") { verbose_mode_ = true; } else { ReportUnknownOption(args, i); return false; } } monitored_threads_.insert(monitored_threads_.end(), tid_set.begin(), tid_set.end()); if (system_wide_collection_ && !monitored_threads_.empty()) { LOG(ERROR) << "Stat system wide and existing processes/threads can't be used at the same time."; return false; } if (non_option_args != nullptr) { non_option_args->clear(); for (; i < args.size(); ++i) { non_option_args->push_back(args[i]); } } return true; } bool StatCommand::AddMeasuredEventType(const std::string& event_type_name) { std::unique_ptr event_type_modifier = ParseEventType(event_type_name); if (event_type_modifier == nullptr) { return false; } measured_event_types_.push_back(*event_type_modifier); return true; } bool StatCommand::AddDefaultMeasuredEventTypes() { for (auto& name : default_measured_event_types) { // It is not an error when some event types in the default list are not supported by the kernel. const EventType* type = FindEventTypeByName(name); if (type != nullptr && IsEventAttrSupportedByKernel(CreateDefaultPerfEventAttr(*type))) { AddMeasuredEventType(name); } } if (measured_event_types_.empty()) { LOG(ERROR) << "Failed to add any supported default measured types"; return false; } return true; } bool StatCommand::SetEventSelection() { for (auto& event_type : measured_event_types_) { if (!event_selection_set_.AddEventType(event_type)) { return false; } } event_selection_set_.SetInherit(child_inherit_); return true; } static std::string ReadableCountValue(uint64_t count, const EventTypeAndModifier& event_type_modifier) { if (event_type_modifier.event_type.name == "cpu-clock" || event_type_modifier.event_type.name == "task-clock") { double value = count / 1e6; return android::base::StringPrintf("%lf(ms)", value); } else { std::string s = android::base::StringPrintf("%" PRIu64, count); for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) { if (j == 3) { s.insert(s.begin() + i, ','); j = 0; } } return s; } } struct CounterSummary { const EventTypeAndModifier* event_type; uint64_t count; double scale; std::string readable_count_str; std::string comment; }; static std::string GetCommentForSummary(const CounterSummary& summary, const std::vector& summaries, double duration_in_sec) { const std::string& type_name = summary.event_type->event_type.name; const std::string& modifier = summary.event_type->modifier; if (type_name == "task-clock") { double run_sec = summary.count / 1e9; double cpu_usage = run_sec / duration_in_sec; return android::base::StringPrintf("%lf%% cpu usage", cpu_usage * 100); } if (type_name == "cpu-clock") { return ""; } if (type_name == "cpu-cycles") { double hz = summary.count / duration_in_sec; return android::base::StringPrintf("%lf GHz", hz / 1e9); } if (type_name == "instructions" && summary.count != 0) { for (auto& t : summaries) { if (t.event_type->event_type.name == "cpu-cycles" && t.event_type->modifier == modifier) { double cycles_per_instruction = t.count * 1.0 / summary.count; return android::base::StringPrintf("%lf cycles per instruction", cycles_per_instruction); } } } if (android::base::EndsWith(type_name, "-misses")) { std::string s; if (type_name == "cache-misses") { s = "cache-references"; } else if (type_name == "branch-misses") { s = "branch-instructions"; } else { s = type_name.substr(0, type_name.size() - strlen("-misses")) + "s"; } for (auto& t : summaries) { if (t.event_type->event_type.name == s && t.event_type->modifier == modifier && t.count != 0) { double miss_rate = summary.count * 1.0 / t.count; return android::base::StringPrintf("%lf%% miss rate", miss_rate * 100); } } } double rate = summary.count / duration_in_sec; if (rate > 1e9) { return android::base::StringPrintf("%.3lf G/sec", rate / 1e9); } if (rate > 1e6) { return android::base::StringPrintf("%.3lf M/sec", rate / 1e6); } if (rate > 1e3) { return android::base::StringPrintf("%.3lf K/sec", rate / 1e3); } return android::base::StringPrintf("%.3lf /sec", rate); } bool StatCommand::ShowCounters(const std::vector& counters, double duration_in_sec) { printf("Performance counter statistics:\n\n"); if (verbose_mode_) { for (auto& counters_info : counters) { const EventTypeAndModifier* event_type = counters_info.event_type; for (auto& counter_info : counters_info.counters) { printf("%s(tid %d, cpu %d): count %s, time_enabled %" PRIu64 ", time running %" PRIu64 ", id %" PRIu64 "\n", event_type->name.c_str(), counter_info.tid, counter_info.cpu, ReadableCountValue(counter_info.counter.value, *event_type).c_str(), counter_info.counter.time_enabled, counter_info.counter.time_running, counter_info.counter.id); } } } std::vector summaries; for (auto& counters_info : counters) { uint64_t value_sum = 0; uint64_t time_enabled_sum = 0; uint64_t time_running_sum = 0; for (auto& counter_info : counters_info.counters) { // If time_running is 0, the program has never run on this event and we shouldn't // summarize it. if (counter_info.counter.time_running != 0) { value_sum += counter_info.counter.value; time_enabled_sum += counter_info.counter.time_enabled; time_running_sum += counter_info.counter.time_running; } } double scale = 1.0; if (time_running_sum < time_enabled_sum && time_running_sum != 0) { scale = static_cast(time_enabled_sum) / time_running_sum; } CounterSummary summary; summary.event_type = counters_info.event_type; summary.count = value_sum; summary.scale = scale; summary.readable_count_str = ReadableCountValue(summary.count, *summary.event_type); summaries.push_back(summary); } for (auto& summary : summaries) { summary.comment = GetCommentForSummary(summary, summaries, duration_in_sec); } size_t count_column_width = 0; size_t name_column_width = 0; size_t comment_column_width = 0; for (auto& summary : summaries) { count_column_width = std::max(count_column_width, summary.readable_count_str.size()); name_column_width = std::max(name_column_width, summary.event_type->name.size()); comment_column_width = std::max(comment_column_width, summary.comment.size()); } for (auto& summary : summaries) { printf(" %*s %-*s # %-*s (%.0lf%%)\n", static_cast(count_column_width), summary.readable_count_str.c_str(), static_cast(name_column_width), summary.event_type->name.c_str(), static_cast(comment_column_width), summary.comment.c_str(), 1.0 / summary.scale * 100); } printf("\nTotal test time: %lf seconds.\n", duration_in_sec); return true; } void RegisterStatCommand() { RegisterCommand("stat", [] { return std::unique_ptr(new StatCommand); }); }