summaryrefslogtreecommitdiff
path: root/micro_bench/micro_bench.cpp
blob: ec81797c1df6becee468506d60441092e102d654 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/*
** Copyright 2010 The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
**     http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/

/*
 * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
 */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <sched.h>
#include <sys/resource.h>
#include <time.h>
#include <unistd.h>

// The default size of data that will be manipulated in each iteration of
// a memory benchmark. Can be modified with the --data_size option.
#define DEFAULT_DATA_SIZE       1000000000

// The amount of memory allocated for the cold benchmarks to use.
#define DEFAULT_COLD_DATA_SIZE  128*1024*1024

// The default size of the stride between each buffer for cold benchmarks.
#define DEFAULT_COLD_STRIDE_SIZE  4096

// Number of nanoseconds in a second.
#define NS_PER_SEC              1000000000

// The maximum number of arguments that a benchmark will accept.
#define MAX_ARGS    2

// Default memory alignment of malloc.
#define DEFAULT_MALLOC_MEMORY_ALIGNMENT   8

// Contains information about benchmark options.
typedef struct {
    bool print_average;
    bool print_each_iter;

    int dst_align;
    int dst_or_mask;
    int src_align;
    int src_or_mask;

    int cpu_to_lock;

    int data_size;
    int dst_str_size;
    int cold_data_size;
    int cold_stride_size;

    int args[MAX_ARGS];
    int num_args;
} command_data_t;

typedef void *(*void_func_t)();
typedef void *(*memcpy_func_t)(void *, const void *, size_t);
typedef void *(*memset_func_t)(void *, int, size_t);
typedef int (*strcmp_func_t)(const char *, const char *);
typedef char *(*str_func_t)(char *, const char *);
typedef size_t (*strlen_func_t)(const char *);

// Struct that contains a mapping of benchmark name to benchmark function.
typedef struct {
    const char *name;
    int (*ptr)(const char *, const command_data_t &, void_func_t func);
    void_func_t func;
} function_t;

// Get the current time in nanoseconds.
uint64_t nanoTime() {
  struct timespec t;

  t.tv_sec = t.tv_nsec = 0;
  clock_gettime(CLOCK_MONOTONIC, &t);
  return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
}

// Allocate memory with a specific alignment and return that pointer.
// This function assumes an alignment value that is a power of 2.
// If the alignment is 0, then use the pointer returned by malloc.
uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
  uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
  if (alignment > 0) {
      // When setting the alignment, set it to exactly the alignment chosen.
      // The pointer returned will be guaranteed not to be aligned to anything
      // more than that.
      ptr += alignment - (ptr & (alignment - 1));
      ptr |= alignment | or_mask;
  }

  return reinterpret_cast<uint8_t*>(ptr);
}

// Allocate memory with a specific alignment and return that pointer.
// This function assumes an alignment value that is a power of 2.
// If the alignment is 0, then use the pointer returned by malloc.
uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
  uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
  if (!ptr)
      return NULL;
  return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
}

void initString(uint8_t *buf, size_t size) {
    for (size_t i = 0; i < size - 1; i++) {
        buf[i] = static_cast<char>(32 + (i % 96));
    }
    buf[size-1] = '\0';
}

static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
    return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
}

static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
    return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
}

static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
    return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
}

static inline double computeStdDev(double square_avg, double running_avg) {
    return sqrt(square_avg - running_avg * running_avg);
}

static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
    printf("%s %ux%u bytes took %.06f seconds (%f MB/s)\n",
           name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
}

static inline void printSummary(uint64_t time_ns, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
    printf("  %s %ux%u bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
           name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
           max/1024.0);
}

// For the cold benchmarks, a large buffer will be created which
// contains many "size" buffers. This function will figure out the increment
// needed between each buffer so that each one is aligned to "alignment".
int getAlignmentIncrement(size_t size, int alignment) {
    if (alignment == 0) {
        alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
    }
    alignment *= 2;
    return size + alignment - (size % alignment);
}

uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
    uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
    if (!buffers) {
        return NULL;
    }
    return getAlignedMemory(buffers, alignment, or_mask);
}

static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
    return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
}

static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
    printf("%s %ux%ux%u bytes took %.06f seconds (%f MB/s)\n",
           name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
}

static void inline printColdSummary(
        uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers,
        double running_avg, double square_avg, double min, double max) {
    printf("  %s %ux%ux%u bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
           name, copies, num_buffers, size, running_avg/1024.0,
           computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
}

#define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
    uint64_t time_ns;                                                 \
    int iters = cmd_data.args[1];                                     \
    bool print_average = cmd_data.print_average;                      \
    bool print_each_iter = cmd_data.print_each_iter;                  \
    double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
    double avg;                                                       \
    for (int i = 0; iters == -1 || i < iters; i++) {                  \
        time_ns = nanoTime();                                         \
        BENCH;                                                        \
        time_ns = nanoTime() - time_ns;                               \
        avg = COMPUTE_AVG;                                            \
        if (print_average) {                                          \
            running_avg = computeRunningAvg(avg, running_avg, i);     \
            square_avg = computeRunningSquareAvg(avg, square_avg, i); \
            if (min == 0.0 || avg < min) {                            \
                min = avg;                                            \
            }                                                         \
            if (avg > max) {                                          \
                max = avg;                                            \
            }                                                         \
        }                                                             \
        if (print_each_iter) {                                        \
            PRINT_ITER;                                               \
        }                                                             \
    }                                                                 \
    if (print_average) {                                              \
        PRINT_AVG;                                                    \
    }

#define MAINLOOP_DATA(name, cmd_data, size, BENCH)                    \
    size_t copies = cmd_data.data_size/size;                          \
    size_t j;                                                         \
    MAINLOOP(cmd_data,                                                \
             for (j = 0; j < copies; j++) {                           \
                 BENCH;                                               \
             },                                                       \
             computeAverage(time_ns, size, copies),                   \
             printIter(time_ns, name, size, copies, avg),             \
             double std_dev = computeStdDev(square_avg, running_avg); \
             printSummary(time_ns, name, size, copies, running_avg,   \
                          std_dev, min, max));

#define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH)                 \
    size_t num_strides = num_buffers / num_incrs;                             \
    if ((num_buffers % num_incrs) != 0) {                                     \
        num_strides--;                                                        \
    }                                                                         \
    size_t copies = 1;                                                        \
    num_buffers = num_incrs * num_strides;                                    \
    if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) {       \
        copies = cmd_data.data_size / (num_buffers * size);                   \
    }                                                                         \
    if (num_strides == 0) {                                                   \
        printf("%s: Chosen options lead to no copies, aborting.\n", name);    \
        return -1;                                                            \
    }                                                                         \
    size_t j, k;                                                              \
    MAINLOOP(cmd_data,                                                        \
             for (j = 0; j < copies; j++) {                                   \
                 for (k = 0; k < num_incrs; k++) {                            \
                     BENCH;                                                   \
                }                                                             \
            },                                                                \
            computeColdAverage(time_ns, size, copies, num_buffers),           \
            printColdIter(time_ns, name, size, copies, num_buffers, avg),     \
            printColdSummary(time_ns, name, size, copies, num_buffers,        \
                             running_avg, square_avg, min, max));

// This version of the macro creates a single buffer of the given size and
// alignment. The variable "buf" will be a pointer to the buffer and should
// be used by the BENCH code.
// INIT - Any specialized code needed to initialize the data. This will only
//        be executed once.
// BENCH - The actual code to benchmark and is timed.
#define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH)                            \
    size_t size = cmd_data.args[0]; \
    uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
    if (!buf)                                                                 \
        return -1;                                                            \
    INIT;                                                                     \
    MAINLOOP_DATA(name, cmd_data, size, BENCH);

// This version of the macro creates two buffers of the given sizes and
// alignments. The variables "buf1" and "buf2" will be pointers to the
// buffers and should be used by the BENCH code.
// INIT - Any specialized code needed to initialize the data. This will only
//        be executed once.
// BENCH - The actual code to benchmark and is timed.
#define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH)                           \
    size_t size = cmd_data.args[0];                                           \
    uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
    if (!buf1)                                                                \
        return -1;                                                            \
    size_t total_size = size;                                                 \
    if (cmd_data.dst_str_size > 0)                                            \
        total_size += cmd_data.dst_str_size;                                  \
    uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
    if (!buf2)                                                                \
        return -1;                                                            \
    INIT;                                                                     \
    MAINLOOP_DATA(name, cmd_data, size, BENCH);

// This version of the macro attempts to benchmark code when the data
// being manipulated is not in the cache, thus the cache is cold. It does
// this by creating a single large buffer that is designed to be larger than
// the largest cache in the system. The variable "buf" will be one slice
// of the buffer that the BENCH code should use that is of the correct size
// and alignment. In order to avoid any algorithms that prefetch past the end
// of their "buf" and into the next sequential buffer, the code strides
// through the buffer. Specifically, as "buf" values are iterated in BENCH
// code, the end of "buf" is guaranteed to be at least "stride_size" away
// from the next "buf".
// INIT - Any specialized code needed to initialize the data. This will only
//        be executed once.
// BENCH - The actual code to benchmark and is timed.
#define COLD_ONE_BUF(name, cmd_data, INIT, BENCH)                             \
    size_t size = cmd_data.args[0];                                           \
    size_t incr = getAlignmentIncrement(size, cmd_data.dst_align);            \
    size_t num_buffers = cmd_data.cold_data_size / incr;                      \
    size_t buffer_size = num_buffers * incr;                                  \
    uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
    if (!buffer)                                                              \
        return -1;                                                            \
    size_t num_incrs = cmd_data.cold_stride_size / incr + 1;                  \
    size_t stride_incr = incr * num_incrs;                                    \
    uint8_t *buf;                                                             \
    size_t l;                                                                 \
    INIT;                                                                     \
    MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
                  buf = buffer + k * incr;                                    \
                  for (l = 0; l < num_strides; l++) {                         \
                      BENCH;                                                  \
                      buf += stride_incr;                                     \
                  });

// This version of the macro attempts to benchmark code when the data
// being manipulated is not in the cache, thus the cache is cold. It does
// this by creating two large buffers each of which is designed to be
// larger than the largest cache in the system. Two variables "buf1" and
// "buf2" will be the two buffers that BENCH code should use. In order
// to avoid any algorithms that prefetch past the end of either "buf1"
// or "buf2" and into the next sequential buffer, the code strides through
// both buffers. Specifically, as "buf1" and "buf2" values are iterated in
// BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
// "stride_size" away from the next "buf1" and "buf2".
// INIT - Any specialized code needed to initialize the data. This will only
//        be executed once.
// BENCH - The actual code to benchmark and is timed.
#define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH)                            \
    size_t size = cmd_data.args[0];                                           \
    size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align);       \
    size_t total_size = size;                                                 \
    if (cmd_data.dst_str_size > 0)                                            \
        total_size += cmd_data.dst_str_size;                                  \
    size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
    size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr;        \
    size_t num_buffers = cmd_data.cold_data_size / max_incr;                  \
    size_t buffer1_size = num_buffers * buf1_incr;                            \
    size_t buffer2_size = num_buffers * buf2_incr;                            \
    uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
    if (!buffer1)                                                             \
        return -1;                                                            \
    uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
    if (!buffer2)                                                             \
        return -1;                                                            \
    size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr;        \
    size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1;              \
    size_t buf1_stride_incr = buf1_incr * num_incrs;                          \
    size_t buf2_stride_incr = buf2_incr * num_incrs;                          \
    size_t l;                                                                 \
    uint8_t *buf1;                                                            \
    uint8_t *buf2;                                                            \
    INIT;                                                                     \
    MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
                  buf1 = buffer1 + k * buf1_incr;                             \
                  buf2 = buffer2 + k * buf2_incr;                             \
                  for (l = 0; l < num_strides; l++) {                         \
                      BENCH;                                                  \
                      buf1 += buf1_stride_incr;                               \
                      buf2 += buf2_stride_incr;                               \
                  });

int benchmarkSleep(const char *name, const command_data_t &cmd_data, void_func_t func) {
    int delay = cmd_data.args[0];
    MAINLOOP(cmd_data, sleep(delay),
             (double)time_ns/NS_PER_SEC,
             printf("sleep(%d) took %.06f seconds\n", delay, avg);,
             printf("  sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
                    delay, running_avg, computeStdDev(square_avg, running_avg), \
                    min, max));

    return 0;
}

int benchmarkCpu(const char *name, const command_data_t &cmd_data, void_func_t func) {
    // Use volatile so that the loop is not optimized away by the compiler.
    volatile int cpu_foo;

    MAINLOOP(cmd_data,
             for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++),
             (double)time_ns/NS_PER_SEC,
             printf("cpu took %.06f seconds\n", avg),
             printf("  cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \
                    running_avg, computeStdDev(square_avg, running_avg), min, max));

    return 0;
}

int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
    BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));

    return 0;
}

int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
    COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));

    return 0;
}

int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);

    BENCH_TWO_BUFS(name, cmd_data,
                   memset(buf1, 0xff, size); \
                   memset(buf2, 0, size),
                   memcpy_func(buf2, buf1, size));

    return 0;
}

int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);

    COLD_TWO_BUFS(name, cmd_data,
                  memset(buffer1, 0xff, buffer1_size); \
                  memset(buffer2, 0x0, buffer2_size),
                  memcpy_func(buf2, buf1, size));

    return 0;
}

int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t func) {
    int size = cmd_data.args[0];

    uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
    if (!src)
        return -1;
    memset(src, 0xff, size);

    // Use volatile so the compiler does not optimize away the reads.
    volatile int foo;
    size_t k;
    MAINLOOP_DATA(name, cmd_data, size,
                  for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);

    return 0;
}

int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);

    int retval;
    BENCH_TWO_BUFS(name, cmd_data,
                   initString(buf1, size); \
                   initString(buf2, size),
                   retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
                   if (retval != 0) printf("%s failed, return value %d\n", name, retval));

    return 0;
}

int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);

    int retval;
    COLD_TWO_BUFS(name, cmd_data,
                  memset(buffer1, 'a', buffer1_size); \
                  memset(buffer2, 'a', buffer2_size); \
                  for (size_t i =0; i < num_buffers; i++) { \
                      buffer1[size-1+buf1_incr*i] = '\0'; \
                      buffer2[size-1+buf2_incr*i] = '\0'; \
                  },
                  retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
                  if (retval != 0) printf("%s failed, return value %d\n", name, retval));

    return 0;
}

int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
    size_t real_size;
    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
    BENCH_ONE_BUF(name, cmd_data,
                  initString(buf, size),
                  real_size = strlen_func(reinterpret_cast<char*>(buf)); \
                  if (real_size + 1 != size) { \
                      printf("%s failed, expected %u, got %u\n", name, size, real_size); \
                      return -1; \
                  });

    return 0;
}

int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
    size_t real_size;
    COLD_ONE_BUF(name, cmd_data,
                 memset(buffer, 'a', buffer_size); \
                 for (size_t i = 0; i < num_buffers; i++) { \
                     buffer[size-1+incr*i] = '\0'; \
                 },
                 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
                 if (real_size + 1 != size) { \
                     printf("%s failed, expected %u, got %u\n", name, size, real_size); \
                     return -1; \
                 });
    return 0;
}

int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
    str_func_t str_func = reinterpret_cast<str_func_t>(func);

    int dst_str_size = cmd_data.dst_str_size;
    if (dst_str_size <= 0) {
        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
               name);
        return -1;
    }
    BENCH_TWO_BUFS(name, cmd_data,
                   initString(buf1, size); \
                   initString(buf2, dst_str_size),
                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');

    return 0;
}

int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    str_func_t str_func = reinterpret_cast<str_func_t>(func);

    int dst_str_size = cmd_data.dst_str_size;
    if (dst_str_size <= 0) {
        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
               name);
        return -1;
    }
    COLD_TWO_BUFS(name, cmd_data,
                  memset(buffer1, 'a', buffer1_size); \
                  memset(buffer2, 'b', buffer2_size); \
                  for (size_t i = 0; i < num_buffers; i++) { \
                      buffer1[size-1+buf1_incr*i] = '\0'; \
                      buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
                  },
                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');

    return 0;
}


int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
    str_func_t str_func = reinterpret_cast<str_func_t>(func);

    BENCH_TWO_BUFS(name, cmd_data,
                   initString(buf1, size); \
                   memset(buf2, 0, size),
                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));

    return 0;
}

int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
    str_func_t str_func = reinterpret_cast<str_func_t>(func);

    COLD_TWO_BUFS(name, cmd_data,
                  memset(buffer1, 'a', buffer1_size); \
                  for (size_t i = 0; i < num_buffers; i++) { \
                     buffer1[size-1+buf1_incr*i] = '\0'; \
                  } \
                  memset(buffer2, 0, buffer2_size),
                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));

    return 0;
}

// Create the mapping structure.
function_t function_table[] = {
    { "cpu", benchmarkCpu, NULL },
    { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
    { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
    { "memread", benchmarkMemread, NULL },
    { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
    { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
    { "sleep", benchmarkSleep, NULL },
    { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
    { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
    { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
    { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
    { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
    { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
    { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
    { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
};

void usage() {
    printf("Usage:\n");
    printf("  micro_bench [--data_size DATA_BYTES] [--print_average]\n");
    printf("              [--no_print_each_iter] [--lock_to_cpu CORE]\n");
    printf("              [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
    printf("              [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
    printf("              [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
    printf("              [--cold_stride_size SIZE]\n");
    printf("    --data_size DATA_BYTES\n");
    printf("      For the data benchmarks (memcpy/memset/memread) the approximate\n");
    printf("      size of data, in bytes, that will be manipulated in each iteration.\n");
    printf("    --print_average\n");
    printf("      Print the average and standard deviation of all iterations.\n");
    printf("    --no_print_each_iter\n");
    printf("      Do not print any values in each iteration.\n");
    printf("    --lock_to_cpu CORE\n");
    printf("      Lock to the specified CORE. The default is to use the last core found.\n");
    printf("    --dst_align ALIGN\n");
    printf("      If the command supports it, align the destination pointer to ALIGN.\n");
    printf("      The default is to use the value returned by malloc.\n");
    printf("    --dst_or_mask OR_MASK\n");
    printf("      If the command supports it, or in the OR_MASK on to the destination pointer.\n");
    printf("      The OR_MASK must be smaller than the dst_align value.\n");
    printf("      The default value is 0.\n");

    printf("    --src_align ALIGN\n");
    printf("      If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
    printf("      value returned by malloc.\n");
    printf("    --src_or_mask OR_MASK\n");
    printf("      If the command supports it, or in the OR_MASK on to the source pointer.\n");
    printf("      The OR_MASK must be smaller than the src_align value.\n");
    printf("      The default value is 0.\n");
    printf("    --dst_str_size SIZE\n");
    printf("      If the command supports it, create a destination string of this length.\n");
    printf("      The default is to not update the destination string.\n");
    printf("    --cold_data_size DATA_SIZE\n");
    printf("      For _cold benchmarks, use this as the total amount of memory to use.\n");
    printf("      The default is 128MB, and the number should be larger than the cache on the chip.\n");
    printf("      This value is specified in bytes.\n");
    printf("    --cold_stride_size SIZE\n");
    printf("      For _cold benchmarks, use this as the minimum stride between iterations.\n");
    printf("      The default is 4096 bytes and the number should be larger than the amount of data\n");
    printf("      pulled in to the cache by each run of the benchmark.\n");
    printf("    ITERS\n");
    printf("      The number of iterations to execute each benchmark. If not\n");
    printf("      passed in then run forever.\n");
    printf("  micro_bench cpu UNUSED [ITERS]\n");
    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
    printf("  micro_bench memread NUM_BYTES [ITERS]\n");
    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
    printf("  micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
    printf("    TIME_TO_SLEEP\n");
    printf("      The time in seconds to sleep.\n");
    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
    printf("\n");
    printf("  In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
    printf("  that will execute the function on a buffer not in the cache.\n");
}

function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
    function_t *command = NULL;

    // Initialize the command_flags.
    cmd_data->print_average = false;
    cmd_data->print_each_iter = true;
    cmd_data->dst_align = 0;
    cmd_data->src_align = 0;
    cmd_data->src_or_mask = 0;
    cmd_data->dst_or_mask = 0;
    cmd_data->num_args = 0;
    cmd_data->cpu_to_lock = -1;
    cmd_data->data_size = DEFAULT_DATA_SIZE;
    cmd_data->dst_str_size = -1;
    cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
    cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
    for (int i = 0; i < MAX_ARGS; i++) {
        cmd_data->args[i] = -1;
    }

    for (int i = 1; i < argc; i++) {
        if (argv[i][0] == '-') {
            int *save_value = NULL;
            if (strcmp(argv[i], "--print_average") == 0) {
                cmd_data->print_average = true;
            } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
                cmd_data->print_each_iter = false;
            } else if (strcmp(argv[i], "--dst_align") == 0) {
                save_value = &cmd_data->dst_align;
            } else if (strcmp(argv[i], "--src_align") == 0) {
                save_value = &cmd_data->src_align;
            } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
                save_value = &cmd_data->dst_or_mask;
            } else if (strcmp(argv[i], "--src_or_mask") == 0) {
                save_value = &cmd_data->src_or_mask;
            } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
                save_value = &cmd_data->cpu_to_lock;
            } else if (strcmp(argv[i], "--data_size") == 0) {
                save_value = &cmd_data->data_size;
            } else if (strcmp(argv[i], "--dst_str_size") == 0) {
                save_value = &cmd_data->dst_str_size;
            } else if (strcmp(argv[i], "--cold_data_size") == 0) {
                save_value = &cmd_data->cold_data_size;
            } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
                save_value = &cmd_data->cold_stride_size;
            } else {
                printf("Unknown option %s\n", argv[i]);
                return NULL;
            }
            if (save_value) {
                // Checking both characters without a strlen() call should be
                // safe since as long as the argument exists, one character will
                // be present (\0). And if the first character is '-', then
                // there will always be a second character (\0 again).
                if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
                    printf("The option %s requires one argument.\n",
                           argv[i]);
                    return NULL;
                }
                *save_value = (int)strtol(argv[++i], NULL, 0);
            }
        } else if (!command) {
            for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
                if (strcmp(argv[i], function_table[j].name) == 0) {
                    command = &function_table[j];
                    break;
                }
            }
            if (!command) {
                printf("Uknown command %s\n", argv[i]);
                return NULL;
            }
        } else if (cmd_data->num_args > MAX_ARGS) {
            printf("More than %d number arguments passed in.\n", MAX_ARGS);
            return NULL;
        } else {
            cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
        }
    }

    // Check the arguments passed in make sense.
    if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
        printf("Not enough arguments passed in.\n");
        return NULL;
    } else if (cmd_data->dst_align < 0) {
        printf("The --dst_align option must be greater than or equal to 0.\n");
        return NULL;
    } else if (cmd_data->src_align < 0) {
        printf("The --src_align option must be greater than or equal to 0.\n");
        return NULL;
    } else if (cmd_data->data_size <= 0) {
        printf("The --data_size option must be a positive number.\n");
        return NULL;
    } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
        printf("The --dst_align option must be a power of 2.\n");
        return NULL;
    } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
        printf("The --src_align option must be a power of 2.\n");
        return NULL;
    } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
        printf("The --src_or_mask option requires that --src_align be set.\n");
        return NULL;
    } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
        printf("The --dst_or_mask option requires that --dst_align be set.\n");
        return NULL;
    } else if (cmd_data->src_or_mask > cmd_data->src_align) {
        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
        return NULL;
    } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
        return NULL;
    }

    return command;
}

bool raisePriorityAndLock(int cpu_to_lock) {
    cpu_set_t cpuset;

    if (setpriority(PRIO_PROCESS, 0, -20)) {
        perror("Unable to raise priority of process.\n");
        return false;
    }

    CPU_ZERO(&cpuset);
    if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
        perror("sched_getaffinity failed");
        return false;
    }

    if (cpu_to_lock < 0) {
        // Lock to the last active core we find.
        for (int i = 0; i < CPU_SETSIZE; i++) {
            if (CPU_ISSET(i, &cpuset)) {
                cpu_to_lock = i;
            }
        }
    } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
        printf("Cpu %d does not exist.\n", cpu_to_lock);
        return false;
    }

    if (cpu_to_lock < 0) {
        printf("Cannot find any valid cpu to lock.\n");
        return false;
    }

    CPU_ZERO(&cpuset);
    CPU_SET(cpu_to_lock, &cpuset);
    if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
        perror("sched_setaffinity failed");
        return false;
    }

    return true;
}

int main(int argc, char **argv) {
    command_data_t cmd_data;

    function_t *command = processOptions(argc, argv, &cmd_data);
    if (!command) {
      usage();
      return -1;
    }

    if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
      return -1;
    }

    printf("%s\n", command->name);
    return (*command->ptr)(command->name, cmd_data, command->func);
}