/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #define LOG_TAG "unwind" #include #include #include #include #include #include #include "ElfInterfaceArm.h" #include "Symbols.h" namespace unwindstack { bool Elf::cache_enabled_; std::unordered_map, bool>>* Elf::cache_; std::mutex* Elf::cache_lock_; bool Elf::Init() { load_bias_ = 0; if (!memory_) { return false; } interface_.reset(CreateInterfaceFromMemory(memory_.get())); if (!interface_) { return false; } valid_ = interface_->Init(&load_bias_); if (valid_) { interface_->InitHeaders(); InitGnuDebugdata(); } else { interface_.reset(nullptr); } return valid_; } // It is expensive to initialize the .gnu_debugdata section. Provide a method // to initialize this data separately. void Elf::InitGnuDebugdata() { if (!valid_ || interface_->gnu_debugdata_offset() == 0) { return; } gnu_debugdata_memory_.reset(interface_->CreateGnuDebugdataMemory()); gnu_debugdata_interface_.reset(CreateInterfaceFromMemory(gnu_debugdata_memory_.get())); ElfInterface* gnu = gnu_debugdata_interface_.get(); if (gnu == nullptr) { return; } // Ignore the load_bias from the compressed section, the correct load bias // is in the uncompressed data. int64_t load_bias; if (gnu->Init(&load_bias)) { gnu->InitHeaders(); interface_->SetGnuDebugdataInterface(gnu); } else { // Free all of the memory associated with the gnu_debugdata section. gnu_debugdata_memory_.reset(nullptr); gnu_debugdata_interface_.reset(nullptr); } } void Elf::Invalidate() { interface_.reset(nullptr); valid_ = false; } std::string Elf::GetSoname() { std::lock_guard guard(lock_); if (!valid_) { return ""; } return interface_->GetSoname(); } uint64_t Elf::GetRelPc(uint64_t pc, const MapInfo* map_info) { return pc - map_info->start + load_bias_ + map_info->elf_offset; } bool Elf::GetFunctionName(uint64_t addr, std::string* name, uint64_t* func_offset) { std::lock_guard guard(lock_); return valid_ && (interface_->GetFunctionName(addr, name, func_offset) || (gnu_debugdata_interface_ && gnu_debugdata_interface_->GetFunctionName(addr, name, func_offset))); } bool Elf::GetGlobalVariableOffset(const std::string& name, uint64_t* memory_offset) { if (!valid_) { return false; } uint64_t vaddr; if (!interface_->GetGlobalVariable(name, &vaddr) && (gnu_debugdata_interface_ == nullptr || !gnu_debugdata_interface_->GetGlobalVariable(name, &vaddr))) { return false; } if (arch() == ARCH_ARM64) { // Tagged pointer after Android R would lead top byte to have random values // https://source.android.com/devices/tech/debug/tagged-pointers vaddr &= (1ULL << 56) - 1; } // Check the .data section. uint64_t vaddr_start = interface_->data_vaddr_start(); if (vaddr >= vaddr_start && vaddr < interface_->data_vaddr_end()) { *memory_offset = vaddr - vaddr_start + interface_->data_offset(); return true; } // Check the .dynamic section. vaddr_start = interface_->dynamic_vaddr_start(); if (vaddr >= vaddr_start && vaddr < interface_->dynamic_vaddr_end()) { *memory_offset = vaddr - vaddr_start + interface_->dynamic_offset(); return true; } return false; } std::string Elf::GetBuildID() { if (!valid_) { return ""; } return interface_->GetBuildID(); } void Elf::GetLastError(ErrorData* data) { if (valid_) { *data = interface_->last_error(); } } ErrorCode Elf::GetLastErrorCode() { if (valid_) { return interface_->LastErrorCode(); } return ERROR_INVALID_ELF; } uint64_t Elf::GetLastErrorAddress() { if (valid_) { return interface_->LastErrorAddress(); } return 0; } // The relative pc expectd by this function is relative to the start of the elf. bool Elf::StepIfSignalHandler(uint64_t rel_pc, Regs* regs, Memory* process_memory) { if (!valid_) { return false; } // Convert the rel_pc to an elf_offset. if (rel_pc < static_cast(load_bias_)) { return false; } return regs->StepIfSignalHandler(rel_pc - load_bias_, this, process_memory); } // The relative pc is always relative to the start of the map from which it comes. bool Elf::Step(uint64_t rel_pc, Regs* regs, Memory* process_memory, bool* finished) { if (!valid_) { return false; } // Lock during the step which can update information in the object. std::lock_guard guard(lock_); return interface_->Step(rel_pc, regs, process_memory, finished); } bool Elf::IsValidElf(Memory* memory) { if (memory == nullptr) { return false; } // Verify that this is a valid elf file. uint8_t e_ident[SELFMAG + 1]; if (!memory->ReadFully(0, e_ident, SELFMAG)) { return false; } if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { return false; } return true; } bool Elf::GetInfo(Memory* memory, uint64_t* size) { if (!IsValidElf(memory)) { return false; } *size = 0; uint8_t class_type; if (!memory->ReadFully(EI_CLASS, &class_type, 1)) { return false; } // Get the maximum size of the elf data from the header. if (class_type == ELFCLASS32) { ElfInterface32::GetMaxSize(memory, size); } else if (class_type == ELFCLASS64) { ElfInterface64::GetMaxSize(memory, size); } else { return false; } return true; } bool Elf::IsValidPc(uint64_t pc) { if (!valid_ || (load_bias_ > 0 && pc < static_cast(load_bias_))) { return false; } if (interface_->IsValidPc(pc)) { return true; } if (gnu_debugdata_interface_ != nullptr && gnu_debugdata_interface_->IsValidPc(pc)) { return true; } return false; } ElfInterface* Elf::CreateInterfaceFromMemory(Memory* memory) { if (!IsValidElf(memory)) { return nullptr; } std::unique_ptr interface; if (!memory->ReadFully(EI_CLASS, &class_type_, 1)) { return nullptr; } if (class_type_ == ELFCLASS32) { Elf32_Half e_machine; if (!memory->ReadFully(EI_NIDENT + sizeof(Elf32_Half), &e_machine, sizeof(e_machine))) { return nullptr; } machine_type_ = e_machine; if (e_machine == EM_ARM) { arch_ = ARCH_ARM; interface.reset(new ElfInterfaceArm(memory)); } else if (e_machine == EM_386) { arch_ = ARCH_X86; interface.reset(new ElfInterface32(memory)); } else if (e_machine == EM_MIPS) { arch_ = ARCH_MIPS; interface.reset(new ElfInterface32(memory)); } else { // Unsupported. ALOGI("32 bit elf that is neither arm nor x86 nor mips: e_machine = %d\n", e_machine); return nullptr; } } else if (class_type_ == ELFCLASS64) { Elf64_Half e_machine; if (!memory->ReadFully(EI_NIDENT + sizeof(Elf64_Half), &e_machine, sizeof(e_machine))) { return nullptr; } machine_type_ = e_machine; if (e_machine == EM_AARCH64) { arch_ = ARCH_ARM64; } else if (e_machine == EM_X86_64) { arch_ = ARCH_X86_64; } else if (e_machine == EM_MIPS) { arch_ = ARCH_MIPS64; } else { // Unsupported. ALOGI("64 bit elf that is neither aarch64 nor x86_64 nor mips64: e_machine = %d\n", e_machine); return nullptr; } interface.reset(new ElfInterface64(memory)); } return interface.release(); } int64_t Elf::GetLoadBias(Memory* memory) { if (!IsValidElf(memory)) { return 0; } uint8_t class_type; if (!memory->Read(EI_CLASS, &class_type, 1)) { return 0; } if (class_type == ELFCLASS32) { return ElfInterface::GetLoadBias(memory); } else if (class_type == ELFCLASS64) { return ElfInterface::GetLoadBias(memory); } return 0; } void Elf::SetCachingEnabled(bool enable) { if (!cache_enabled_ && enable) { cache_enabled_ = true; cache_ = new std::unordered_map, bool>>; cache_lock_ = new std::mutex; } else if (cache_enabled_ && !enable) { cache_enabled_ = false; delete cache_; delete cache_lock_; } } void Elf::CacheLock() { cache_lock_->lock(); } void Elf::CacheUnlock() { cache_lock_->unlock(); } void Elf::CacheAdd(MapInfo* info) { // If elf_offset != 0, then cache both name:offset and name. // The cached name is used to do lookups if multiple maps for the same // named elf file exist. // For example, if there are two maps boot.odex:1000 and boot.odex:2000 // where each reference the entire boot.odex, the cache will properly // use the same cached elf object. if (info->offset == 0 || info->elf_offset != 0) { (*cache_)[info->name] = std::make_pair(info->elf, true); } if (info->offset != 0) { // The second element in the pair indicates whether elf_offset should // be set to offset when getting out of the cache. (*cache_)[info->name + ':' + std::to_string(info->offset)] = std::make_pair(info->elf, info->elf_offset != 0); } } bool Elf::CacheAfterCreateMemory(MapInfo* info) { if (info->name.empty() || info->offset == 0 || info->elf_offset == 0) { return false; } auto entry = cache_->find(info->name); if (entry == cache_->end()) { return false; } // In this case, the whole file is the elf, and the name has already // been cached. Add an entry at name:offset to get this directly out // of the cache next time. info->elf = entry->second.first; (*cache_)[info->name + ':' + std::to_string(info->offset)] = std::make_pair(info->elf, true); return true; } bool Elf::CacheGet(MapInfo* info) { std::string name(info->name); if (info->offset != 0) { name += ':' + std::to_string(info->offset); } auto entry = cache_->find(name); if (entry != cache_->end()) { info->elf = entry->second.first; if (entry->second.second) { info->elf_offset = info->offset; } return true; } return false; } std::string Elf::GetBuildID(Memory* memory) { if (!IsValidElf(memory)) { return ""; } uint8_t class_type; if (!memory->Read(EI_CLASS, &class_type, 1)) { return ""; } if (class_type == ELFCLASS32) { return ElfInterface::ReadBuildIDFromMemory(memory); } else if (class_type == ELFCLASS64) { return ElfInterface::ReadBuildIDFromMemory(memory); } return ""; } } // namespace unwindstack