summaryrefslogtreecommitdiff
path: root/libunwindstack/DwarfSection.cpp
blob: 34d37b090880bc12509cf6ad12ca1f0ff6f49438 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdint.h>

#include <unwindstack/DwarfError.h>
#include <unwindstack/DwarfLocation.h>
#include <unwindstack/DwarfMemory.h>
#include <unwindstack/DwarfSection.h>
#include <unwindstack/DwarfStructs.h>
#include <unwindstack/Elf.h>
#include <unwindstack/Log.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>

#include "DwarfCfa.h"
#include "DwarfDebugFrame.h"
#include "DwarfEhFrame.h"
#include "DwarfEncoding.h"
#include "DwarfOp.h"
#include "RegsInfo.h"

namespace unwindstack {

DwarfSection::DwarfSection(Memory* memory) : memory_(memory) {}

bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished,
                        bool* is_signal_frame) {
  // Lookup the pc in the cache.
  auto it = loc_regs_.upper_bound(pc);
  if (it == loc_regs_.end() || pc < it->second.pc_start) {
    last_error_.code = DWARF_ERROR_NONE;
    const DwarfFde* fde = GetFdeFromPc(pc);
    if (fde == nullptr || fde->cie == nullptr) {
      last_error_.code = DWARF_ERROR_ILLEGAL_STATE;
      return false;
    }

    // Now get the location information for this pc.
    DwarfLocations loc_regs;
    if (!GetCfaLocationInfo(pc, fde, &loc_regs, regs->Arch())) {
      return false;
    }
    loc_regs.cie = fde->cie;

    // Store it in the cache.
    it = loc_regs_.emplace(loc_regs.pc_end, std::move(loc_regs)).first;
  }

  *is_signal_frame = it->second.cie->is_signal_frame;

  // Now eval the actual registers.
  return Eval(it->second.cie, process_memory, it->second, regs, finished);
}

template <typename AddressType>
const DwarfCie* DwarfSectionImpl<AddressType>::GetCieFromOffset(uint64_t offset) {
  auto cie_entry = cie_entries_.find(offset);
  if (cie_entry != cie_entries_.end()) {
    return &cie_entry->second;
  }
  DwarfCie* cie = &cie_entries_[offset];
  memory_.set_data_offset(entries_offset_);
  memory_.set_cur_offset(offset);
  if (!FillInCieHeader(cie) || !FillInCie(cie)) {
    // Erase the cached entry.
    cie_entries_.erase(offset);
    return nullptr;
  }
  return cie;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInCieHeader(DwarfCie* cie) {
  cie->lsda_encoding = DW_EH_PE_omit;
  uint32_t length32;
  if (!memory_.ReadBytes(&length32, sizeof(length32))) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }
  if (length32 == static_cast<uint32_t>(-1)) {
    // 64 bit Cie
    uint64_t length64;
    if (!memory_.ReadBytes(&length64, sizeof(length64))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }

    cie->cfa_instructions_end = memory_.cur_offset() + length64;
    // TODO(b/192012848): This is wrong. We need to propagate pointer size here.
    cie->fde_address_encoding = DW_EH_PE_udata8;

    uint64_t cie_id;
    if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    if (cie_id != cie64_value_) {
      // This is not a Cie, something has gone horribly wrong.
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }
  } else {
    // 32 bit Cie
    cie->cfa_instructions_end = memory_.cur_offset() + length32;
    // TODO(b/192012848): This is wrong. We need to propagate pointer size here.
    cie->fde_address_encoding = DW_EH_PE_udata4;

    uint32_t cie_id;
    if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    if (cie_id != cie32_value_) {
      // This is not a Cie, something has gone horribly wrong.
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }
  }
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) {
  if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  if (cie->version != 1 && cie->version != 3 && cie->version != 4 && cie->version != 5) {
    // Unrecognized version.
    last_error_.code = DWARF_ERROR_UNSUPPORTED_VERSION;
    return false;
  }

  // Read the augmentation string.
  char aug_value;
  do {
    if (!memory_.ReadBytes(&aug_value, 1)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    cie->augmentation_string.push_back(aug_value);
  } while (aug_value != '\0');

  if (cie->version == 4 || cie->version == 5) {
    char address_size;
    if (!memory_.ReadBytes(&address_size, 1)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    cie->fde_address_encoding = address_size == 8 ? DW_EH_PE_udata8 : DW_EH_PE_udata4;

    // Segment Size
    if (!memory_.ReadBytes(&cie->segment_size, 1)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
  }

  // Code Alignment Factor
  if (!memory_.ReadULEB128(&cie->code_alignment_factor)) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  // Data Alignment Factor
  if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  if (cie->version == 1) {
    // Return Address is a single byte.
    uint8_t return_address_register;
    if (!memory_.ReadBytes(&return_address_register, 1)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    cie->return_address_register = return_address_register;
  } else if (!memory_.ReadULEB128(&cie->return_address_register)) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  if (cie->augmentation_string[0] != 'z') {
    cie->cfa_instructions_offset = memory_.cur_offset();
    return true;
  }

  uint64_t aug_length;
  if (!memory_.ReadULEB128(&aug_length)) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }
  cie->cfa_instructions_offset = memory_.cur_offset() + aug_length;

  for (size_t i = 1; i < cie->augmentation_string.size(); i++) {
    switch (cie->augmentation_string[i]) {
      case 'L':
        if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) {
          last_error_.code = DWARF_ERROR_MEMORY_INVALID;
          last_error_.address = memory_.cur_offset();
          return false;
        }
        break;
      case 'P': {
        uint8_t encoding;
        if (!memory_.ReadBytes(&encoding, 1)) {
          last_error_.code = DWARF_ERROR_MEMORY_INVALID;
          last_error_.address = memory_.cur_offset();
          return false;
        }
        memory_.set_pc_offset(pc_offset_);
        if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) {
          last_error_.code = DWARF_ERROR_MEMORY_INVALID;
          last_error_.address = memory_.cur_offset();
          return false;
        }
      } break;
      case 'R':
        if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) {
          last_error_.code = DWARF_ERROR_MEMORY_INVALID;
          last_error_.address = memory_.cur_offset();
          return false;
        }
        break;
      case 'S':
        cie->is_signal_frame = true;
        break;
    }
  }
  return true;
}

template <typename AddressType>
const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) {
  auto fde_entry = fde_entries_.find(offset);
  if (fde_entry != fde_entries_.end()) {
    return &fde_entry->second;
  }
  DwarfFde* fde = &fde_entries_[offset];
  memory_.set_data_offset(entries_offset_);
  memory_.set_cur_offset(offset);
  if (!FillInFdeHeader(fde) || !FillInFde(fde)) {
    fde_entries_.erase(offset);
    return nullptr;
  }
  return fde;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInFdeHeader(DwarfFde* fde) {
  uint32_t length32;
  if (!memory_.ReadBytes(&length32, sizeof(length32))) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  if (length32 == static_cast<uint32_t>(-1)) {
    // 64 bit Fde.
    uint64_t length64;
    if (!memory_.ReadBytes(&length64, sizeof(length64))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    fde->cfa_instructions_end = memory_.cur_offset() + length64;

    uint64_t value64;
    if (!memory_.ReadBytes(&value64, sizeof(value64))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    if (value64 == cie64_value_) {
      // This is a Cie, this means something has gone wrong.
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }

    // Get the Cie pointer, which is necessary to properly read the rest of
    // of the Fde information.
    fde->cie_offset = GetCieOffsetFromFde64(value64);
  } else {
    // 32 bit Fde.
    fde->cfa_instructions_end = memory_.cur_offset() + length32;

    uint32_t value32;
    if (!memory_.ReadBytes(&value32, sizeof(value32))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    if (value32 == cie32_value_) {
      // This is a Cie, this means something has gone wrong.
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }

    // Get the Cie pointer, which is necessary to properly read the rest of
    // of the Fde information.
    fde->cie_offset = GetCieOffsetFromFde32(value32);
  }
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) {
  uint64_t cur_offset = memory_.cur_offset();

  const DwarfCie* cie = GetCieFromOffset(fde->cie_offset);
  if (cie == nullptr) {
    return false;
  }
  fde->cie = cie;

  if (cie->segment_size != 0) {
    // Skip over the segment selector for now.
    cur_offset += cie->segment_size;
  }
  memory_.set_cur_offset(cur_offset);

  // The load bias only applies to the start.
  memory_.set_pc_offset(section_bias_);
  bool valid = memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_start);
  fde->pc_start = AdjustPcFromFde(fde->pc_start);

  memory_.set_pc_offset(0);
  if (!valid || !memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_end)) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }
  fde->pc_end += fde->pc_start;

  if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') {
    // Augmentation Size
    uint64_t aug_length;
    if (!memory_.ReadULEB128(&aug_length)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }
    uint64_t cur_offset = memory_.cur_offset();

    memory_.set_pc_offset(pc_offset_);
    if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }

    // Set our position to after all of the augmentation data.
    memory_.set_cur_offset(cur_offset + aug_length);
  }
  fde->cfa_instructions_offset = memory_.cur_offset();

  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, Memory* regular_memory,
                                                   AddressType* value,
                                                   RegsInfo<AddressType>* regs_info,
                                                   bool* is_dex_pc) {
  DwarfOp<AddressType> op(&memory_, regular_memory);
  op.set_regs_info(regs_info);

  // Need to evaluate the op data.
  uint64_t end = loc.values[1];
  uint64_t start = end - loc.values[0];
  if (!op.Eval(start, end)) {
    last_error_ = op.last_error();
    return false;
  }
  if (op.StackSize() == 0) {
    last_error_.code = DWARF_ERROR_ILLEGAL_STATE;
    return false;
  }
  // We don't support an expression that evaluates to a register number.
  if (op.is_register()) {
    last_error_.code = DWARF_ERROR_NOT_IMPLEMENTED;
    return false;
  }
  *value = op.StackAt(0);
  if (is_dex_pc != nullptr && op.dex_pc_set()) {
    *is_dex_pc = true;
  }
  return true;
}

template <typename AddressType>
struct EvalInfo {
  const DwarfLocations* loc_regs;
  const DwarfCie* cie;
  Memory* regular_memory;
  AddressType cfa;
  bool return_address_undefined = false;
  RegsInfo<AddressType> regs_info;
};

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::EvalRegister(const DwarfLocation* loc, uint32_t reg,
                                                 AddressType* reg_ptr, void* info) {
  EvalInfo<AddressType>* eval_info = reinterpret_cast<EvalInfo<AddressType>*>(info);
  Memory* regular_memory = eval_info->regular_memory;
  switch (loc->type) {
    case DWARF_LOCATION_OFFSET:
      if (!regular_memory->ReadFully(eval_info->cfa + loc->values[0], reg_ptr, sizeof(AddressType))) {
        last_error_.code = DWARF_ERROR_MEMORY_INVALID;
        last_error_.address = eval_info->cfa + loc->values[0];
        return false;
      }
      break;
    case DWARF_LOCATION_VAL_OFFSET:
      *reg_ptr = eval_info->cfa + loc->values[0];
      break;
    case DWARF_LOCATION_REGISTER: {
      uint32_t cur_reg = loc->values[0];
      if (cur_reg >= eval_info->regs_info.Total()) {
        last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
        return false;
      }
      *reg_ptr = eval_info->regs_info.Get(cur_reg) + loc->values[1];
      break;
    }
    case DWARF_LOCATION_EXPRESSION:
    case DWARF_LOCATION_VAL_EXPRESSION: {
      AddressType value;
      bool is_dex_pc = false;
      if (!EvalExpression(*loc, regular_memory, &value, &eval_info->regs_info, &is_dex_pc)) {
        return false;
      }
      if (loc->type == DWARF_LOCATION_EXPRESSION) {
        if (!regular_memory->ReadFully(value, reg_ptr, sizeof(AddressType))) {
          last_error_.code = DWARF_ERROR_MEMORY_INVALID;
          last_error_.address = value;
          return false;
        }
      } else {
        *reg_ptr = value;
        if (is_dex_pc) {
          eval_info->regs_info.regs->set_dex_pc(value);
        }
      }
      break;
    }
    case DWARF_LOCATION_UNDEFINED:
      if (reg == eval_info->cie->return_address_register) {
        eval_info->return_address_undefined = true;
      }
      break;
    case DWARF_LOCATION_PSEUDO_REGISTER:
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    default:
      break;
  }

  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory,
                                         const DwarfLocations& loc_regs, Regs* regs,
                                         bool* finished) {
  RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs);
  if (cie->return_address_register >= cur_regs->total_regs()) {
    last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
    return false;
  }

  // Get the cfa value;
  auto cfa_entry = loc_regs.find(CFA_REG);
  if (cfa_entry == loc_regs.end()) {
    last_error_.code = DWARF_ERROR_CFA_NOT_DEFINED;
    return false;
  }

  // Always set the dex pc to zero when evaluating.
  cur_regs->set_dex_pc(0);

  // Reset necessary pseudo registers before evaluation.
  // This is needed for ARM64, for example.
  regs->ResetPseudoRegisters();

  EvalInfo<AddressType> eval_info{.loc_regs = &loc_regs,
                                  .cie = cie,
                                  .regular_memory = regular_memory,
                                  .regs_info = RegsInfo<AddressType>(cur_regs)};
  const DwarfLocation* loc = &cfa_entry->second;
  // Only a few location types are valid for the cfa.
  switch (loc->type) {
    case DWARF_LOCATION_REGISTER:
      if (loc->values[0] >= cur_regs->total_regs()) {
        last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
        return false;
      }
      eval_info.cfa = (*cur_regs)[loc->values[0]];
      eval_info.cfa += loc->values[1];
      break;
    case DWARF_LOCATION_VAL_EXPRESSION: {
      AddressType value;
      if (!EvalExpression(*loc, regular_memory, &value, &eval_info.regs_info, nullptr)) {
        return false;
      }
      // There is only one type of valid expression for CFA evaluation.
      eval_info.cfa = value;
      break;
    }
    default:
      last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
  }

  for (const auto& entry : loc_regs) {
    uint32_t reg = entry.first;
    // Already handled the CFA register.
    if (reg == CFA_REG) continue;

    AddressType* reg_ptr;
    if (reg >= cur_regs->total_regs()) {
      if (entry.second.type != DWARF_LOCATION_PSEUDO_REGISTER) {
        // Skip this unknown register.
        continue;
      }
      if (!eval_info.regs_info.regs->SetPseudoRegister(reg, entry.second.values[0])) {
        last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
        return false;
      }
    } else {
      reg_ptr = eval_info.regs_info.Save(reg);
      if (!EvalRegister(&entry.second, reg, reg_ptr, &eval_info)) {
        return false;
      }
    }
  }

  // Find the return address location.
  if (eval_info.return_address_undefined) {
    cur_regs->set_pc(0);
  } else {
    cur_regs->set_pc((*cur_regs)[cie->return_address_register]);
  }

  // If the pc was set to zero, consider this the final frame. Exception: if
  // this is the sigreturn frame, then we want to try to recover the real PC
  // using the return address (from LR or the stack), so keep going.
  *finished = (cur_regs->pc() == 0 && !cie->is_signal_frame) ? true : false;

  cur_regs->set_sp(eval_info.cfa);

  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde,
                                                       DwarfLocations* loc_regs, ArchEnum arch) {
  DwarfCfa<AddressType> cfa(&memory_, fde, arch);

  // Look for the cached copy of the cie data.
  auto reg_entry = cie_loc_regs_.find(fde->cie_offset);
  if (reg_entry == cie_loc_regs_.end()) {
    if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end,
                             loc_regs)) {
      last_error_ = cfa.last_error();
      return false;
    }
    cie_loc_regs_[fde->cie_offset] = *loc_regs;
  }
  cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]);
  if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) {
    last_error_ = cfa.last_error();
    return false;
  }
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, const DwarfFde* fde,
                                        ArchEnum arch) {
  DwarfCfa<AddressType> cfa(&memory_, fde, arch);

  // Always print the cie information.
  const DwarfCie* cie = fde->cie;
  if (!cfa.Log(indent, pc, cie->cfa_instructions_offset, cie->cfa_instructions_end)) {
    last_error_ = cfa.last_error();
    return false;
  }
  if (!cfa.Log(indent, pc, fde->cfa_instructions_offset, fde->cfa_instructions_end)) {
    last_error_ = cfa.last_error();
    return false;
  }
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::Init(uint64_t offset, uint64_t size, int64_t section_bias) {
  section_bias_ = section_bias;
  entries_offset_ = offset;
  entries_end_ = offset + size;

  memory_.clear_func_offset();
  memory_.clear_text_offset();
  memory_.set_cur_offset(offset);
  pc_offset_ = offset;

  return true;
}

// Read CIE or FDE entry at the given offset, and set the offset to the following entry.
// The 'fde' argument is set only if we have seen an FDE entry.
template <typename AddressType>
bool DwarfSectionImpl<AddressType>::GetNextCieOrFde(uint64_t& next_entries_offset,
                                                    std::optional<DwarfFde>& fde_entry) {
  const uint64_t start_offset = next_entries_offset;

  memory_.set_data_offset(entries_offset_);
  memory_.set_cur_offset(next_entries_offset);
  uint32_t value32;
  if (!memory_.ReadBytes(&value32, sizeof(value32))) {
    last_error_.code = DWARF_ERROR_MEMORY_INVALID;
    last_error_.address = memory_.cur_offset();
    return false;
  }

  uint64_t cie_offset;
  uint8_t cie_fde_encoding;
  bool entry_is_cie = false;
  if (value32 == static_cast<uint32_t>(-1)) {
    // 64 bit entry.
    uint64_t value64;
    if (!memory_.ReadBytes(&value64, sizeof(value64))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }

    next_entries_offset = memory_.cur_offset() + value64;
    // Read the Cie Id of a Cie or the pointer of the Fde.
    if (!memory_.ReadBytes(&value64, sizeof(value64))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }

    if (value64 == cie64_value_) {
      entry_is_cie = true;
      cie_fde_encoding = DW_EH_PE_udata8;
    } else {
      cie_offset = GetCieOffsetFromFde64(value64);
    }
  } else {
    next_entries_offset = memory_.cur_offset() + value32;

    // 32 bit Cie
    if (!memory_.ReadBytes(&value32, sizeof(value32))) {
      last_error_.code = DWARF_ERROR_MEMORY_INVALID;
      last_error_.address = memory_.cur_offset();
      return false;
    }

    if (value32 == cie32_value_) {
      entry_is_cie = true;
      cie_fde_encoding = DW_EH_PE_udata4;
    } else {
      cie_offset = GetCieOffsetFromFde32(value32);
    }
  }

  if (entry_is_cie) {
    auto entry = cie_entries_.find(start_offset);
    if (entry == cie_entries_.end()) {
      DwarfCie* cie = &cie_entries_[start_offset];
      cie->lsda_encoding = DW_EH_PE_omit;
      cie->cfa_instructions_end = next_entries_offset;
      cie->fde_address_encoding = cie_fde_encoding;

      if (!FillInCie(cie)) {
        cie_entries_.erase(start_offset);
        return false;
      }
    }
    fde_entry.reset();
  } else {
    fde_entry = DwarfFde{};
    fde_entry->cfa_instructions_end = next_entries_offset;
    fde_entry->cie_offset = cie_offset;
    if (!FillInFde(&*fde_entry)) {
      return false;
    }
  }
  return true;
}

template <typename AddressType>
void DwarfSectionImpl<AddressType>::GetFdes(std::vector<const DwarfFde*>* fdes) {
  if (fde_index_.empty()) {
    BuildFdeIndex();
  }
  for (auto& it : fde_index_) {
    fdes->push_back(GetFdeFromOffset(it.second));
  }
}

template <typename AddressType>
const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromPc(uint64_t pc) {
  // Ensure that the binary search table is initialized.
  if (fde_index_.empty()) {
    BuildFdeIndex();
  }

  // Find the FDE offset in the binary search table.
  auto comp = [](uint64_t pc, auto& entry) { return pc < entry.first; };
  auto it = std::upper_bound(fde_index_.begin(), fde_index_.end(), pc, comp);
  if (it == fde_index_.end()) {
    return nullptr;
  }

  // Load the full FDE entry based on the offset.
  const DwarfFde* fde = GetFdeFromOffset(/*fde_offset=*/it->second);
  return fde != nullptr && fde->pc_start <= pc ? fde : nullptr;
}

// Create binary search table to make FDE lookups fast (sorted by pc_end).
// We store only the FDE offset rather than the full entry to save memory.
//
// If there are overlapping entries, it inserts additional entries to ensure
// that one of the overlapping entries is found (it is undefined which one).
template <typename AddressType>
void DwarfSectionImpl<AddressType>::BuildFdeIndex() {
  struct FdeInfo {
    uint64_t pc_start, pc_end, fde_offset;
  };
  std::vector<FdeInfo> fdes;
  for (uint64_t offset = entries_offset_; offset < entries_end_;) {
    const uint64_t initial_offset = offset;
    std::optional<DwarfFde> fde;
    if (!GetNextCieOrFde(offset, fde)) {
      break;
    }
    if (fde.has_value() && /* defensive check */ (fde->pc_start < fde->pc_end)) {
      fdes.push_back({fde->pc_start, fde->pc_end, initial_offset});
    }
    if (offset <= initial_offset) {
      break;  // Jump back. Simply consider the processing done in this case.
    }
  }
  std::sort(fdes.begin(), fdes.end(), [](const FdeInfo& a, const FdeInfo& b) {
    return std::tie(a.pc_end, a.fde_offset) < std::tie(b.pc_end, b.fde_offset);
  });

  // If there are overlapping entries, ensure that we can always find one of them.
  // For example, for entries:   [300, 350)  [400, 450)  [100, 550)  [600, 650)
  // We add the following:  [100, 300)  [100, 400)
  // Which ensures that the [100, 550) entry can be found in its whole range.
  if (!fdes.empty()) {
    FdeInfo filling = fdes.back();  // Entry with the minimal pc_start seen so far.
    for (ssize_t i = fdes.size() - 1; i >= 0; i--) {  // Iterate backwards.
      uint64_t prev_pc_end = (i > 0) ? fdes[i - 1].pc_end : 0;
      // If there is a gap between entries and the filling reaches the gap, fill it.
      if (prev_pc_end < fdes[i].pc_start && filling.pc_start < fdes[i].pc_start) {
        fdes.push_back({filling.pc_start, fdes[i].pc_start, filling.fde_offset});
      }
      if (fdes[i].pc_start < filling.pc_start) {
        filling = fdes[i];
      }
    }
  }

  // Copy data to the final binary search table (pc_end, fde_offset) and sort it.
  fde_index_.reserve(fdes.size());
  for (const FdeInfo& it : fdes) {
    fde_index_.emplace_back(it.pc_end, it.fde_offset);
  }
  if (!std::is_sorted(fde_index_.begin(), fde_index_.end())) {
    std::sort(fde_index_.begin(), fde_index_.end());
  }
}

// Explicitly instantiate DwarfSectionImpl
template class DwarfSectionImpl<uint32_t>;
template class DwarfSectionImpl<uint64_t>;

// Explicitly instantiate DwarfDebugFrame
template class DwarfDebugFrame<uint32_t>;
template class DwarfDebugFrame<uint64_t>;

// Explicitly instantiate DwarfEhFrame
template class DwarfEhFrame<uint32_t>;
template class DwarfEhFrame<uint64_t>;

}  // namespace unwindstack