/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _GNU_SOURCE 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Check.h" // Use the demangler from libc++. extern "C" char* __cxa_demangle(const char*, char*, size_t*, int* status); namespace unwindstack { // Inject extra 'virtual' frame that represents the dex pc data. // The dex pc is a magic register defined in the Mterp interpreter, // and thus it will be restored/observed in the frame after it. // Adding the dex frame first here will create something like: // #7 pc 0015fa20 core.vdex java.util.Arrays.binarySearch+8 // #8 pc 006b1ba1 libartd.so ExecuteMterpImpl+14625 // #9 pc 0039a1ef libartd.so art::interpreter::Execute+719 void Unwinder::FillInDexFrame() { size_t frame_num = frames_.size(); frames_.resize(frame_num + 1); FrameData* frame = &frames_.at(frame_num); frame->num = frame_num; uint64_t dex_pc = regs_->dex_pc(); frame->pc = dex_pc; frame->sp = regs_->sp(); frame->map_info = maps_->Find(dex_pc); if (frame->map_info != nullptr) { frame->rel_pc = dex_pc - frame->map_info->start(); // Initialize the load bias for this map so subsequent calls // to GetLoadBias() will always return data. frame->map_info->set_load_bias(0); } else { frame->rel_pc = dex_pc; warnings_ |= WARNING_DEX_PC_NOT_IN_MAP; return; } if (!resolve_names_) { return; } #if defined(DEXFILE_SUPPORT) if (dex_files_ == nullptr) { return; } dex_files_->GetFunctionName(maps_, dex_pc, &frame->function_name, &frame->function_offset); #endif } FrameData* Unwinder::FillInFrame(std::shared_ptr& map_info, Elf* /*elf*/, uint64_t rel_pc, uint64_t pc_adjustment) { size_t frame_num = frames_.size(); frames_.resize(frame_num + 1); FrameData* frame = &frames_.at(frame_num); frame->num = frame_num; frame->sp = regs_->sp(); frame->rel_pc = rel_pc - pc_adjustment; frame->pc = regs_->pc() - pc_adjustment; if (map_info == nullptr) { // Nothing else to update. return nullptr; } frame->map_info = map_info; return frame; } static bool ShouldStop(const std::vector* map_suffixes_to_ignore, const std::string& map_name) { if (map_suffixes_to_ignore == nullptr) { return false; } auto pos = map_name.find_last_of('.'); if (pos == std::string::npos) { return false; } return std::find(map_suffixes_to_ignore->begin(), map_suffixes_to_ignore->end(), map_name.substr(pos + 1)) != map_suffixes_to_ignore->end(); } void Unwinder::Unwind(const std::vector* initial_map_names_to_skip, const std::vector* map_suffixes_to_ignore) { CHECK(arch_ != ARCH_UNKNOWN); ClearErrors(); frames_.clear(); // Clear any cached data from previous unwinds. process_memory_->Clear(); if (maps_->Find(regs_->pc()) == nullptr) { regs_->fallback_pc(); } bool return_address_attempt = false; bool adjust_pc = false; for (; frames_.size() < max_frames_;) { uint64_t cur_pc = regs_->pc(); uint64_t cur_sp = regs_->sp(); std::shared_ptr map_info = maps_->Find(regs_->pc()); uint64_t pc_adjustment = 0; uint64_t step_pc; uint64_t rel_pc; Elf* elf; if (map_info == nullptr) { step_pc = regs_->pc(); rel_pc = step_pc; // If we get invalid map via return_address_attempt, don't hide error for the previous frame. if (!return_address_attempt || last_error_.code == ERROR_NONE) { last_error_.code = ERROR_INVALID_MAP; last_error_.address = step_pc; } elf = nullptr; } else { if (ShouldStop(map_suffixes_to_ignore, map_info->name())) { break; } elf = map_info->GetElf(process_memory_, arch_); step_pc = regs_->pc(); rel_pc = elf->GetRelPc(step_pc, map_info.get()); // Everyone except elf data in gdb jit debug maps uses the relative pc. if (!(map_info->flags() & MAPS_FLAGS_JIT_SYMFILE_MAP)) { step_pc = rel_pc; } if (adjust_pc) { pc_adjustment = GetPcAdjustment(rel_pc, elf, arch_); } else { pc_adjustment = 0; } step_pc -= pc_adjustment; // If the pc is in an invalid elf file, try and get an Elf object // using the jit debug information. if (!elf->valid() && jit_debug_ != nullptr && (map_info->flags() & PROT_EXEC)) { uint64_t adjusted_jit_pc = regs_->pc() - pc_adjustment; Elf* jit_elf = jit_debug_->Find(maps_, adjusted_jit_pc); if (jit_elf != nullptr) { // The jit debug information requires a non relative adjusted pc. step_pc = adjusted_jit_pc; elf = jit_elf; } } } FrameData* frame = nullptr; if (map_info == nullptr || initial_map_names_to_skip == nullptr || std::find(initial_map_names_to_skip->begin(), initial_map_names_to_skip->end(), android::base::Basename(map_info->name())) == initial_map_names_to_skip->end()) { if (regs_->dex_pc() != 0) { // Add a frame to represent the dex file. FillInDexFrame(); // Clear the dex pc so that we don't repeat this frame later. regs_->set_dex_pc(0); // Make sure there is enough room for the real frame. if (frames_.size() == max_frames_) { last_error_.code = ERROR_MAX_FRAMES_EXCEEDED; break; } } frame = FillInFrame(map_info, elf, rel_pc, pc_adjustment); // Once a frame is added, stop skipping frames. initial_map_names_to_skip = nullptr; } adjust_pc = true; bool stepped = false; bool in_device_map = false; bool finished = false; if (map_info != nullptr) { if (map_info->flags() & MAPS_FLAGS_DEVICE_MAP) { // Do not stop here, fall through in case we are // in the speculative unwind path and need to remove // some of the speculative frames. in_device_map = true; } else { auto sp_info = maps_->Find(regs_->sp()); if (sp_info != nullptr && sp_info->flags() & MAPS_FLAGS_DEVICE_MAP) { // Do not stop here, fall through in case we are // in the speculative unwind path and need to remove // some of the speculative frames. in_device_map = true; } else { bool is_signal_frame = false; if (elf->StepIfSignalHandler(rel_pc, regs_, process_memory_.get())) { stepped = true; is_signal_frame = true; } else if (elf->Step(step_pc, regs_, process_memory_.get(), &finished, &is_signal_frame)) { stepped = true; } if (is_signal_frame && frame != nullptr) { // Need to adjust the relative pc because the signal handler // pc should not be adjusted. frame->rel_pc = rel_pc; frame->pc += pc_adjustment; step_pc = rel_pc; } elf->GetLastError(&last_error_); } } } if (frame != nullptr) { if (!resolve_names_ || !elf->GetFunctionName(step_pc, &frame->function_name, &frame->function_offset)) { frame->function_name = ""; frame->function_offset = 0; } } if (finished) { break; } if (!stepped) { if (return_address_attempt) { // Only remove the speculative frame if there are more than two frames // or the pc in the first frame is in a valid map. // This allows for a case where the code jumps into the middle of // nowhere, but there is no other unwind information after that. if (frames_.size() > 2 || (frames_.size() > 0 && maps_->Find(frames_[0].pc) != nullptr)) { // Remove the speculative frame. frames_.pop_back(); } break; } else if (in_device_map) { // Do not attempt any other unwinding, pc or sp is in a device // map. break; } else { // Steping didn't work, try this secondary method. if (!regs_->SetPcFromReturnAddress(process_memory_.get())) { break; } return_address_attempt = true; } } else { return_address_attempt = false; if (max_frames_ == frames_.size()) { last_error_.code = ERROR_MAX_FRAMES_EXCEEDED; } } // If the pc and sp didn't change, then consider everything stopped. if (cur_pc == regs_->pc() && cur_sp == regs_->sp()) { last_error_.code = ERROR_REPEATED_FRAME; break; } } } std::string Unwinder::FormatFrame(const FrameData& frame) const { std::string data; if (ArchIs32Bit(arch_)) { data += android::base::StringPrintf(" #%02zu pc %08" PRIx64, frame.num, frame.rel_pc); } else { data += android::base::StringPrintf(" #%02zu pc %016" PRIx64, frame.num, frame.rel_pc); } auto map_info = frame.map_info; if (map_info == nullptr) { // No valid map associated with this frame. data += " "; } else if (!map_info->name().empty()) { data += " "; data += map_info->GetFullName(); } else { data += android::base::StringPrintf(" ", map_info->start()); } if (map_info != nullptr && map_info->elf_start_offset() != 0) { data += android::base::StringPrintf(" (offset 0x%" PRIx64 ")", map_info->elf_start_offset()); } if (!frame.function_name.empty()) { char* demangled_name = __cxa_demangle(frame.function_name.c_str(), nullptr, nullptr, nullptr); if (demangled_name == nullptr) { data += " ("; data += frame.function_name; } else { data += " ("; data += demangled_name; free(demangled_name); } if (frame.function_offset != 0) { data += android::base::StringPrintf("+%" PRId64, frame.function_offset); } data += ')'; } if (map_info != nullptr && display_build_id_) { std::string build_id = map_info->GetPrintableBuildID(); if (!build_id.empty()) { data += " (BuildId: " + build_id + ')'; } } return data; } std::string Unwinder::FormatFrame(size_t frame_num) const { if (frame_num >= frames_.size()) { return ""; } return FormatFrame(frames_[frame_num]); } void Unwinder::SetJitDebug(JitDebug* jit_debug) { jit_debug_ = jit_debug; } void Unwinder::SetDexFiles(DexFiles* dex_files) { dex_files_ = dex_files; } bool UnwinderFromPid::Init() { CHECK(arch_ != ARCH_UNKNOWN); if (initted_) { return true; } initted_ = true; if (maps_ == nullptr) { if (pid_ == getpid()) { maps_ptr_.reset(new LocalMaps()); } else { maps_ptr_.reset(new RemoteMaps(pid_)); } if (!maps_ptr_->Parse()) { ClearErrors(); last_error_.code = ERROR_INVALID_MAP; return false; } maps_ = maps_ptr_.get(); } if (process_memory_ == nullptr) { if (pid_ == getpid()) { // Local unwind, so use thread cache to allow multiple threads // to cache data even when multiple threads access the same object. process_memory_ = Memory::CreateProcessMemoryThreadCached(pid_); } else { // Remote unwind should be safe to cache since the unwind will // be occurring on a stopped process. process_memory_ = Memory::CreateProcessMemoryCached(pid_); } } jit_debug_ptr_ = CreateJitDebug(arch_, process_memory_); jit_debug_ = jit_debug_ptr_.get(); SetJitDebug(jit_debug_); #if defined(DEXFILE_SUPPORT) dex_files_ptr_ = CreateDexFiles(arch_, process_memory_); dex_files_ = dex_files_ptr_.get(); SetDexFiles(dex_files_); #endif return true; } void UnwinderFromPid::Unwind(const std::vector* initial_map_names_to_skip, const std::vector* map_suffixes_to_ignore) { if (!Init()) { return; } Unwinder::Unwind(initial_map_names_to_skip, map_suffixes_to_ignore); } FrameData Unwinder::BuildFrameFromPcOnly(uint64_t pc, ArchEnum arch, Maps* maps, JitDebug* jit_debug, std::shared_ptr process_memory, bool resolve_names) { FrameData frame; std::shared_ptr map_info = maps->Find(pc); if (map_info == nullptr || arch == ARCH_UNKNOWN) { frame.pc = pc; frame.rel_pc = pc; return frame; } Elf* elf = map_info->GetElf(process_memory, arch); uint64_t relative_pc = elf->GetRelPc(pc, map_info.get()); uint64_t pc_adjustment = GetPcAdjustment(relative_pc, elf, arch); relative_pc -= pc_adjustment; // The debug PC may be different if the PC comes from the JIT. uint64_t debug_pc = relative_pc; // If we don't have a valid ELF file, check the JIT. if (!elf->valid() && jit_debug != nullptr) { uint64_t jit_pc = pc - pc_adjustment; Elf* jit_elf = jit_debug->Find(maps, jit_pc); if (jit_elf != nullptr) { debug_pc = jit_pc; elf = jit_elf; } } // Copy all the things we need into the frame for symbolization. frame.rel_pc = relative_pc; frame.pc = pc - pc_adjustment; frame.map_info = map_info; if (!resolve_names || !elf->GetFunctionName(debug_pc, &frame.function_name, &frame.function_offset)) { frame.function_name = ""; frame.function_offset = 0; } return frame; } FrameData Unwinder::BuildFrameFromPcOnly(uint64_t pc) { return BuildFrameFromPcOnly(pc, arch_, maps_, jit_debug_, process_memory_, resolve_names_); } } // namespace unwindstack