/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "LibHidlTest" #pragma clang diagnostic push #pragma clang diagnostic error "-Wpadded" #include #include #pragma clang diagnostic pop #include #include #ifdef __ANDROID__ #include #endif #include #include #include #include #include #include #include #include #include #define EXPECT_ARRAYEQ(__a1__, __a2__, __size__) EXPECT_TRUE(isArrayEqual(__a1__, __a2__, __size__)) #define EXPECT_2DARRAYEQ(__a1__, __a2__, __size1__, __size2__) \ EXPECT_TRUE(is2dArrayEqual(__a1__, __a2__, __size1__, __size2__)) template static inline bool isArrayEqual(const T arr1, const S arr2, size_t size) { for(size_t i = 0; i < size; i++) if(arr1[i] != arr2[i]) return false; return true; } template static inline bool is2dArrayEqual(const T arr1, const S arr2, size_t size1, size_t size2) { for(size_t i = 0; i < size1; i++) for (size_t j = 0; j < size2; j++) if(arr1[i][j] != arr2[i][j]) return false; return true; } bool isLibraryOpen(const std::string& lib) { std::ifstream ifs("/proc/self/maps"); for (std::string line; std::getline(ifs, line);) { if (line.size() >= lib.size() && line.substr(line.size() - lib.size()) == lib) { return true; } } return false; } class LibHidlTest : public ::testing::Test { public: virtual void SetUp() override { } virtual void TearDown() override { } }; TEST_F(LibHidlTest, StringTest) { using android::hardware::hidl_string; hidl_string s; // empty constructor EXPECT_STREQ(s.c_str(), ""); hidl_string s1 = "s1"; // copy = from cstr EXPECT_STREQ(s1.c_str(), "s1"); hidl_string s2("s2"); // copy constructor from cstr EXPECT_STREQ(s2.c_str(), "s2"); hidl_string s2a(nullptr); // copy constructor from null cstr EXPECT_STREQ("", s2a.c_str()); s2a = nullptr; // = from nullptr cstr EXPECT_STREQ(s2a.c_str(), ""); hidl_string s3 = hidl_string("s3"); // move = EXPECT_STREQ(s3.c_str(), "s3"); hidl_string s4 = hidl_string("12345", 3); // copy constructor from cstr w/ length EXPECT_STREQ(s4.c_str(), "123"); hidl_string s5(hidl_string(hidl_string("s5"))); // move constructor EXPECT_STREQ(s5.c_str(), "s5"); hidl_string s6(std::string("s6")); // copy constructor from std::string EXPECT_STREQ(s6.c_str(), "s6"); hidl_string s7 = std::string("s7"); // copy = from std::string EXPECT_STREQ(s7.c_str(), "s7"); hidl_string s8(s7); // copy constructor // NOLINT, test the copy constructor EXPECT_STREQ(s8.c_str(), "s7"); hidl_string s9 = s8; // copy = // NOLINT, test the copy operator EXPECT_STREQ(s9.c_str(), "s7"); char myCString[20] = "myCString"; s.setToExternal(&myCString[0], strlen(myCString)); EXPECT_STREQ(s.c_str(), "myCString"); myCString[2] = 'D'; EXPECT_STREQ(s.c_str(), "myDString"); s.clear(); // should not affect myCString EXPECT_STREQ(myCString, "myDString"); // casts s = "great"; std::string myString = s; const char *anotherCString = s.c_str(); EXPECT_EQ(myString, "great"); EXPECT_STREQ(anotherCString, "great"); const hidl_string t = "not so great"; std::string myTString = t; const char * anotherTCString = t.c_str(); EXPECT_EQ(myTString, "not so great"); EXPECT_STREQ(anotherTCString, "not so great"); // Assignment from hidl_string to std::string std::string tgt; hidl_string src("some stuff"); tgt = src; EXPECT_STREQ(tgt.c_str(), "some stuff"); // Stream output operator hidl_string msg("hidl_string works with operator<<"); std::cout << msg; // Comparisons const char * cstr1 = "abc"; std::string string1(cstr1); hidl_string hs1(cstr1); const char * cstrE = "abc"; std::string stringE(cstrE); hidl_string hsE(cstrE); const char * cstrNE = "ABC"; std::string stringNE(cstrNE); hidl_string hsNE(cstrNE); const char * cstr2 = "def"; std::string string2(cstr2); hidl_string hs2(cstr2); EXPECT_TRUE(hs1 == hsE); EXPECT_FALSE(hs1 == hsNE); EXPECT_TRUE(hs1 == cstrE); EXPECT_FALSE(hs1 == cstrNE); EXPECT_TRUE(hs1 == stringE); EXPECT_FALSE(hs1 == stringNE); EXPECT_FALSE(hs1 != hsE); EXPECT_TRUE(hs1 != hsNE); EXPECT_FALSE(hs1 != cstrE); EXPECT_TRUE(hs1 != cstrNE); EXPECT_FALSE(hs1 != stringE); EXPECT_TRUE(hs1 != stringNE); EXPECT_TRUE(hs1 < hs2); EXPECT_FALSE(hs2 < hs1); EXPECT_TRUE(hs2 > hs1); EXPECT_FALSE(hs1 > hs2); EXPECT_TRUE(hs1 <= hs1); EXPECT_TRUE(hs1 <= hs2); EXPECT_FALSE(hs2 <= hs1); EXPECT_TRUE(hs1 >= hs1); EXPECT_TRUE(hs2 >= hs1); EXPECT_FALSE(hs2 <= hs1); } // empty string optimization should apply for any constructor TEST_F(LibHidlTest, HidlStringEmptyLiteralAllocation) { using android::hardware::hidl_string; hidl_string empty1; hidl_string empty2(""); hidl_string empty3("foo", 0); hidl_string empty4((std::string())); EXPECT_EQ(empty1.c_str(), empty2.c_str()); EXPECT_EQ(empty1.c_str(), empty3.c_str()); EXPECT_EQ(empty1.c_str(), empty4.c_str()); } TEST_F(LibHidlTest, MemoryTest) { using android::hardware::hidl_memory; hidl_memory mem1 = hidl_memory(); // default constructor hidl_memory mem2 = mem1; // copy constructor (nullptr), NOLINT EXPECT_EQ(nullptr, mem2.handle()); native_handle_t* testHandle = native_handle_create(0 /* numInts */, 0 /* numFds */); hidl_memory mem3 = hidl_memory("foo", testHandle, 42 /* size */); // owns testHandle hidl_memory mem4 = mem3; // copy constructor (regular handle), NOLINT EXPECT_EQ(mem3.name(), mem4.name()); EXPECT_EQ(mem3.size(), mem4.size()); EXPECT_NE(nullptr, mem4.handle()); EXPECT_NE(mem3.handle(), mem4.handle()); // check handle cloned hidl_memory mem5 = hidl_memory("foo", nullptr, 0); // hidl memory works with nullptr handle hidl_memory mem6 = mem5; // NOLINT, test copying EXPECT_EQ(nullptr, mem5.handle()); EXPECT_EQ(nullptr, mem6.handle()); } TEST_F(LibHidlTest, VecInitTest) { using android::hardware::hidl_vec; using std::vector; int32_t array[] = {5, 6, 7}; vector v(array, array + 3); hidl_vec hv0(3); // size EXPECT_EQ(hv0.size(), 3ul); // cannot say anything about its contents hidl_vec hv1 = v; // copy = EXPECT_ARRAYEQ(hv1, array, 3); EXPECT_ARRAYEQ(hv1, v, 3); hidl_vec hv2(v); // copy constructor EXPECT_ARRAYEQ(hv2, v, 3); vector v2 = hv1; // cast EXPECT_ARRAYEQ(v2, v, 3); hidl_vec v3 = {5, 6, 7}; // initializer_list EXPECT_EQ(v3.size(), 3ul); EXPECT_ARRAYEQ(v3, array, v3.size()); } TEST_F(LibHidlTest, VecReleaseTest) { // this test indicates an inconsistency of behaviors which is undesirable. // Perhaps hidl-vec should always allocate an empty vector whenever it // exposes its data. Alternatively, perhaps it should always free/reject // empty vectors and always return nullptr for this state. While this second // alternative is faster, it makes client code harder to write, and it would // break existing client code. using android::hardware::hidl_vec; hidl_vec empty; EXPECT_EQ(nullptr, empty.releaseData()); empty.resize(0); int32_t* data = empty.releaseData(); EXPECT_NE(nullptr, data); delete data; } TEST_F(LibHidlTest, VecIterTest) { int32_t array[] = {5, 6, 7}; android::hardware::hidl_vec hv1 = std::vector(array, array + 3); auto iter = hv1.begin(); // iterator begin() EXPECT_EQ(*iter++, 5); EXPECT_EQ(*iter, 6); EXPECT_EQ(*++iter, 7); EXPECT_EQ(*iter--, 7); EXPECT_EQ(*iter, 6); EXPECT_EQ(*--iter, 5); iter += 2; EXPECT_EQ(*iter, 7); iter -= 2; EXPECT_EQ(*iter, 5); iter++; EXPECT_EQ(*(iter + 1), 7); EXPECT_EQ(*(1 + iter), 7); EXPECT_EQ(*(iter - 1), 5); EXPECT_EQ(*iter, 6); auto five = iter - 1; auto seven = iter + 1; EXPECT_EQ(seven - five, 2); EXPECT_EQ(five - seven, -2); EXPECT_LT(five, seven); EXPECT_LE(five, seven); EXPECT_GT(seven, five); EXPECT_GE(seven, five); EXPECT_EQ(seven[0], 7); EXPECT_EQ(five[1], 6); } TEST_F(LibHidlTest, VecIterForTest) { using android::hardware::hidl_vec; int32_t array[] = {5, 6, 7}; hidl_vec hv1 = std::vector(array, array + 3); int32_t sum = 0; // range based for loop interoperability for (auto &&i: hv1) { sum += i; } EXPECT_EQ(sum, 5+6+7); for (auto iter = hv1.begin(); iter < hv1.end(); ++iter) { *iter += 10; } const hidl_vec &v4 = hv1; sum = 0; for (const auto &i : v4) { sum += i; } EXPECT_EQ(sum, 15+16+17); } TEST_F(LibHidlTest, VecEqTest) { android::hardware::hidl_vec hv1{5, 6, 7}; android::hardware::hidl_vec hv2{5, 6, 7}; android::hardware::hidl_vec hv3{5, 6, 8}; // use the == and != operator intentionally here EXPECT_TRUE(hv1 == hv2); EXPECT_TRUE(hv1 != hv3); } TEST_F(LibHidlTest, VecEqInitializerTest) { std::vector reference{5, 6, 7}; android::hardware::hidl_vec hv1{1, 2, 3}; hv1 = {5, 6, 7}; android::hardware::hidl_vec hv2; hv2 = {5, 6, 7}; android::hardware::hidl_vec hv3; hv3 = {5, 6, 8}; // use the == and != operator intentionally here EXPECT_TRUE(hv1 == hv2); EXPECT_TRUE(hv1 == reference); EXPECT_TRUE(hv1 != hv3); } TEST_F(LibHidlTest, VecRangeCtorTest) { struct ConvertibleType { int val; explicit ConvertibleType(int val) : val(val) {} explicit operator int() const { return val; } bool operator==(const int& other) const { return val == other; } }; std::vector input{ ConvertibleType(1), ConvertibleType(2), ConvertibleType(3), }; android::hardware::hidl_vec hv(input.begin(), input.end()); EXPECT_EQ(input.size(), hv.size()); int sum = 0; for (unsigned i = 0; i < input.size(); i++) { EXPECT_EQ(input[i], hv[i]); sum += hv[i]; } EXPECT_EQ(sum, 1 + 2 + 3); } struct FailsIfCopied { FailsIfCopied() {} // add failure if copied since in general this can be expensive FailsIfCopied(const FailsIfCopied& o) { *this = o; } FailsIfCopied& operator=(const FailsIfCopied&) { ADD_FAILURE() << "FailsIfCopied copied"; return *this; } // fine to move this type since in general this is cheaper FailsIfCopied(FailsIfCopied&& o) = default; FailsIfCopied& operator=(FailsIfCopied&&) = default; }; TEST_F(LibHidlTest, VecResizeNoCopy) { using android::hardware::hidl_vec; hidl_vec noCopies; noCopies.resize(3); // instantiates three elements FailsIfCopied* oldPointer = noCopies.data(); noCopies.resize(6); // should move three elements, not copy // oldPointer should be invalidated at this point. // hidl_vec doesn't currently try to realloc but if it ever switches // to an implementation that does, this test wouldn't do anything. EXPECT_NE(oldPointer, noCopies.data()); } TEST_F(LibHidlTest, VecFindTest) { using android::hardware::hidl_vec; hidl_vec hv1 = {10, 20, 30, 40}; const hidl_vec hv2 = {1, 2, 3, 4}; auto it = hv1.find(20); EXPECT_EQ(20, *it); *it = 21; EXPECT_EQ(21, *it); it = hv1.find(20); EXPECT_EQ(hv1.end(), it); it = hv1.find(21); EXPECT_EQ(21, *it); auto cit = hv2.find(4); EXPECT_EQ(4, *cit); } TEST_F(LibHidlTest, VecContainsTest) { using android::hardware::hidl_vec; hidl_vec hv1 = {10, 20, 30, 40}; const hidl_vec hv2 = {0, 1, 2, 3, 4}; EXPECT_TRUE(hv1.contains(10)); EXPECT_TRUE(hv1.contains(40)); EXPECT_FALSE(hv1.contains(1)); EXPECT_FALSE(hv1.contains(0)); EXPECT_TRUE(hv2.contains(0)); EXPECT_FALSE(hv2.contains(10)); hv1[0] = 11; EXPECT_FALSE(hv1.contains(10)); EXPECT_TRUE(hv1.contains(11)); } TEST_F(LibHidlTest, ArrayTest) { using android::hardware::hidl_array; int32_t array[] = {5, 6, 7}; hidl_array ha(array); EXPECT_ARRAYEQ(ha, array, 3); } TEST_F(LibHidlTest, TaskRunnerTest) { using android::hardware::details::TaskRunner; using namespace std::chrono_literals; std::condition_variable cv; std::mutex m; TaskRunner tr; tr.start(1 /* limit */); bool flag = false; tr.push([&] { flag = true; cv.notify_all(); }); std::unique_lock lock(m); // 1s so this doesn't deadlock. This isn't a performance test. EXPECT_TRUE(cv.wait_for(lock, 1s, [&]{return flag;})); EXPECT_TRUE(flag); } TEST_F(LibHidlTest, StringCmpTest) { using android::hardware::hidl_string; const char * s = "good"; hidl_string hs(s); EXPECT_NE(hs.c_str(), s); EXPECT_TRUE(hs == s); // operator == EXPECT_TRUE(s == hs); EXPECT_FALSE(hs != s); // operator == EXPECT_FALSE(s != hs); } template void great(android::hardware::hidl_vec) {} TEST_F(LibHidlTest, VecCopyTest) { android::hardware::hidl_vec v; great(v); } TEST_F(LibHidlTest, StdArrayTest) { using android::hardware::hidl_array; hidl_array array{(int32_t[5]){1, 2, 3, 4, 5}}; std::array stdArray = array; EXPECT_ARRAYEQ(array.data(), stdArray.data(), 5); hidl_array array2 = stdArray; EXPECT_ARRAYEQ(array.data(), array2.data(), 5); } TEST_F(LibHidlTest, MultiDimStdArrayTest) { using android::hardware::hidl_array; hidl_array array; for (size_t i = 0; i < 2; i++) { for (size_t j = 0; j < 3; j++) { array[i][j] = i + j + i * j; } } std::array, 2> stdArray = array; EXPECT_2DARRAYEQ(array, stdArray, 2, 3); hidl_array array2 = stdArray; EXPECT_2DARRAYEQ(array, array2, 2, 3); } TEST_F(LibHidlTest, HidlVersionTest) { using android::hardware::hidl_version; hidl_version v1_0{1, 0}; EXPECT_EQ(1, v1_0.get_major()); EXPECT_EQ(0, v1_0.get_minor()); hidl_version v2_0{2, 0}; hidl_version v2_1{2, 1}; hidl_version v2_2{2, 2}; hidl_version v3_0{3, 0}; hidl_version v3_0b{3,0}; EXPECT_TRUE(v1_0 < v2_0); EXPECT_TRUE(v1_0 != v2_0); EXPECT_TRUE(v2_0 < v2_1); EXPECT_TRUE(v2_1 < v3_0); EXPECT_TRUE(v2_0 > v1_0); EXPECT_TRUE(v2_0 != v1_0); EXPECT_TRUE(v2_1 > v2_0); EXPECT_TRUE(v3_0 > v2_1); EXPECT_TRUE(v3_0 == v3_0b); EXPECT_FALSE(v3_0 != v3_0b); EXPECT_TRUE(v3_0 <= v3_0b); EXPECT_TRUE(v2_2 <= v3_0); EXPECT_TRUE(v3_0 >= v3_0b); EXPECT_TRUE(v3_0 >= v2_2); } TEST_F(LibHidlTest, ReturnMoveTest) { using namespace ::android; using ::android::hardware::Return; using ::android::hardware::Status; Return ret{Status::fromStatusT(DEAD_OBJECT)}; ret.isOk(); ret = {Status::fromStatusT(DEAD_OBJECT)}; ret.isOk(); } TEST_F(LibHidlTest, ReturnTest) { using ::android::DEAD_OBJECT; using ::android::hardware::Return; using ::android::hardware::Status; using ::android::hardware::hidl_string; EXPECT_FALSE(Return(Status::fromStatusT(DEAD_OBJECT)).isOk()); EXPECT_TRUE(Return(Status::ok()).isOk()); hidl_string one = "1"; hidl_string two = "2"; const Return ret = Return(Status::fromStatusT(DEAD_OBJECT)); EXPECT_EQ(one, Return(one).withDefault(two)); EXPECT_EQ(two, ret.withDefault(two)); hidl_string&& moved = ret.withDefault(std::move(two)); EXPECT_EQ("2", moved); const hidl_string three = "3"; EXPECT_EQ(three, ret.withDefault(three)); } TEST_F(LibHidlTest, ReturnDies) { using ::android::hardware::Return; using ::android::hardware::Status; EXPECT_DEATH({ Return(Status::fromStatusT(-EBUSY)); }, ""); EXPECT_DEATH({ Return(Status::fromStatusT(-EBUSY)).isDeadObject(); }, ""); EXPECT_DEATH( { Return ret = Return(Status::fromStatusT(-EBUSY)); int foo = ret; // should crash here (void)foo; ret.isOk(); }, ""); } TEST_F(LibHidlTest, DetectUncheckedReturn) { using ::android::hardware::HidlReturnRestriction; using ::android::hardware::Return; using ::android::hardware::setProcessHidlReturnRestriction; using ::android::hardware::Status; setProcessHidlReturnRestriction(HidlReturnRestriction::FATAL_IF_UNCHECKED); EXPECT_DEATH( { auto ret = Return(Status::ok()); (void)ret; }, ""); EXPECT_DEATH( { auto ret = Return(Status::ok()); ret = Return(Status::ok()); ret.isOk(); }, ""); auto ret = Return(Status::ok()); (void)ret.isOk(); ret = Return(Status::ok()); (void)ret.isOk(); setProcessHidlReturnRestriction(HidlReturnRestriction::NONE); } std::string toString(const ::android::hardware::Status &s) { using ::android::hardware::operator<<; std::ostringstream oss; oss << s; return oss.str(); } TEST_F(LibHidlTest, StatusStringTest) { using namespace ::android; using ::android::hardware::Status; using ::testing::HasSubstr; EXPECT_EQ(toString(Status::ok()), "No error"); EXPECT_THAT(toString(Status::fromStatusT(DEAD_OBJECT)), HasSubstr("DEAD_OBJECT")); EXPECT_THAT(toString(Status::fromStatusT(-EBUSY)), HasSubstr("busy")); EXPECT_THAT(toString(Status::fromExceptionCode(Status::EX_NULL_POINTER)), HasSubstr("EX_NULL_POINTER")); } TEST_F(LibHidlTest, PreloadTest) { // HIDL doesn't have support to load passthrough implementations on host, but we // could do this by loading implementations from the output directory #ifndef __ANDROID__ GTEST_SKIP(); #else using ::android::hardware::preloadPassthroughService; using ::android::hidl::memory::V1_0::IMemory; // android.hidl.memory@1.0-impl.so is installed on all devices by default up // to Android U in both bitnesses and not otherwise a dependency of this // test. // Android V+ devices do not have this installed by default, so skip the // test. if (android::base::GetIntProperty("ro.vendor.api_level", 0) >= __ANDROID_API_V__) { GTEST_SKIP(); } static const std::string kLib = "android.hidl.memory@1.0-impl.so"; EXPECT_FALSE(isLibraryOpen(kLib)); preloadPassthroughService(); EXPECT_TRUE(isLibraryOpen(kLib)); #endif } template static void assertZeroInRange(const T* t) { static_assert(start < sizeof(T)); static_assert(end <= sizeof(T)); const uint8_t* ptr = reinterpret_cast(t); for (size_t i = start; i < end; i++) { EXPECT_EQ(0, ptr[i]); } } template static void uninitTest() { uint8_t buf[sizeof(T)]; memset(buf, 0xFF, sizeof(T)); T* type = new (buf) T; assertZeroInRange(type); type->~T(); } TEST_F(LibHidlTest, HidlVecUninit) { using ::android::hardware::hidl_vec; struct SomeType {}; static_assert(sizeof(hidl_vec) == 16); // padding after mOwnsBuffer uninitTest, 13, 16>(); } TEST_F(LibHidlTest, HidlHandleUninit) { using ::android::hardware::hidl_handle; static_assert(sizeof(hidl_handle) == 16); // padding after mOwnsHandle uninitTest(); } TEST_F(LibHidlTest, HidlStringUninit) { using ::android::hardware::hidl_string; static_assert(sizeof(hidl_string) == 16); // padding after mOwnsBuffer uninitTest(); } int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }