/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "MemoryDealer" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using std::string; namespace android { namespace hardware { class SimpleBestFitAllocator { enum { PAGE_ALIGNED = 0x00000001 }; public: explicit SimpleBestFitAllocator(size_t size); ~SimpleBestFitAllocator(); size_t allocate(size_t size, uint32_t flags = 0); status_t deallocate(size_t offset); size_t size() const; void dump(const char* tag) const; void dump(string& res, const char* tag) const; static size_t getAllocationAlignment() { return kMemoryAlign; } private: struct chunk_t { chunk_t(size_t start, size_t size) : start(start), size(size), free(1) {} size_t start; size_t size : 28; int free : 4; }; using List = std::list; using Iterator = std::list::iterator; using IteratorConst = std::list::const_iterator; using Mutex = std::mutex; using Lock = std::lock_guard; ssize_t alloc(size_t size, uint32_t flags); chunk_t* dealloc(size_t start); void dump_l(const char* tag) const; void dump_l(string& res, const char* tag) const; static const int kMemoryAlign; mutable Mutex mLock; List mList; size_t mHeapSize; }; MemoryDealer::MemoryDealer(size_t size) : mAllocator(new SimpleBestFitAllocator(size)) {} MemoryDealer::~MemoryDealer() { delete mAllocator; } ssize_t MemoryDealer::allocateOffset(size_t size) { return mAllocator->allocate(size); } void MemoryDealer::deallocate(size_t offset) { mAllocator->deallocate(offset); } void MemoryDealer::dump(const char* tag) const { mAllocator->dump(tag); } size_t MemoryDealer::getAllocationAlignment() { return SimpleBestFitAllocator::getAllocationAlignment(); } // align all the memory blocks on a cache-line boundary const int SimpleBestFitAllocator::kMemoryAlign = 32; SimpleBestFitAllocator::SimpleBestFitAllocator(size_t size) { size_t pagesize = getpagesize(); mHeapSize = ((size + pagesize - 1) & ~(pagesize - 1)); chunk_t* node = new chunk_t(0, mHeapSize / kMemoryAlign); mList.push_front(node); } SimpleBestFitAllocator::~SimpleBestFitAllocator() { while (mList.size() != 0) { chunk_t* removed = mList.front(); mList.pop_front(); #ifdef __clang_analyzer__ // Clang static analyzer gets confused in this loop // and generates a false positive warning about accessing // memory that is already freed. // Add an "assert" to avoid the confusion. LOG_ALWAYS_FATAL_IF(mList.front() == removed); #endif delete removed; } } size_t SimpleBestFitAllocator::size() const { return mHeapSize; } size_t SimpleBestFitAllocator::allocate(size_t size, uint32_t flags) { Lock lock(mLock); ssize_t offset = alloc(size, flags); return offset; } status_t SimpleBestFitAllocator::deallocate(size_t offset) { Lock lock(mLock); chunk_t const* const freed = dealloc(offset); if (freed) { return NO_ERROR; } return NAME_NOT_FOUND; } ssize_t SimpleBestFitAllocator::alloc(size_t size, uint32_t flags) { if (size == 0) { return 0; } size = (size + kMemoryAlign - 1) / kMemoryAlign; size_t pagesize = getpagesize(); Iterator free_chunk_p = mList.end(); for (Iterator p = mList.begin(); p != mList.end(); p++) { chunk_t* cur = *p; int extra = 0; if (flags & PAGE_ALIGNED) extra = (-cur->start & ((pagesize / kMemoryAlign) - 1)); // best fit if (cur->free && (cur->size >= (size + extra))) { if ((free_chunk_p == mList.end()) || (cur->size < (*free_chunk_p)->size)) { free_chunk_p = p; } if (cur->size == size) { break; } } } if (free_chunk_p != mList.end()) { chunk_t* free_chunk = *free_chunk_p; const size_t free_size = free_chunk->size; free_chunk->free = 0; free_chunk->size = size; if (free_size > size) { int extra = 0; if (flags & PAGE_ALIGNED) extra = (-free_chunk->start & ((pagesize / kMemoryAlign) - 1)); if (extra) { chunk_t* split = new chunk_t(free_chunk->start, extra); free_chunk->start += extra; mList.insert(free_chunk_p, split); } ALOGE_IF( (flags & PAGE_ALIGNED) && ((free_chunk->start * kMemoryAlign) & (pagesize - 1)), "PAGE_ALIGNED requested, but page is not aligned!!!"); const ssize_t tail_free = free_size - (size + extra); if (tail_free > 0) { chunk_t* split = new chunk_t(free_chunk->start + free_chunk->size, tail_free); mList.insert(++free_chunk_p, split); } } return (free_chunk->start) * kMemoryAlign; } return NO_MEMORY; } SimpleBestFitAllocator::chunk_t* SimpleBestFitAllocator::dealloc(size_t start) { start = start / kMemoryAlign; for (Iterator pos = mList.begin(); pos != mList.end(); pos++) { chunk_t* cur = *pos; if (cur->start == start) { LOG_FATAL_IF(cur->free, "block at offset 0x%08lX of size 0x%08lX already freed", cur->start * kMemoryAlign, cur->size * kMemoryAlign); // merge freed blocks together chunk_t* freed = cur; cur->free = 1; do { if (pos != mList.begin()) { pos--; chunk_t* const p = *pos; pos++; if (p->free || !cur->size) { freed = p; p->size += cur->size; pos = mList.erase(pos); delete cur; if (pos == mList.end()) break; } } if (++pos == mList.end()) break; cur = *pos; } while (cur && cur->free); #ifndef NDEBUG if (!freed->free) { dump_l("dealloc (!freed->free)"); } #endif LOG_FATAL_IF(!freed->free, "freed block at offset 0x%08lX of size 0x%08lX is not free!", freed->start * kMemoryAlign, freed->size * kMemoryAlign); return freed; } } return nullptr; } void SimpleBestFitAllocator::dump(const char* tag) const { Lock lock(mLock); dump_l(tag); } void SimpleBestFitAllocator::dump_l(const char* tag) const { string result; dump_l(result, tag); ALOGD("%s", result.c_str()); } void SimpleBestFitAllocator::dump(string& result, const char* tag) const { Lock lock(mLock); dump_l(result, tag); } void SimpleBestFitAllocator::dump_l(string& result, const char* tag) const { size_t size = 0; int32_t i = 0; const size_t SIZE = 256; char buffer[SIZE]; snprintf(buffer, SIZE, " %s (%p, size=%u)\n", tag, this, (unsigned int)mHeapSize); result.append(buffer); for (IteratorConst pos = mList.begin(); pos != mList.end(); pos++) { chunk_t const* cur = *pos; if (!cur->free) size += cur->size * kMemoryAlign; i++; } snprintf(buffer, SIZE, " size allocated: %u (%u KB)\n", int(size), int(size / 1024)); result.append(buffer); } bool HidlMemoryDealer::isOk(const MemoryBlock& memblk) { return memblk.token != nullptr; } sp<::android::hidl::memory::V1_0::IMemory> HidlMemoryDealer::heap() { return mHeap; } // The required heap size alignment is 4096 bytes static const uint64_t kHeapSizeAlignment = (0x1ULL << 12); sp HidlMemoryDealer::getInstance(const hidl_memory& mem) { uint64_t msk = (kHeapSizeAlignment - 1); if (mem.size() & msk || !(mem.size() & ~msk)) { ALOGE("size is not aligned to %x", static_cast(kHeapSizeAlignment)); return nullptr; } sp heap = mapMemory(mem); if (heap == nullptr) { ALOGE("fail to mapMemory"); return nullptr; } return new HidlMemoryDealer(heap, mem); } HidlMemoryDealer::HidlMemoryDealer(sp heap, const hidl_memory& mem) : MemoryDealer(heap->getSize()), mHeap(heap), mToken(new HidlMemoryToken(HidlMemory::getInstance(mem))) {} ::android::hidl::memory::block::V1_0::MemoryBlock HidlMemoryDealer::allocate(size_t size) { MemoryBlock memblk = {nullptr, 0xFFFFFFFFULL, 0xFFFFFFFFULL}; ssize_t offset = allocateOffset(size); if (offset >= 0) { memblk.token = mToken; memblk.size = size; memblk.offset = offset; } return memblk; } }; // namespace hardware }; // namespace android