/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ElfTestUtils.h" #include "MemoryFake.h" namespace unwindstack { class MapInfoCreateMemoryTest : public ::testing::Test { protected: template static void InitElf(int fd, uint64_t file_offset, uint64_t sh_offset, uint8_t class_type) { std::vector buffer(20000); memset(buffer.data(), 0, buffer.size()); Ehdr ehdr; memset(&ehdr, 0, sizeof(ehdr)); memcpy(ehdr.e_ident, ELFMAG, SELFMAG); ehdr.e_ident[EI_CLASS] = class_type; ehdr.e_shoff = sh_offset; ehdr.e_shentsize = sizeof(Shdr) + 100; ehdr.e_shnum = 4; memcpy(&buffer[file_offset], &ehdr, sizeof(ehdr)); ASSERT_TRUE(android::base::WriteFully(fd, buffer.data(), buffer.size())); } void SetUp() override { std::vector buffer(12288, 0); memcpy(buffer.data(), ELFMAG, SELFMAG); buffer[EI_CLASS] = ELFCLASS32; ASSERT_TRUE(android::base::WriteFully(elf_.fd, buffer.data(), 1024)); memset(buffer.data(), 0, buffer.size()); memcpy(&buffer[0x1000], ELFMAG, SELFMAG); buffer[0x1000 + EI_CLASS] = ELFCLASS64; buffer[0x2000] = 0xff; ASSERT_TRUE(android::base::WriteFully(elf_at_1000_.fd, buffer.data(), buffer.size())); InitElf(elf32_at_map_.fd, 0x1000, 0x2000, ELFCLASS32); InitElf(elf64_at_map_.fd, 0x2000, 0x3000, ELFCLASS64); memory_ = new MemoryFake; process_memory_.reset(memory_); } MemoryFake* memory_; std::shared_ptr process_memory_; TemporaryFile elf_; TemporaryFile elf_at_1000_; TemporaryFile elf32_at_map_; TemporaryFile elf64_at_map_; }; TEST_F(MapInfoCreateMemoryTest, end_le_start) { MapInfo info(nullptr, nullptr, 0x100, 0x100, 0, 0, elf_.path); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() == nullptr); info.end = 0xff; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() == nullptr); // Make sure this test is valid. info.end = 0x101; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); } // Verify that if the offset is non-zero but there is no elf at the offset, // that the full file is used. TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_full_file) { MapInfo info(nullptr, nullptr, 0x100, 0x200, 0x100, 0, elf_.path); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0x100U, info.elf_offset); EXPECT_EQ(0x100U, info.elf_start_offset); // Read the entire file. std::vector buffer(1024); ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 1024)); ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0); ASSERT_EQ(ELFCLASS32, buffer[EI_CLASS]); for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) { ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i; } ASSERT_FALSE(memory->ReadFully(1024, buffer.data(), 1)); // Now verify the elf start offset is set correctly based on the previous // info. MapInfo prev_info(nullptr, nullptr, 0, 0x100, 0x10, 0, ""); info.prev_map = &prev_info; info.prev_real_map = &prev_info; // No preconditions met, change each one until it should set the elf start // offset to zero. info.elf_offset = 0; info.elf_start_offset = 0; info.memory_backed_elf = false; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0x100U, info.elf_offset); EXPECT_EQ(0x100U, info.elf_start_offset); prev_info.offset = 0; info.elf_offset = 0; info.elf_start_offset = 0; info.memory_backed_elf = false; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0x100U, info.elf_offset); EXPECT_EQ(0x100U, info.elf_start_offset); prev_info.flags = PROT_READ; info.elf_offset = 0; info.elf_start_offset = 0; info.memory_backed_elf = false; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0x100U, info.elf_offset); EXPECT_EQ(0x100U, info.elf_start_offset); prev_info.name = info.name; info.elf_offset = 0; info.elf_start_offset = 0; info.memory_backed_elf = false; memory.reset(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0x100U, info.elf_offset); EXPECT_EQ(0U, info.elf_start_offset); } // Verify that if the offset is non-zero and there is an elf at that // offset, that only part of the file is used. TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file) { MapInfo info(nullptr, nullptr, 0x100, 0x200, 0x1000, 0, elf_at_1000_.path); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0U, info.elf_offset); EXPECT_EQ(0x1000U, info.elf_start_offset); // Read the valid part of the file. std::vector buffer(0x100); ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100)); ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0); ASSERT_EQ(ELFCLASS64, buffer[EI_CLASS]); for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) { ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i; } ASSERT_FALSE(memory->ReadFully(0x100, buffer.data(), 1)); } // Verify that if the offset is non-zero and there is an elf at that // offset, that only part of the file is used. Further verify that if the // embedded elf is bigger than the initial map, the new object is larger // than the original map size. Do this for a 32 bit elf and a 64 bit elf. TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf32) { MapInfo info(nullptr, nullptr, 0x5000, 0x6000, 0x1000, 0, elf32_at_map_.path); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0U, info.elf_offset); EXPECT_EQ(0x1000U, info.elf_start_offset); // Verify the memory is a valid elf. uint8_t e_ident[SELFMAG + 1]; ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG)); ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG)); // Read past the end of what would normally be the size of the map. ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1)); } TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf64) { MapInfo info(nullptr, nullptr, 0x7000, 0x8000, 0x2000, 0, elf64_at_map_.path); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(info.memory_backed_elf); ASSERT_EQ(0U, info.elf_offset); EXPECT_EQ(0x2000U, info.elf_start_offset); // Verify the memory is a valid elf. uint8_t e_ident[SELFMAG + 1]; ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG)); ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG)); // Read past the end of what would normally be the size of the map. ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1)); } // Verify that device file names will never result in Memory object creation. TEST_F(MapInfoCreateMemoryTest, check_device_maps) { // Set up some memory so that a valid local memory object would // be returned if the file mapping fails, but the device check is incorrect. std::vector buffer(1024); uint64_t start = reinterpret_cast(buffer.data()); MapInfo info(nullptr, nullptr, start, start + buffer.size(), 0, 0x8000, "/dev/something"); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() == nullptr); } TEST_F(MapInfoCreateMemoryTest, process_memory) { MapInfo info(nullptr, nullptr, 0x2000, 0x3000, 0, PROT_READ, ""); Elf32_Ehdr ehdr = {}; TestInitEhdr(&ehdr, ELFCLASS32, EM_ARM); std::vector buffer(1024); memcpy(buffer.data(), &ehdr, sizeof(ehdr)); // Verify that the the process_memory object is used, so seed it // with memory. for (size_t i = sizeof(ehdr); i < buffer.size(); i++) { buffer[i] = i % 256; } memory_->SetMemory(info.start, buffer.data(), buffer.size()); std::unique_ptr memory(info.CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_TRUE(info.memory_backed_elf); memset(buffer.data(), 0, buffer.size()); ASSERT_TRUE(memory->ReadFully(0, buffer.data(), buffer.size())); ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr))); for (size_t i = sizeof(ehdr); i < buffer.size(); i++) { ASSERT_EQ(i % 256, buffer[i]) << "Failed at byte " << i; } // Try to read outside of the map size. ASSERT_FALSE(memory->ReadFully(buffer.size(), buffer.data(), 1)); } TEST_F(MapInfoCreateMemoryTest, valid_rosegment_zero_offset) { Maps maps; maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0); maps.Add(0x1000, 0x2600, 0, PROT_READ, "/only/in/memory.so", 0); maps.Add(0x3000, 0x5000, 0x4000, PROT_READ | PROT_EXEC, "/only/in/memory.so", 0); Elf32_Ehdr ehdr = {}; TestInitEhdr(&ehdr, ELFCLASS32, EM_ARM); memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr)); memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x1600 - sizeof(ehdr), 0xab); // Set the memory in the r-x map. memory_->SetMemoryBlock(0x3000, 0x2000, 0x5d); MapInfo* map_info = maps.Find(0x3000); ASSERT_TRUE(map_info != nullptr); std::unique_ptr mem(map_info->CreateMemory(process_memory_)); ASSERT_TRUE(mem.get() != nullptr); EXPECT_TRUE(map_info->memory_backed_elf); EXPECT_EQ(0x4000UL, map_info->elf_offset); EXPECT_EQ(0x4000UL, map_info->offset); EXPECT_EQ(0U, map_info->elf_start_offset); // Verify that reading values from this memory works properly. std::vector buffer(0x4000); size_t bytes = mem->Read(0, buffer.data(), buffer.size()); ASSERT_EQ(0x1600UL, bytes); ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr))); for (size_t i = sizeof(ehdr); i < bytes; i++) { ASSERT_EQ(0xab, buffer[i]) << "Failed at byte " << i; } bytes = mem->Read(0x4000, buffer.data(), buffer.size()); ASSERT_EQ(0x2000UL, bytes); for (size_t i = 0; i < bytes; i++) { ASSERT_EQ(0x5d, buffer[i]) << "Failed at byte " << i; } } TEST_F(MapInfoCreateMemoryTest, valid_rosegment_non_zero_offset) { Maps maps; maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0); maps.Add(0x1000, 0x2000, 0, PROT_READ, "/only/in/memory.apk", 0); maps.Add(0x2000, 0x3000, 0x1000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0); maps.Add(0x3000, 0x4000, 0xa000, PROT_READ, "/only/in/memory.apk", 0); maps.Add(0x4000, 0x5000, 0xb000, PROT_READ | PROT_EXEC, "/only/in/memory.apk", 0); Elf32_Ehdr ehdr = {}; TestInitEhdr(&ehdr, ELFCLASS32, EM_ARM); // Setup an elf at offset 0x1000 in memory. memory_->SetMemory(0x1000, &ehdr, sizeof(ehdr)); memory_->SetMemoryBlock(0x1000 + sizeof(ehdr), 0x2000 - sizeof(ehdr), 0x12); memory_->SetMemoryBlock(0x2000, 0x1000, 0x23); // Setup an elf at offset 0x3000 in memory.. memory_->SetMemory(0x3000, &ehdr, sizeof(ehdr)); memory_->SetMemoryBlock(0x3000 + sizeof(ehdr), 0x4000 - sizeof(ehdr), 0x34); memory_->SetMemoryBlock(0x4000, 0x1000, 0x43); MapInfo* map_info = maps.Find(0x4000); ASSERT_TRUE(map_info != nullptr); std::unique_ptr mem(map_info->CreateMemory(process_memory_)); ASSERT_TRUE(mem.get() != nullptr); EXPECT_TRUE(map_info->memory_backed_elf); EXPECT_EQ(0x1000UL, map_info->elf_offset); EXPECT_EQ(0xb000UL, map_info->offset); EXPECT_EQ(0xa000UL, map_info->elf_start_offset); // Verify that reading values from this memory works properly. std::vector buffer(0x4000); size_t bytes = mem->Read(0, buffer.data(), buffer.size()); ASSERT_EQ(0x1000UL, bytes); ASSERT_EQ(0, memcmp(&ehdr, buffer.data(), sizeof(ehdr))); for (size_t i = sizeof(ehdr); i < bytes; i++) { ASSERT_EQ(0x34, buffer[i]) << "Failed at byte " << i; } bytes = mem->Read(0x1000, buffer.data(), buffer.size()); ASSERT_EQ(0x1000UL, bytes); for (size_t i = 0; i < bytes; i++) { ASSERT_EQ(0x43, buffer[i]) << "Failed at byte " << i; } } TEST_F(MapInfoCreateMemoryTest, rosegment_from_file) { Maps maps; maps.Add(0x500, 0x600, 0, PROT_READ, "something_else", 0); maps.Add(0x1000, 0x2000, 0x1000, PROT_READ, elf_at_1000_.path, 0); maps.Add(0x2000, 0x3000, 0x2000, PROT_READ | PROT_EXEC, elf_at_1000_.path, 0); MapInfo* map_info = maps.Find(0x2000); ASSERT_TRUE(map_info != nullptr); // Set up the size Elf64_Ehdr ehdr; ASSERT_EQ(0x1000, lseek(elf_at_1000_.fd, 0x1000, SEEK_SET)); ASSERT_TRUE(android::base::ReadFully(elf_at_1000_.fd, &ehdr, sizeof(ehdr))); // Will not give the elf memory, because the read-only entry does not // extend over the executable segment. std::unique_ptr memory(map_info->CreateMemory(process_memory_)); ASSERT_TRUE(memory.get() != nullptr); EXPECT_FALSE(map_info->memory_backed_elf); std::vector buffer(0x100); EXPECT_EQ(0x2000U, map_info->offset); EXPECT_EQ(0U, map_info->elf_offset); EXPECT_EQ(0U, map_info->elf_start_offset); ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100)); EXPECT_EQ(0xffU, buffer[0]); // Now init the elf data enough so that the file memory object will be used. ehdr.e_shoff = 0x4000; ehdr.e_shnum = 1; ehdr.e_shentsize = 0x100; ASSERT_EQ(0x1000, lseek(elf_at_1000_.fd, 0x1000, SEEK_SET)); ASSERT_TRUE(android::base::WriteFully(elf_at_1000_.fd, &ehdr, sizeof(ehdr))); map_info->memory_backed_elf = false; memory.reset(map_info->CreateMemory(process_memory_)); EXPECT_FALSE(map_info->memory_backed_elf); EXPECT_EQ(0x2000U, map_info->offset); EXPECT_EQ(0x1000U, map_info->elf_offset); EXPECT_EQ(0x1000U, map_info->elf_start_offset); Elf64_Ehdr ehdr_mem; ASSERT_TRUE(memory->ReadFully(0, &ehdr_mem, sizeof(ehdr_mem))); EXPECT_TRUE(memcmp(&ehdr, &ehdr_mem, sizeof(ehdr)) == 0); } } // namespace unwindstack