aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Bindings/Python/IRModules.cpp
blob: 39a17d0535434b8dbaa377ac1e8bb2f4a269271b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
//===- IRModules.cpp - IR Submodules of pybind module ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "IRModules.h"

#include "Globals.h"
#include "PybindUtils.h"

#include "mlir-c/Bindings/Python/Interop.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir-c/Registration.h"
#include "llvm/ADT/SmallVector.h"
#include <pybind11/stl.h>

namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;

using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;

//------------------------------------------------------------------------------
// Docstrings (trivial, non-duplicated docstrings are included inline).
//------------------------------------------------------------------------------

static const char kContextParseTypeDocstring[] =
    R"(Parses the assembly form of a type.

Returns a Type object or raises a ValueError if the type cannot be parsed.

See also: https://mlir.llvm.org/docs/LangRef/#type-system
)";

static const char kContextGetFileLocationDocstring[] =
    R"(Gets a Location representing a file, line and column)";

static const char kModuleParseDocstring[] =
    R"(Parses a module's assembly format from a string.

Returns a new MlirModule or raises a ValueError if the parsing fails.

See also: https://mlir.llvm.org/docs/LangRef/
)";

static const char kOperationCreateDocstring[] =
    R"(Creates a new operation.

Args:
  name: Operation name (e.g. "dialect.operation").
  results: Sequence of Type representing op result types.
  attributes: Dict of str:Attribute.
  successors: List of Block for the operation's successors.
  regions: Number of regions to create.
  location: A Location object (defaults to resolve from context manager).
  ip: An InsertionPoint (defaults to resolve from context manager or set to
    False to disable insertion, even with an insertion point set in the
    context manager).
Returns:
  A new "detached" Operation object. Detached operations can be added
  to blocks, which causes them to become "attached."
)";

static const char kOperationPrintDocstring[] =
    R"(Prints the assembly form of the operation to a file like object.

Args:
  file: The file like object to write to. Defaults to sys.stdout.
  binary: Whether to write bytes (True) or str (False). Defaults to False.
  large_elements_limit: Whether to elide elements attributes above this
    number of elements. Defaults to None (no limit).
  enable_debug_info: Whether to print debug/location information. Defaults
    to False.
  pretty_debug_info: Whether to format debug information for easier reading
    by a human (warning: the result is unparseable).
  print_generic_op_form: Whether to print the generic assembly forms of all
    ops. Defaults to False.
  use_local_Scope: Whether to print in a way that is more optimized for
    multi-threaded access but may not be consistent with how the overall
    module prints.
)";

static const char kOperationGetAsmDocstring[] =
    R"(Gets the assembly form of the operation with all options available.

Args:
  binary: Whether to return a bytes (True) or str (False) object. Defaults to
    False.
  ... others ...: See the print() method for common keyword arguments for
    configuring the printout.
Returns:
  Either a bytes or str object, depending on the setting of the 'binary'
  argument.
)";

static const char kOperationStrDunderDocstring[] =
    R"(Gets the assembly form of the operation with default options.

If more advanced control over the assembly formatting or I/O options is needed,
use the dedicated print or get_asm method, which supports keyword arguments to
customize behavior.
)";

static const char kDumpDocstring[] =
    R"(Dumps a debug representation of the object to stderr.)";

static const char kAppendBlockDocstring[] =
    R"(Appends a new block, with argument types as positional args.

Returns:
  The created block.
)";

static const char kValueDunderStrDocstring[] =
    R"(Returns the string form of the value.

If the value is a block argument, this is the assembly form of its type and the
position in the argument list. If the value is an operation result, this is
equivalent to printing the operation that produced it.
)";

//------------------------------------------------------------------------------
// Utilities.
//------------------------------------------------------------------------------

/// Checks whether the given type is an integer or float type.
static int mlirTypeIsAIntegerOrFloat(MlirType type) {
  return mlirTypeIsAInteger(type) || mlirTypeIsABF16(type) ||
         mlirTypeIsAF16(type) || mlirTypeIsAF32(type) || mlirTypeIsAF64(type);
}

static py::object
createCustomDialectWrapper(const std::string &dialectNamespace,
                           py::object dialectDescriptor) {
  auto dialectClass = PyGlobals::get().lookupDialectClass(dialectNamespace);
  if (!dialectClass) {
    // Use the base class.
    return py::cast(PyDialect(std::move(dialectDescriptor)));
  }

  // Create the custom implementation.
  return (*dialectClass)(std::move(dialectDescriptor));
}

static MlirStringRef toMlirStringRef(const std::string &s) {
  return mlirStringRefCreate(s.data(), s.size());
}

//------------------------------------------------------------------------------
// Collections.
//------------------------------------------------------------------------------

namespace {

class PyRegionIterator {
public:
  PyRegionIterator(PyOperationRef operation)
      : operation(std::move(operation)) {}

  PyRegionIterator &dunderIter() { return *this; }

  PyRegion dunderNext() {
    operation->checkValid();
    if (nextIndex >= mlirOperationGetNumRegions(operation->get())) {
      throw py::stop_iteration();
    }
    MlirRegion region = mlirOperationGetRegion(operation->get(), nextIndex++);
    return PyRegion(operation, region);
  }

  static void bind(py::module &m) {
    py::class_<PyRegionIterator>(m, "RegionIterator")
        .def("__iter__", &PyRegionIterator::dunderIter)
        .def("__next__", &PyRegionIterator::dunderNext);
  }

private:
  PyOperationRef operation;
  int nextIndex = 0;
};

/// Regions of an op are fixed length and indexed numerically so are represented
/// with a sequence-like container.
class PyRegionList {
public:
  PyRegionList(PyOperationRef operation) : operation(std::move(operation)) {}

  intptr_t dunderLen() {
    operation->checkValid();
    return mlirOperationGetNumRegions(operation->get());
  }

  PyRegion dunderGetItem(intptr_t index) {
    // dunderLen checks validity.
    if (index < 0 || index >= dunderLen()) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds region");
    }
    MlirRegion region = mlirOperationGetRegion(operation->get(), index);
    return PyRegion(operation, region);
  }

  static void bind(py::module &m) {
    py::class_<PyRegionList>(m, "ReqionSequence")
        .def("__len__", &PyRegionList::dunderLen)
        .def("__getitem__", &PyRegionList::dunderGetItem);
  }

private:
  PyOperationRef operation;
};

class PyBlockIterator {
public:
  PyBlockIterator(PyOperationRef operation, MlirBlock next)
      : operation(std::move(operation)), next(next) {}

  PyBlockIterator &dunderIter() { return *this; }

  PyBlock dunderNext() {
    operation->checkValid();
    if (mlirBlockIsNull(next)) {
      throw py::stop_iteration();
    }

    PyBlock returnBlock(operation, next);
    next = mlirBlockGetNextInRegion(next);
    return returnBlock;
  }

  static void bind(py::module &m) {
    py::class_<PyBlockIterator>(m, "BlockIterator")
        .def("__iter__", &PyBlockIterator::dunderIter)
        .def("__next__", &PyBlockIterator::dunderNext);
  }

private:
  PyOperationRef operation;
  MlirBlock next;
};

/// Blocks are exposed by the C-API as a forward-only linked list. In Python,
/// we present them as a more full-featured list-like container but optimize
/// it for forward iteration. Blocks are always owned by a region.
class PyBlockList {
public:
  PyBlockList(PyOperationRef operation, MlirRegion region)
      : operation(std::move(operation)), region(region) {}

  PyBlockIterator dunderIter() {
    operation->checkValid();
    return PyBlockIterator(operation, mlirRegionGetFirstBlock(region));
  }

  intptr_t dunderLen() {
    operation->checkValid();
    intptr_t count = 0;
    MlirBlock block = mlirRegionGetFirstBlock(region);
    while (!mlirBlockIsNull(block)) {
      count += 1;
      block = mlirBlockGetNextInRegion(block);
    }
    return count;
  }

  PyBlock dunderGetItem(intptr_t index) {
    operation->checkValid();
    if (index < 0) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds block");
    }
    MlirBlock block = mlirRegionGetFirstBlock(region);
    while (!mlirBlockIsNull(block)) {
      if (index == 0) {
        return PyBlock(operation, block);
      }
      block = mlirBlockGetNextInRegion(block);
      index -= 1;
    }
    throw SetPyError(PyExc_IndexError, "attempt to access out of bounds block");
  }

  PyBlock appendBlock(py::args pyArgTypes) {
    operation->checkValid();
    llvm::SmallVector<MlirType, 4> argTypes;
    argTypes.reserve(pyArgTypes.size());
    for (auto &pyArg : pyArgTypes) {
      argTypes.push_back(pyArg.cast<PyType &>());
    }

    MlirBlock block = mlirBlockCreate(argTypes.size(), argTypes.data());
    mlirRegionAppendOwnedBlock(region, block);
    return PyBlock(operation, block);
  }

  static void bind(py::module &m) {
    py::class_<PyBlockList>(m, "BlockList")
        .def("__getitem__", &PyBlockList::dunderGetItem)
        .def("__iter__", &PyBlockList::dunderIter)
        .def("__len__", &PyBlockList::dunderLen)
        .def("append", &PyBlockList::appendBlock, kAppendBlockDocstring);
  }

private:
  PyOperationRef operation;
  MlirRegion region;
};

class PyOperationIterator {
public:
  PyOperationIterator(PyOperationRef parentOperation, MlirOperation next)
      : parentOperation(std::move(parentOperation)), next(next) {}

  PyOperationIterator &dunderIter() { return *this; }

  py::object dunderNext() {
    parentOperation->checkValid();
    if (mlirOperationIsNull(next)) {
      throw py::stop_iteration();
    }

    PyOperationRef returnOperation =
        PyOperation::forOperation(parentOperation->getContext(), next);
    next = mlirOperationGetNextInBlock(next);
    return returnOperation->createOpView();
  }

  static void bind(py::module &m) {
    py::class_<PyOperationIterator>(m, "OperationIterator")
        .def("__iter__", &PyOperationIterator::dunderIter)
        .def("__next__", &PyOperationIterator::dunderNext);
  }

private:
  PyOperationRef parentOperation;
  MlirOperation next;
};

/// Operations are exposed by the C-API as a forward-only linked list. In
/// Python, we present them as a more full-featured list-like container but
/// optimize it for forward iteration. Iterable operations are always owned
/// by a block.
class PyOperationList {
public:
  PyOperationList(PyOperationRef parentOperation, MlirBlock block)
      : parentOperation(std::move(parentOperation)), block(block) {}

  PyOperationIterator dunderIter() {
    parentOperation->checkValid();
    return PyOperationIterator(parentOperation,
                               mlirBlockGetFirstOperation(block));
  }

  intptr_t dunderLen() {
    parentOperation->checkValid();
    intptr_t count = 0;
    MlirOperation childOp = mlirBlockGetFirstOperation(block);
    while (!mlirOperationIsNull(childOp)) {
      count += 1;
      childOp = mlirOperationGetNextInBlock(childOp);
    }
    return count;
  }

  py::object dunderGetItem(intptr_t index) {
    parentOperation->checkValid();
    if (index < 0) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds operation");
    }
    MlirOperation childOp = mlirBlockGetFirstOperation(block);
    while (!mlirOperationIsNull(childOp)) {
      if (index == 0) {
        return PyOperation::forOperation(parentOperation->getContext(), childOp)
            ->createOpView();
      }
      childOp = mlirOperationGetNextInBlock(childOp);
      index -= 1;
    }
    throw SetPyError(PyExc_IndexError,
                     "attempt to access out of bounds operation");
  }

  static void bind(py::module &m) {
    py::class_<PyOperationList>(m, "OperationList")
        .def("__getitem__", &PyOperationList::dunderGetItem)
        .def("__iter__", &PyOperationList::dunderIter)
        .def("__len__", &PyOperationList::dunderLen);
  }

private:
  PyOperationRef parentOperation;
  MlirBlock block;
};

} // namespace

//------------------------------------------------------------------------------
// PyMlirContext
//------------------------------------------------------------------------------

PyMlirContext::PyMlirContext(MlirContext context) : context(context) {
  py::gil_scoped_acquire acquire;
  auto &liveContexts = getLiveContexts();
  liveContexts[context.ptr] = this;
}

PyMlirContext::~PyMlirContext() {
  // Note that the only public way to construct an instance is via the
  // forContext method, which always puts the associated handle into
  // liveContexts.
  py::gil_scoped_acquire acquire;
  getLiveContexts().erase(context.ptr);
  mlirContextDestroy(context);
}

py::object PyMlirContext::getCapsule() {
  return py::reinterpret_steal<py::object>(mlirPythonContextToCapsule(get()));
}

py::object PyMlirContext::createFromCapsule(py::object capsule) {
  MlirContext rawContext = mlirPythonCapsuleToContext(capsule.ptr());
  if (mlirContextIsNull(rawContext))
    throw py::error_already_set();
  return forContext(rawContext).releaseObject();
}

PyMlirContext *PyMlirContext::createNewContextForInit() {
  MlirContext context = mlirContextCreate();
  mlirRegisterAllDialects(context);
  return new PyMlirContext(context);
}

PyMlirContextRef PyMlirContext::forContext(MlirContext context) {
  py::gil_scoped_acquire acquire;
  auto &liveContexts = getLiveContexts();
  auto it = liveContexts.find(context.ptr);
  if (it == liveContexts.end()) {
    // Create.
    PyMlirContext *unownedContextWrapper = new PyMlirContext(context);
    py::object pyRef = py::cast(unownedContextWrapper);
    assert(pyRef && "cast to py::object failed");
    liveContexts[context.ptr] = unownedContextWrapper;
    return PyMlirContextRef(unownedContextWrapper, std::move(pyRef));
  }
  // Use existing.
  py::object pyRef = py::cast(it->second);
  return PyMlirContextRef(it->second, std::move(pyRef));
}

PyMlirContext::LiveContextMap &PyMlirContext::getLiveContexts() {
  static LiveContextMap liveContexts;
  return liveContexts;
}

size_t PyMlirContext::getLiveCount() { return getLiveContexts().size(); }

size_t PyMlirContext::getLiveOperationCount() { return liveOperations.size(); }

size_t PyMlirContext::getLiveModuleCount() { return liveModules.size(); }

pybind11::object PyMlirContext::contextEnter() {
  return PyThreadContextEntry::pushContext(*this);
}

void PyMlirContext::contextExit(pybind11::object excType,
                                pybind11::object excVal,
                                pybind11::object excTb) {
  PyThreadContextEntry::popContext(*this);
}

PyMlirContext &DefaultingPyMlirContext::resolve() {
  PyMlirContext *context = PyThreadContextEntry::getDefaultContext();
  if (!context) {
    throw SetPyError(
        PyExc_RuntimeError,
        "An MLIR function requires a Context but none was provided in the call "
        "or from the surrounding environment. Either pass to the function with "
        "a 'context=' argument or establish a default using 'with Context():'");
  }
  return *context;
}

//------------------------------------------------------------------------------
// PyThreadContextEntry management
//------------------------------------------------------------------------------

std::vector<PyThreadContextEntry> &PyThreadContextEntry::getStack() {
  static thread_local std::vector<PyThreadContextEntry> stack;
  return stack;
}

PyThreadContextEntry *PyThreadContextEntry::getTopOfStack() {
  auto &stack = getStack();
  if (stack.empty())
    return nullptr;
  return &stack.back();
}

void PyThreadContextEntry::push(FrameKind frameKind, py::object context,
                                py::object insertionPoint,
                                py::object location) {
  auto &stack = getStack();
  stack.emplace_back(frameKind, std::move(context), std::move(insertionPoint),
                     std::move(location));
  // If the new stack has more than one entry and the context of the new top
  // entry matches the previous, copy the insertionPoint and location from the
  // previous entry if missing from the new top entry.
  if (stack.size() > 1) {
    auto &prev = *(stack.rbegin() + 1);
    auto &current = stack.back();
    if (current.context.is(prev.context)) {
      // Default non-context objects from the previous entry.
      if (!current.insertionPoint)
        current.insertionPoint = prev.insertionPoint;
      if (!current.location)
        current.location = prev.location;
    }
  }
}

PyMlirContext *PyThreadContextEntry::getContext() {
  if (!context)
    return nullptr;
  return py::cast<PyMlirContext *>(context);
}

PyInsertionPoint *PyThreadContextEntry::getInsertionPoint() {
  if (!insertionPoint)
    return nullptr;
  return py::cast<PyInsertionPoint *>(insertionPoint);
}

PyLocation *PyThreadContextEntry::getLocation() {
  if (!location)
    return nullptr;
  return py::cast<PyLocation *>(location);
}

PyMlirContext *PyThreadContextEntry::getDefaultContext() {
  auto *tos = getTopOfStack();
  return tos ? tos->getContext() : nullptr;
}

PyInsertionPoint *PyThreadContextEntry::getDefaultInsertionPoint() {
  auto *tos = getTopOfStack();
  return tos ? tos->getInsertionPoint() : nullptr;
}

PyLocation *PyThreadContextEntry::getDefaultLocation() {
  auto *tos = getTopOfStack();
  return tos ? tos->getLocation() : nullptr;
}

py::object PyThreadContextEntry::pushContext(PyMlirContext &context) {
  py::object contextObj = py::cast(context);
  push(FrameKind::Context, /*context=*/contextObj,
       /*insertionPoint=*/py::object(),
       /*location=*/py::object());
  return contextObj;
}

void PyThreadContextEntry::popContext(PyMlirContext &context) {
  auto &stack = getStack();
  if (stack.empty())
    throw SetPyError(PyExc_RuntimeError, "Unbalanced Context enter/exit");
  auto &tos = stack.back();
  if (tos.frameKind != FrameKind::Context && tos.getContext() != &context)
    throw SetPyError(PyExc_RuntimeError, "Unbalanced Context enter/exit");
  stack.pop_back();
}

py::object
PyThreadContextEntry::pushInsertionPoint(PyInsertionPoint &insertionPoint) {
  py::object contextObj =
      insertionPoint.getBlock().getParentOperation()->getContext().getObject();
  py::object insertionPointObj = py::cast(insertionPoint);
  push(FrameKind::InsertionPoint,
       /*context=*/contextObj,
       /*insertionPoint=*/insertionPointObj,
       /*location=*/py::object());
  return insertionPointObj;
}

void PyThreadContextEntry::popInsertionPoint(PyInsertionPoint &insertionPoint) {
  auto &stack = getStack();
  if (stack.empty())
    throw SetPyError(PyExc_RuntimeError,
                     "Unbalanced InsertionPoint enter/exit");
  auto &tos = stack.back();
  if (tos.frameKind != FrameKind::InsertionPoint &&
      tos.getInsertionPoint() != &insertionPoint)
    throw SetPyError(PyExc_RuntimeError,
                     "Unbalanced InsertionPoint enter/exit");
  stack.pop_back();
}

py::object PyThreadContextEntry::pushLocation(PyLocation &location) {
  py::object contextObj = location.getContext().getObject();
  py::object locationObj = py::cast(location);
  push(FrameKind::Location, /*context=*/contextObj,
       /*insertionPoint=*/py::object(),
       /*location=*/locationObj);
  return locationObj;
}

void PyThreadContextEntry::popLocation(PyLocation &location) {
  auto &stack = getStack();
  if (stack.empty())
    throw SetPyError(PyExc_RuntimeError, "Unbalanced Location enter/exit");
  auto &tos = stack.back();
  if (tos.frameKind != FrameKind::Location && tos.getLocation() != &location)
    throw SetPyError(PyExc_RuntimeError, "Unbalanced Location enter/exit");
  stack.pop_back();
}

//------------------------------------------------------------------------------
// PyDialect, PyDialectDescriptor, PyDialects
//------------------------------------------------------------------------------

MlirDialect PyDialects::getDialectForKey(const std::string &key,
                                         bool attrError) {
  // If the "std" dialect was asked for, substitute the empty namespace :(
  static const std::string emptyKey;
  const std::string *canonKey = key == "std" ? &emptyKey : &key;
  MlirDialect dialect = mlirContextGetOrLoadDialect(
      getContext()->get(), {canonKey->data(), canonKey->size()});
  if (mlirDialectIsNull(dialect)) {
    throw SetPyError(attrError ? PyExc_AttributeError : PyExc_IndexError,
                     Twine("Dialect '") + key + "' not found");
  }
  return dialect;
}

//------------------------------------------------------------------------------
// PyLocation
//------------------------------------------------------------------------------

py::object PyLocation::getCapsule() {
  return py::reinterpret_steal<py::object>(mlirPythonLocationToCapsule(*this));
}

PyLocation PyLocation::createFromCapsule(py::object capsule) {
  MlirLocation rawLoc = mlirPythonCapsuleToLocation(capsule.ptr());
  if (mlirLocationIsNull(rawLoc))
    throw py::error_already_set();
  return PyLocation(PyMlirContext::forContext(mlirLocationGetContext(rawLoc)),
                    rawLoc);
}

py::object PyLocation::contextEnter() {
  return PyThreadContextEntry::pushLocation(*this);
}

void PyLocation::contextExit(py::object excType, py::object excVal,
                             py::object excTb) {
  PyThreadContextEntry::popLocation(*this);
}

PyLocation &DefaultingPyLocation::resolve() {
  auto *location = PyThreadContextEntry::getDefaultLocation();
  if (!location) {
    throw SetPyError(
        PyExc_RuntimeError,
        "An MLIR function requires a Location but none was provided in the "
        "call or from the surrounding environment. Either pass to the function "
        "with a 'loc=' argument or establish a default using 'with loc:'");
  }
  return *location;
}

//------------------------------------------------------------------------------
// PyModule
//------------------------------------------------------------------------------

PyModule::PyModule(PyMlirContextRef contextRef, MlirModule module)
    : BaseContextObject(std::move(contextRef)), module(module) {}

PyModule::~PyModule() {
  py::gil_scoped_acquire acquire;
  auto &liveModules = getContext()->liveModules;
  assert(liveModules.count(module.ptr) == 1 &&
         "destroying module not in live map");
  liveModules.erase(module.ptr);
  mlirModuleDestroy(module);
}

PyModuleRef PyModule::forModule(MlirModule module) {
  MlirContext context = mlirModuleGetContext(module);
  PyMlirContextRef contextRef = PyMlirContext::forContext(context);

  py::gil_scoped_acquire acquire;
  auto &liveModules = contextRef->liveModules;
  auto it = liveModules.find(module.ptr);
  if (it == liveModules.end()) {
    // Create.
    PyModule *unownedModule = new PyModule(std::move(contextRef), module);
    // Note that the default return value policy on cast is automatic_reference,
    // which does not take ownership (delete will not be called).
    // Just be explicit.
    py::object pyRef =
        py::cast(unownedModule, py::return_value_policy::take_ownership);
    unownedModule->handle = pyRef;
    liveModules[module.ptr] =
        std::make_pair(unownedModule->handle, unownedModule);
    return PyModuleRef(unownedModule, std::move(pyRef));
  }
  // Use existing.
  PyModule *existing = it->second.second;
  py::object pyRef = py::reinterpret_borrow<py::object>(it->second.first);
  return PyModuleRef(existing, std::move(pyRef));
}

py::object PyModule::createFromCapsule(py::object capsule) {
  MlirModule rawModule = mlirPythonCapsuleToModule(capsule.ptr());
  if (mlirModuleIsNull(rawModule))
    throw py::error_already_set();
  return forModule(rawModule).releaseObject();
}

py::object PyModule::getCapsule() {
  return py::reinterpret_steal<py::object>(mlirPythonModuleToCapsule(get()));
}

//------------------------------------------------------------------------------
// PyOperation
//------------------------------------------------------------------------------

PyOperation::PyOperation(PyMlirContextRef contextRef, MlirOperation operation)
    : BaseContextObject(std::move(contextRef)), operation(operation) {}

PyOperation::~PyOperation() {
  auto &liveOperations = getContext()->liveOperations;
  assert(liveOperations.count(operation.ptr) == 1 &&
         "destroying operation not in live map");
  liveOperations.erase(operation.ptr);
  if (!isAttached()) {
    mlirOperationDestroy(operation);
  }
}

PyOperationRef PyOperation::createInstance(PyMlirContextRef contextRef,
                                           MlirOperation operation,
                                           py::object parentKeepAlive) {
  auto &liveOperations = contextRef->liveOperations;
  // Create.
  PyOperation *unownedOperation =
      new PyOperation(std::move(contextRef), operation);
  // Note that the default return value policy on cast is automatic_reference,
  // which does not take ownership (delete will not be called).
  // Just be explicit.
  py::object pyRef =
      py::cast(unownedOperation, py::return_value_policy::take_ownership);
  unownedOperation->handle = pyRef;
  if (parentKeepAlive) {
    unownedOperation->parentKeepAlive = std::move(parentKeepAlive);
  }
  liveOperations[operation.ptr] = std::make_pair(pyRef, unownedOperation);
  return PyOperationRef(unownedOperation, std::move(pyRef));
}

PyOperationRef PyOperation::forOperation(PyMlirContextRef contextRef,
                                         MlirOperation operation,
                                         py::object parentKeepAlive) {
  auto &liveOperations = contextRef->liveOperations;
  auto it = liveOperations.find(operation.ptr);
  if (it == liveOperations.end()) {
    // Create.
    return createInstance(std::move(contextRef), operation,
                          std::move(parentKeepAlive));
  }
  // Use existing.
  PyOperation *existing = it->second.second;
  py::object pyRef = py::reinterpret_borrow<py::object>(it->second.first);
  return PyOperationRef(existing, std::move(pyRef));
}

PyOperationRef PyOperation::createDetached(PyMlirContextRef contextRef,
                                           MlirOperation operation,
                                           py::object parentKeepAlive) {
  auto &liveOperations = contextRef->liveOperations;
  assert(liveOperations.count(operation.ptr) == 0 &&
         "cannot create detached operation that already exists");
  (void)liveOperations;

  PyOperationRef created = createInstance(std::move(contextRef), operation,
                                          std::move(parentKeepAlive));
  created->attached = false;
  return created;
}

void PyOperation::checkValid() const {
  if (!valid) {
    throw SetPyError(PyExc_RuntimeError, "the operation has been invalidated");
  }
}

void PyOperationBase::print(py::object fileObject, bool binary,
                            llvm::Optional<int64_t> largeElementsLimit,
                            bool enableDebugInfo, bool prettyDebugInfo,
                            bool printGenericOpForm, bool useLocalScope) {
  PyOperation &operation = getOperation();
  operation.checkValid();
  if (fileObject.is_none())
    fileObject = py::module::import("sys").attr("stdout");

  if (!printGenericOpForm && !mlirOperationVerify(operation)) {
    fileObject.attr("write")("// Verification failed, printing generic form\n");
    printGenericOpForm = true;
  }

  MlirOpPrintingFlags flags = mlirOpPrintingFlagsCreate();
  if (largeElementsLimit)
    mlirOpPrintingFlagsElideLargeElementsAttrs(flags, *largeElementsLimit);
  if (enableDebugInfo)
    mlirOpPrintingFlagsEnableDebugInfo(flags, /*prettyForm=*/prettyDebugInfo);
  if (printGenericOpForm)
    mlirOpPrintingFlagsPrintGenericOpForm(flags);

  PyFileAccumulator accum(fileObject, binary);
  py::gil_scoped_release();
  mlirOperationPrintWithFlags(operation, flags, accum.getCallback(),
                              accum.getUserData());
  mlirOpPrintingFlagsDestroy(flags);
}

py::object PyOperationBase::getAsm(bool binary,
                                   llvm::Optional<int64_t> largeElementsLimit,
                                   bool enableDebugInfo, bool prettyDebugInfo,
                                   bool printGenericOpForm,
                                   bool useLocalScope) {
  py::object fileObject;
  if (binary) {
    fileObject = py::module::import("io").attr("BytesIO")();
  } else {
    fileObject = py::module::import("io").attr("StringIO")();
  }
  print(fileObject, /*binary=*/binary,
        /*largeElementsLimit=*/largeElementsLimit,
        /*enableDebugInfo=*/enableDebugInfo,
        /*prettyDebugInfo=*/prettyDebugInfo,
        /*printGenericOpForm=*/printGenericOpForm,
        /*useLocalScope=*/useLocalScope);

  return fileObject.attr("getvalue")();
}

PyOperationRef PyOperation::getParentOperation() {
  if (!isAttached())
    throw SetPyError(PyExc_ValueError, "Detached operations have no parent");
  MlirOperation operation = mlirOperationGetParentOperation(get());
  if (mlirOperationIsNull(operation))
    throw SetPyError(PyExc_ValueError, "Operation has no parent.");
  return PyOperation::forOperation(getContext(), operation);
}

PyBlock PyOperation::getBlock() {
  PyOperationRef parentOperation = getParentOperation();
  MlirBlock block = mlirOperationGetBlock(get());
  assert(!mlirBlockIsNull(block) && "Attached operation has null parent");
  return PyBlock{std::move(parentOperation), block};
}

py::object PyOperation::create(
    std::string name, llvm::Optional<std::vector<PyValue *>> operands,
    llvm::Optional<std::vector<PyType *>> results,
    llvm::Optional<py::dict> attributes,
    llvm::Optional<std::vector<PyBlock *>> successors, int regions,
    DefaultingPyLocation location, py::object maybeIp) {
  llvm::SmallVector<MlirValue, 4> mlirOperands;
  llvm::SmallVector<MlirType, 4> mlirResults;
  llvm::SmallVector<MlirBlock, 4> mlirSuccessors;
  llvm::SmallVector<std::pair<std::string, MlirAttribute>, 4> mlirAttributes;

  // General parameter validation.
  if (regions < 0)
    throw SetPyError(PyExc_ValueError, "number of regions must be >= 0");

  // Unpack/validate operands.
  if (operands) {
    mlirOperands.reserve(operands->size());
    for (PyValue *operand : *operands) {
      if (!operand)
        throw SetPyError(PyExc_ValueError, "operand value cannot be None");
      mlirOperands.push_back(operand->get());
    }
  }

  // Unpack/validate results.
  if (results) {
    mlirResults.reserve(results->size());
    for (PyType *result : *results) {
      // TODO: Verify result type originate from the same context.
      if (!result)
        throw SetPyError(PyExc_ValueError, "result type cannot be None");
      mlirResults.push_back(*result);
    }
  }
  // Unpack/validate attributes.
  if (attributes) {
    mlirAttributes.reserve(attributes->size());
    for (auto &it : *attributes) {
      std::string key;
      try {
        key = it.first.cast<std::string>();
      } catch (py::cast_error &err) {
        std::string msg = "Invalid attribute key (not a string) when "
                          "attempting to create the operation \"" +
                          name + "\" (" + err.what() + ")";
        throw py::cast_error(msg);
      }
      try {
        auto &attribute = it.second.cast<PyAttribute &>();
        // TODO: Verify attribute originates from the same context.
        mlirAttributes.emplace_back(std::move(key), attribute);
      } catch (py::reference_cast_error &) {
        // This exception seems thrown when the value is "None".
        std::string msg =
            "Found an invalid (`None`?) attribute value for the key \"" + key +
            "\" when attempting to create the operation \"" + name + "\"";
        throw py::cast_error(msg);
      } catch (py::cast_error &err) {
        std::string msg = "Invalid attribute value for the key \"" + key +
                          "\" when attempting to create the operation \"" +
                          name + "\" (" + err.what() + ")";
        throw py::cast_error(msg);
      }
    }
  }
  // Unpack/validate successors.
  if (successors) {
    llvm::SmallVector<MlirBlock, 4> mlirSuccessors;
    mlirSuccessors.reserve(successors->size());
    for (auto *successor : *successors) {
      // TODO: Verify successor originate from the same context.
      if (!successor)
        throw SetPyError(PyExc_ValueError, "successor block cannot be None");
      mlirSuccessors.push_back(successor->get());
    }
  }

  // Apply unpacked/validated to the operation state. Beyond this
  // point, exceptions cannot be thrown or else the state will leak.
  MlirOperationState state =
      mlirOperationStateGet(toMlirStringRef(name), location);
  if (!mlirOperands.empty())
    mlirOperationStateAddOperands(&state, mlirOperands.size(),
                                  mlirOperands.data());
  if (!mlirResults.empty())
    mlirOperationStateAddResults(&state, mlirResults.size(),
                                 mlirResults.data());
  if (!mlirAttributes.empty()) {
    // Note that the attribute names directly reference bytes in
    // mlirAttributes, so that vector must not be changed from here
    // on.
    llvm::SmallVector<MlirNamedAttribute, 4> mlirNamedAttributes;
    mlirNamedAttributes.reserve(mlirAttributes.size());
    for (auto &it : mlirAttributes)
      mlirNamedAttributes.push_back(
          mlirNamedAttributeGet(toMlirStringRef(it.first), it.second));
    mlirOperationStateAddAttributes(&state, mlirNamedAttributes.size(),
                                    mlirNamedAttributes.data());
  }
  if (!mlirSuccessors.empty())
    mlirOperationStateAddSuccessors(&state, mlirSuccessors.size(),
                                    mlirSuccessors.data());
  if (regions) {
    llvm::SmallVector<MlirRegion, 4> mlirRegions;
    mlirRegions.resize(regions);
    for (int i = 0; i < regions; ++i)
      mlirRegions[i] = mlirRegionCreate();
    mlirOperationStateAddOwnedRegions(&state, mlirRegions.size(),
                                      mlirRegions.data());
  }

  // Construct the operation.
  MlirOperation operation = mlirOperationCreate(&state);
  PyOperationRef created =
      PyOperation::createDetached(location->getContext(), operation);

  // InsertPoint active?
  if (!maybeIp.is(py::cast(false))) {
    PyInsertionPoint *ip;
    if (maybeIp.is_none()) {
      ip = PyThreadContextEntry::getDefaultInsertionPoint();
    } else {
      ip = py::cast<PyInsertionPoint *>(maybeIp);
    }
    if (ip)
      ip->insert(*created.get());
  }

  return created->createOpView();
}

py::object PyOperation::createOpView() {
  MlirIdentifier ident = mlirOperationGetName(get());
  MlirStringRef identStr = mlirIdentifierStr(ident);
  auto opViewClass = PyGlobals::get().lookupRawOpViewClass(
      StringRef(identStr.data, identStr.length));
  if (opViewClass)
    return (*opViewClass)(getRef().getObject());
  return py::cast(PyOpView(getRef().getObject()));
}

PyOpView::PyOpView(py::object operationObject)
    // Casting through the PyOperationBase base-class and then back to the
    // Operation lets us accept any PyOperationBase subclass.
    : operation(py::cast<PyOperationBase &>(operationObject).getOperation()),
      operationObject(operation.getRef().getObject()) {}

py::object PyOpView::createRawSubclass(py::object userClass) {
  // This is... a little gross. The typical pattern is to have a pure python
  // class that extends OpView like:
  //   class AddFOp(_cext.ir.OpView):
  //     def __init__(self, loc, lhs, rhs):
  //       operation = loc.context.create_operation(
  //           "addf", lhs, rhs, results=[lhs.type])
  //       super().__init__(operation)
  //
  // I.e. The goal of the user facing type is to provide a nice constructor
  // that has complete freedom for the op under construction. This is at odds
  // with our other desire to sometimes create this object by just passing an
  // operation (to initialize the base class). We could do *arg and **kwargs
  // munging to try to make it work, but instead, we synthesize a new class
  // on the fly which extends this user class (AddFOp in this example) and
  // *give it* the base class's __init__ method, thus bypassing the
  // intermediate subclass's __init__ method entirely. While slightly,
  // underhanded, this is safe/legal because the type hierarchy has not changed
  // (we just added a new leaf) and we aren't mucking around with __new__.
  // Typically, this new class will be stored on the original as "_Raw" and will
  // be used for casts and other things that need a variant of the class that
  // is initialized purely from an operation.
  py::object parentMetaclass =
      py::reinterpret_borrow<py::object>((PyObject *)&PyType_Type);
  py::dict attributes;
  // TODO: pybind11 2.6 supports a more direct form. Upgrade many years from
  // now.
  //   auto opViewType = py::type::of<PyOpView>();
  auto opViewType = py::detail::get_type_handle(typeid(PyOpView), true);
  attributes["__init__"] = opViewType.attr("__init__");
  py::str origName = userClass.attr("__name__");
  py::str newName = py::str("_") + origName;
  return parentMetaclass(newName, py::make_tuple(userClass), attributes);
}

//------------------------------------------------------------------------------
// PyInsertionPoint.
//------------------------------------------------------------------------------

PyInsertionPoint::PyInsertionPoint(PyBlock &block) : block(block) {}

PyInsertionPoint::PyInsertionPoint(PyOperationBase &beforeOperationBase)
    : refOperation(beforeOperationBase.getOperation().getRef()),
      block((*refOperation)->getBlock()) {}

void PyInsertionPoint::insert(PyOperationBase &operationBase) {
  PyOperation &operation = operationBase.getOperation();
  if (operation.isAttached())
    throw SetPyError(PyExc_ValueError,
                     "Attempt to insert operation that is already attached");
  block.getParentOperation()->checkValid();
  MlirOperation beforeOp = {nullptr};
  if (refOperation) {
    // Insert before operation.
    (*refOperation)->checkValid();
    beforeOp = (*refOperation)->get();
  }
  mlirBlockInsertOwnedOperationBefore(block.get(), beforeOp, operation);
  operation.setAttached();
}

PyInsertionPoint PyInsertionPoint::atBlockBegin(PyBlock &block) {
  MlirOperation firstOp = mlirBlockGetFirstOperation(block.get());
  if (mlirOperationIsNull(firstOp)) {
    // Just insert at end.
    return PyInsertionPoint(block);
  }

  // Insert before first op.
  PyOperationRef firstOpRef = PyOperation::forOperation(
      block.getParentOperation()->getContext(), firstOp);
  return PyInsertionPoint{block, std::move(firstOpRef)};
}

PyInsertionPoint PyInsertionPoint::atBlockTerminator(PyBlock &block) {
  MlirOperation terminator = mlirBlockGetTerminator(block.get());
  if (mlirOperationIsNull(terminator))
    throw SetPyError(PyExc_ValueError, "Block has no terminator");
  PyOperationRef terminatorOpRef = PyOperation::forOperation(
      block.getParentOperation()->getContext(), terminator);
  return PyInsertionPoint{block, std::move(terminatorOpRef)};
}

py::object PyInsertionPoint::contextEnter() {
  return PyThreadContextEntry::pushInsertionPoint(*this);
}

void PyInsertionPoint::contextExit(pybind11::object excType,
                                   pybind11::object excVal,
                                   pybind11::object excTb) {
  PyThreadContextEntry::popInsertionPoint(*this);
}

//------------------------------------------------------------------------------
// PyAttribute.
//------------------------------------------------------------------------------

bool PyAttribute::operator==(const PyAttribute &other) {
  return mlirAttributeEqual(attr, other.attr);
}

py::object PyAttribute::getCapsule() {
  return py::reinterpret_steal<py::object>(mlirPythonAttributeToCapsule(*this));
}

PyAttribute PyAttribute::createFromCapsule(py::object capsule) {
  MlirAttribute rawAttr = mlirPythonCapsuleToAttribute(capsule.ptr());
  if (mlirAttributeIsNull(rawAttr))
    throw py::error_already_set();
  return PyAttribute(
      PyMlirContext::forContext(mlirAttributeGetContext(rawAttr)), rawAttr);
}

//------------------------------------------------------------------------------
// PyNamedAttribute.
//------------------------------------------------------------------------------

PyNamedAttribute::PyNamedAttribute(MlirAttribute attr, std::string ownedName)
    : ownedName(new std::string(std::move(ownedName))) {
  namedAttr = mlirNamedAttributeGet(toMlirStringRef(*this->ownedName), attr);
}

//------------------------------------------------------------------------------
// PyType.
//------------------------------------------------------------------------------

bool PyType::operator==(const PyType &other) {
  return mlirTypeEqual(type, other.type);
}

py::object PyType::getCapsule() {
  return py::reinterpret_steal<py::object>(mlirPythonTypeToCapsule(*this));
}

PyType PyType::createFromCapsule(py::object capsule) {
  MlirType rawType = mlirPythonCapsuleToType(capsule.ptr());
  if (mlirTypeIsNull(rawType))
    throw py::error_already_set();
  return PyType(PyMlirContext::forContext(mlirTypeGetContext(rawType)),
                rawType);
}

//------------------------------------------------------------------------------
// PyValue and subclases.
//------------------------------------------------------------------------------

namespace {
/// CRTP base class for Python MLIR values that subclass Value and should be
/// castable from it. The value hierarchy is one level deep and is not supposed
/// to accommodate other levels unless core MLIR changes.
template <typename DerivedTy>
class PyConcreteValue : public PyValue {
public:
  // Derived classes must define statics for:
  //   IsAFunctionTy isaFunction
  //   const char *pyClassName
  // and redefine bindDerived.
  using ClassTy = py::class_<DerivedTy, PyValue>;
  using IsAFunctionTy = bool (*)(MlirValue);

  PyConcreteValue() = default;
  PyConcreteValue(PyOperationRef operationRef, MlirValue value)
      : PyValue(operationRef, value) {}
  PyConcreteValue(PyValue &orig)
      : PyConcreteValue(orig.getParentOperation(), castFrom(orig)) {}

  /// Attempts to cast the original value to the derived type and throws on
  /// type mismatches.
  static MlirValue castFrom(PyValue &orig) {
    if (!DerivedTy::isaFunction(orig.get())) {
      auto origRepr = py::repr(py::cast(orig)).cast<std::string>();
      throw SetPyError(PyExc_ValueError, Twine("Cannot cast value to ") +
                                             DerivedTy::pyClassName +
                                             " (from " + origRepr + ")");
    }
    return orig.get();
  }

  /// Binds the Python module objects to functions of this class.
  static void bind(py::module &m) {
    auto cls = ClassTy(m, DerivedTy::pyClassName);
    cls.def(py::init<PyValue &>(), py::keep_alive<0, 1>());
    DerivedTy::bindDerived(cls);
  }

  /// Implemented by derived classes to add methods to the Python subclass.
  static void bindDerived(ClassTy &m) {}
};

/// Python wrapper for MlirBlockArgument.
class PyBlockArgument : public PyConcreteValue<PyBlockArgument> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirValueIsABlockArgument;
  static constexpr const char *pyClassName = "BlockArgument";
  using PyConcreteValue::PyConcreteValue;

  static void bindDerived(ClassTy &c) {
    c.def_property_readonly("owner", [](PyBlockArgument &self) {
      return PyBlock(self.getParentOperation(),
                     mlirBlockArgumentGetOwner(self.get()));
    });
    c.def_property_readonly("arg_number", [](PyBlockArgument &self) {
      return mlirBlockArgumentGetArgNumber(self.get());
    });
    c.def("set_type", [](PyBlockArgument &self, PyType type) {
      return mlirBlockArgumentSetType(self.get(), type);
    });
  }
};

/// Python wrapper for MlirOpResult.
class PyOpResult : public PyConcreteValue<PyOpResult> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirValueIsAOpResult;
  static constexpr const char *pyClassName = "OpResult";
  using PyConcreteValue::PyConcreteValue;

  static void bindDerived(ClassTy &c) {
    c.def_property_readonly("owner", [](PyOpResult &self) {
      assert(
          mlirOperationEqual(self.getParentOperation()->get(),
                             mlirOpResultGetOwner(self.get())) &&
          "expected the owner of the value in Python to match that in the IR");
      return self.getParentOperation();
    });
    c.def_property_readonly("result_number", [](PyOpResult &self) {
      return mlirOpResultGetResultNumber(self.get());
    });
  }
};

/// A list of block arguments. Internally, these are stored as consecutive
/// elements, random access is cheap. The argument list is associated with the
/// operation that contains the block (detached blocks are not allowed in
/// Python bindings) and extends its lifetime.
class PyBlockArgumentList {
public:
  PyBlockArgumentList(PyOperationRef operation, MlirBlock block)
      : operation(std::move(operation)), block(block) {}

  /// Returns the length of the block argument list.
  intptr_t dunderLen() {
    operation->checkValid();
    return mlirBlockGetNumArguments(block);
  }

  /// Returns `index`-th element of the block argument list.
  PyBlockArgument dunderGetItem(intptr_t index) {
    if (index < 0 || index >= dunderLen()) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds region");
    }
    PyValue value(operation, mlirBlockGetArgument(block, index));
    return PyBlockArgument(value);
  }

  /// Defines a Python class in the bindings.
  static void bind(py::module &m) {
    py::class_<PyBlockArgumentList>(m, "BlockArgumentList")
        .def("__len__", &PyBlockArgumentList::dunderLen)
        .def("__getitem__", &PyBlockArgumentList::dunderGetItem);
  }

private:
  PyOperationRef operation;
  MlirBlock block;
};

/// A list of operation operands. Internally, these are stored as consecutive
/// elements, random access is cheap. The result list is associated with the
/// operation whose results these are, and extends the lifetime of this
/// operation.
class PyOpOperandList : public Sliceable<PyOpOperandList, PyValue> {
public:
  static constexpr const char *pyClassName = "OpOperandList";

  PyOpOperandList(PyOperationRef operation, intptr_t startIndex = 0,
                  intptr_t length = -1, intptr_t step = 1)
      : Sliceable(startIndex,
                  length == -1 ? mlirOperationGetNumOperands(operation->get())
                               : length,
                  step),
        operation(operation) {}

  intptr_t getNumElements() {
    operation->checkValid();
    return mlirOperationGetNumOperands(operation->get());
  }

  PyValue getElement(intptr_t pos) {
    return PyValue(operation, mlirOperationGetOperand(operation->get(), pos));
  }

  PyOpOperandList slice(intptr_t startIndex, intptr_t length, intptr_t step) {
    return PyOpOperandList(operation, startIndex, length, step);
  }

private:
  PyOperationRef operation;
};

/// A list of operation results. Internally, these are stored as consecutive
/// elements, random access is cheap. The result list is associated with the
/// operation whose results these are, and extends the lifetime of this
/// operation.
class PyOpResultList : public Sliceable<PyOpResultList, PyOpResult> {
public:
  static constexpr const char *pyClassName = "OpResultList";

  PyOpResultList(PyOperationRef operation, intptr_t startIndex = 0,
                 intptr_t length = -1, intptr_t step = 1)
      : Sliceable(startIndex,
                  length == -1 ? mlirOperationGetNumResults(operation->get())
                               : length,
                  step),
        operation(operation) {}

  intptr_t getNumElements() {
    operation->checkValid();
    return mlirOperationGetNumResults(operation->get());
  }

  PyOpResult getElement(intptr_t index) {
    PyValue value(operation, mlirOperationGetResult(operation->get(), index));
    return PyOpResult(value);
  }

  PyOpResultList slice(intptr_t startIndex, intptr_t length, intptr_t step) {
    return PyOpResultList(operation, startIndex, length, step);
  }

private:
  PyOperationRef operation;
};

/// A list of operation attributes. Can be indexed by name, producing
/// attributes, or by index, producing named attributes.
class PyOpAttributeMap {
public:
  PyOpAttributeMap(PyOperationRef operation) : operation(operation) {}

  PyAttribute dunderGetItemNamed(const std::string &name) {
    MlirAttribute attr = mlirOperationGetAttributeByName(operation->get(),
                                                         toMlirStringRef(name));
    if (mlirAttributeIsNull(attr)) {
      throw SetPyError(PyExc_KeyError,
                       "attempt to access a non-existent attribute");
    }
    return PyAttribute(operation->getContext(), attr);
  }

  PyNamedAttribute dunderGetItemIndexed(intptr_t index) {
    if (index < 0 || index >= dunderLen()) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds attribute");
    }
    MlirNamedAttribute namedAttr =
        mlirOperationGetAttribute(operation->get(), index);
    return PyNamedAttribute(namedAttr.attribute,
                            std::string(namedAttr.name.data));
  }

  void dunderSetItem(const std::string &name, PyAttribute attr) {
    mlirOperationSetAttributeByName(operation->get(), toMlirStringRef(name),
                                    attr);
  }

  void dunderDelItem(const std::string &name) {
    int removed = mlirOperationRemoveAttributeByName(operation->get(),
                                                     toMlirStringRef(name));
    if (!removed)
      throw SetPyError(PyExc_KeyError,
                       "attempt to delete a non-existent attribute");
  }

  intptr_t dunderLen() {
    return mlirOperationGetNumAttributes(operation->get());
  }

  bool dunderContains(const std::string &name) {
    return !mlirAttributeIsNull(mlirOperationGetAttributeByName(
        operation->get(), toMlirStringRef(name)));
  }

  static void bind(py::module &m) {
    py::class_<PyOpAttributeMap>(m, "OpAttributeMap")
        .def("__contains__", &PyOpAttributeMap::dunderContains)
        .def("__len__", &PyOpAttributeMap::dunderLen)
        .def("__getitem__", &PyOpAttributeMap::dunderGetItemNamed)
        .def("__getitem__", &PyOpAttributeMap::dunderGetItemIndexed)
        .def("__setitem__", &PyOpAttributeMap::dunderSetItem)
        .def("__delitem__", &PyOpAttributeMap::dunderDelItem);
  }

private:
  PyOperationRef operation;
};

} // end namespace

//------------------------------------------------------------------------------
// Builtin attribute subclasses.
//------------------------------------------------------------------------------

namespace {

/// CRTP base classes for Python attributes that subclass Attribute and should
/// be castable from it (i.e. via something like StringAttr(attr)).
/// By default, attribute class hierarchies are one level deep (i.e. a
/// concrete attribute class extends PyAttribute); however, intermediate
/// python-visible base classes can be modeled by specifying a BaseTy.
template <typename DerivedTy, typename BaseTy = PyAttribute>
class PyConcreteAttribute : public BaseTy {
public:
  // Derived classes must define statics for:
  //   IsAFunctionTy isaFunction
  //   const char *pyClassName
  using ClassTy = py::class_<DerivedTy, BaseTy>;
  using IsAFunctionTy = bool (*)(MlirAttribute);

  PyConcreteAttribute() = default;
  PyConcreteAttribute(PyMlirContextRef contextRef, MlirAttribute attr)
      : BaseTy(std::move(contextRef), attr) {}
  PyConcreteAttribute(PyAttribute &orig)
      : PyConcreteAttribute(orig.getContext(), castFrom(orig)) {}

  static MlirAttribute castFrom(PyAttribute &orig) {
    if (!DerivedTy::isaFunction(orig)) {
      auto origRepr = py::repr(py::cast(orig)).cast<std::string>();
      throw SetPyError(PyExc_ValueError, Twine("Cannot cast attribute to ") +
                                             DerivedTy::pyClassName +
                                             " (from " + origRepr + ")");
    }
    return orig;
  }

  static void bind(py::module &m) {
    auto cls = ClassTy(m, DerivedTy::pyClassName, py::buffer_protocol());
    cls.def(py::init<PyAttribute &>(), py::keep_alive<0, 1>());
    DerivedTy::bindDerived(cls);
  }

  /// Implemented by derived classes to add methods to the Python subclass.
  static void bindDerived(ClassTy &m) {}
};

/// Float Point Attribute subclass - FloatAttr.
class PyFloatAttribute : public PyConcreteAttribute<PyFloatAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAFloat;
  static constexpr const char *pyClassName = "FloatAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](PyType &type, double value, DefaultingPyLocation loc) {
          MlirAttribute attr = mlirFloatAttrDoubleGetChecked(type, value, loc);
          // TODO: Rework error reporting once diagnostic engine is exposed
          // in C API.
          if (mlirAttributeIsNull(attr)) {
            throw SetPyError(PyExc_ValueError,
                             Twine("invalid '") +
                                 py::repr(py::cast(type)).cast<std::string>() +
                                 "' and expected floating point type.");
          }
          return PyFloatAttribute(type.getContext(), attr);
        },
        py::arg("type"), py::arg("value"), py::arg("loc") = py::none(),
        "Gets an uniqued float point attribute associated to a type");
    c.def_static(
        "get_f32",
        [](double value, DefaultingPyMlirContext context) {
          MlirAttribute attr = mlirFloatAttrDoubleGet(
              context->get(), mlirF32TypeGet(context->get()), value);
          return PyFloatAttribute(context->getRef(), attr);
        },
        py::arg("value"), py::arg("context") = py::none(),
        "Gets an uniqued float point attribute associated to a f32 type");
    c.def_static(
        "get_f64",
        [](double value, DefaultingPyMlirContext context) {
          MlirAttribute attr = mlirFloatAttrDoubleGet(
              context->get(), mlirF64TypeGet(context->get()), value);
          return PyFloatAttribute(context->getRef(), attr);
        },
        py::arg("value"), py::arg("context") = py::none(),
        "Gets an uniqued float point attribute associated to a f64 type");
    c.def_property_readonly(
        "value",
        [](PyFloatAttribute &self) {
          return mlirFloatAttrGetValueDouble(self);
        },
        "Returns the value of the float point attribute");
  }
};

/// Integer Attribute subclass - IntegerAttr.
class PyIntegerAttribute : public PyConcreteAttribute<PyIntegerAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAInteger;
  static constexpr const char *pyClassName = "IntegerAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](PyType &type, int64_t value) {
          MlirAttribute attr = mlirIntegerAttrGet(type, value);
          return PyIntegerAttribute(type.getContext(), attr);
        },
        py::arg("type"), py::arg("value"),
        "Gets an uniqued integer attribute associated to a type");
    c.def_property_readonly(
        "value",
        [](PyIntegerAttribute &self) {
          return mlirIntegerAttrGetValueInt(self);
        },
        "Returns the value of the integer attribute");
  }
};

/// Bool Attribute subclass - BoolAttr.
class PyBoolAttribute : public PyConcreteAttribute<PyBoolAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsABool;
  static constexpr const char *pyClassName = "BoolAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](bool value, DefaultingPyMlirContext context) {
          MlirAttribute attr = mlirBoolAttrGet(context->get(), value);
          return PyBoolAttribute(context->getRef(), attr);
        },
        py::arg("value"), py::arg("context") = py::none(),
        "Gets an uniqued bool attribute");
    c.def_property_readonly(
        "value",
        [](PyBoolAttribute &self) { return mlirBoolAttrGetValue(self); },
        "Returns the value of the bool attribute");
  }
};

class PyStringAttribute : public PyConcreteAttribute<PyStringAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAString;
  static constexpr const char *pyClassName = "StringAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](std::string value, DefaultingPyMlirContext context) {
          MlirAttribute attr =
              mlirStringAttrGet(context->get(), value.size(), &value[0]);
          return PyStringAttribute(context->getRef(), attr);
        },
        py::arg("value"), py::arg("context") = py::none(),
        "Gets a uniqued string attribute");
    c.def_static(
        "get_typed",
        [](PyType &type, std::string value) {
          MlirAttribute attr =
              mlirStringAttrTypedGet(type, value.size(), &value[0]);
          return PyStringAttribute(type.getContext(), attr);
        },

        "Gets a uniqued string attribute associated to a type");
    c.def_property_readonly(
        "value",
        [](PyStringAttribute &self) {
          MlirStringRef stringRef = mlirStringAttrGetValue(self);
          return py::str(stringRef.data, stringRef.length);
        },
        "Returns the value of the string attribute");
  }
};

// TODO: Support construction of bool elements.
// TODO: Support construction of string elements.
class PyDenseElementsAttribute
    : public PyConcreteAttribute<PyDenseElementsAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseElements;
  static constexpr const char *pyClassName = "DenseElementsAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static PyDenseElementsAttribute
  getFromBuffer(py::buffer array, bool signless,
                DefaultingPyMlirContext contextWrapper) {
    // Request a contiguous view. In exotic cases, this will cause a copy.
    int flags = PyBUF_C_CONTIGUOUS | PyBUF_FORMAT;
    Py_buffer *view = new Py_buffer();
    if (PyObject_GetBuffer(array.ptr(), view, flags) != 0) {
      delete view;
      throw py::error_already_set();
    }
    py::buffer_info arrayInfo(view);

    MlirContext context = contextWrapper->get();
    // Switch on the types that can be bulk loaded between the Python and
    // MLIR-C APIs.
    // See: https://docs.python.org/3/library/struct.html#format-characters
    if (arrayInfo.format == "f") {
      // f32
      assert(arrayInfo.itemsize == 4 && "mismatched array itemsize");
      return PyDenseElementsAttribute(
          contextWrapper->getRef(),
          bulkLoad(context, mlirDenseElementsAttrFloatGet,
                   mlirF32TypeGet(context), arrayInfo));
    } else if (arrayInfo.format == "d") {
      // f64
      assert(arrayInfo.itemsize == 8 && "mismatched array itemsize");
      return PyDenseElementsAttribute(
          contextWrapper->getRef(),
          bulkLoad(context, mlirDenseElementsAttrDoubleGet,
                   mlirF64TypeGet(context), arrayInfo));
    } else if (isSignedIntegerFormat(arrayInfo.format)) {
      if (arrayInfo.itemsize == 4) {
        // i32
        MlirType elementType = signless ? mlirIntegerTypeGet(context, 32)
                                        : mlirIntegerTypeSignedGet(context, 32);
        return PyDenseElementsAttribute(contextWrapper->getRef(),
                                        bulkLoad(context,
                                                 mlirDenseElementsAttrInt32Get,
                                                 elementType, arrayInfo));
      } else if (arrayInfo.itemsize == 8) {
        // i64
        MlirType elementType = signless ? mlirIntegerTypeGet(context, 64)
                                        : mlirIntegerTypeSignedGet(context, 64);
        return PyDenseElementsAttribute(contextWrapper->getRef(),
                                        bulkLoad(context,
                                                 mlirDenseElementsAttrInt64Get,
                                                 elementType, arrayInfo));
      }
    } else if (isUnsignedIntegerFormat(arrayInfo.format)) {
      if (arrayInfo.itemsize == 4) {
        // unsigned i32
        MlirType elementType = signless
                                   ? mlirIntegerTypeGet(context, 32)
                                   : mlirIntegerTypeUnsignedGet(context, 32);
        return PyDenseElementsAttribute(contextWrapper->getRef(),
                                        bulkLoad(context,
                                                 mlirDenseElementsAttrUInt32Get,
                                                 elementType, arrayInfo));
      } else if (arrayInfo.itemsize == 8) {
        // unsigned i64
        MlirType elementType = signless
                                   ? mlirIntegerTypeGet(context, 64)
                                   : mlirIntegerTypeUnsignedGet(context, 64);
        return PyDenseElementsAttribute(contextWrapper->getRef(),
                                        bulkLoad(context,
                                                 mlirDenseElementsAttrUInt64Get,
                                                 elementType, arrayInfo));
      }
    }

    // TODO: Fall back to string-based get.
    std::string message = "unimplemented array format conversion from format: ";
    message.append(arrayInfo.format);
    throw SetPyError(PyExc_ValueError, message);
  }

  static PyDenseElementsAttribute getSplat(PyType shapedType,
                                           PyAttribute &elementAttr) {
    auto contextWrapper =
        PyMlirContext::forContext(mlirTypeGetContext(shapedType));
    if (!mlirAttributeIsAInteger(elementAttr) &&
        !mlirAttributeIsAFloat(elementAttr)) {
      std::string message = "Illegal element type for DenseElementsAttr: ";
      message.append(py::repr(py::cast(elementAttr)));
      throw SetPyError(PyExc_ValueError, message);
    }
    if (!mlirTypeIsAShaped(shapedType) ||
        !mlirShapedTypeHasStaticShape(shapedType)) {
      std::string message =
          "Expected a static ShapedType for the shaped_type parameter: ";
      message.append(py::repr(py::cast(shapedType)));
      throw SetPyError(PyExc_ValueError, message);
    }
    MlirType shapedElementType = mlirShapedTypeGetElementType(shapedType);
    MlirType attrType = mlirAttributeGetType(elementAttr);
    if (!mlirTypeEqual(shapedElementType, attrType)) {
      std::string message =
          "Shaped element type and attribute type must be equal: shaped=";
      message.append(py::repr(py::cast(shapedType)));
      message.append(", element=");
      message.append(py::repr(py::cast(elementAttr)));
      throw SetPyError(PyExc_ValueError, message);
    }

    MlirAttribute elements =
        mlirDenseElementsAttrSplatGet(shapedType, elementAttr);
    return PyDenseElementsAttribute(contextWrapper->getRef(), elements);
  }

  intptr_t dunderLen() { return mlirElementsAttrGetNumElements(*this); }

  py::buffer_info accessBuffer() {
    MlirType shapedType = mlirAttributeGetType(*this);
    MlirType elementType = mlirShapedTypeGetElementType(shapedType);

    if (mlirTypeIsAF32(elementType)) {
      // f32
      return bufferInfo(shapedType, mlirDenseElementsAttrGetFloatValue);
    } else if (mlirTypeIsAF64(elementType)) {
      // f64
      return bufferInfo(shapedType, mlirDenseElementsAttrGetDoubleValue);
    } else if (mlirTypeIsAInteger(elementType) &&
               mlirIntegerTypeGetWidth(elementType) == 32) {
      if (mlirIntegerTypeIsSignless(elementType) ||
          mlirIntegerTypeIsSigned(elementType)) {
        // i32
        return bufferInfo(shapedType, mlirDenseElementsAttrGetInt32Value);
      } else if (mlirIntegerTypeIsUnsigned(elementType)) {
        // unsigned i32
        return bufferInfo(shapedType, mlirDenseElementsAttrGetUInt32Value);
      }
    } else if (mlirTypeIsAInteger(elementType) &&
               mlirIntegerTypeGetWidth(elementType) == 64) {
      if (mlirIntegerTypeIsSignless(elementType) ||
          mlirIntegerTypeIsSigned(elementType)) {
        // i64
        return bufferInfo(shapedType, mlirDenseElementsAttrGetInt64Value);
      } else if (mlirIntegerTypeIsUnsigned(elementType)) {
        // unsigned i64
        return bufferInfo(shapedType, mlirDenseElementsAttrGetUInt64Value);
      }
    }

    std::string message = "unimplemented array format.";
    throw SetPyError(PyExc_ValueError, message);
  }

  static void bindDerived(ClassTy &c) {
    c.def("__len__", &PyDenseElementsAttribute::dunderLen)
        .def_static("get", PyDenseElementsAttribute::getFromBuffer,
                    py::arg("array"), py::arg("signless") = true,
                    py::arg("context") = py::none(),
                    "Gets from a buffer or ndarray")
        .def_static("get_splat", PyDenseElementsAttribute::getSplat,
                    py::arg("shaped_type"), py::arg("element_attr"),
                    "Gets a DenseElementsAttr where all values are the same")
        .def_property_readonly("is_splat",
                               [](PyDenseElementsAttribute &self) -> bool {
                                 return mlirDenseElementsAttrIsSplat(self);
                               })
        .def_buffer(&PyDenseElementsAttribute::accessBuffer);
  }

private:
  template <typename ElementTy>
  static MlirAttribute
  bulkLoad(MlirContext context,
           MlirAttribute (*ctor)(MlirType, intptr_t, ElementTy *),
           MlirType mlirElementType, py::buffer_info &arrayInfo) {
    SmallVector<int64_t, 4> shape(arrayInfo.shape.begin(),
                                  arrayInfo.shape.begin() + arrayInfo.ndim);
    auto shapedType =
        mlirRankedTensorTypeGet(shape.size(), shape.data(), mlirElementType);
    intptr_t numElements = arrayInfo.size;
    const ElementTy *contents = static_cast<const ElementTy *>(arrayInfo.ptr);
    return ctor(shapedType, numElements, contents);
  }

  static bool isUnsignedIntegerFormat(const std::string &format) {
    if (format.empty())
      return false;
    char code = format[0];
    return code == 'I' || code == 'B' || code == 'H' || code == 'L' ||
           code == 'Q';
  }

  static bool isSignedIntegerFormat(const std::string &format) {
    if (format.empty())
      return false;
    char code = format[0];
    return code == 'i' || code == 'b' || code == 'h' || code == 'l' ||
           code == 'q';
  }

  template <typename Type>
  py::buffer_info bufferInfo(MlirType shapedType,
                             Type (*value)(MlirAttribute, intptr_t)) {
    intptr_t rank = mlirShapedTypeGetRank(shapedType);
    // Prepare the data for the buffer_info.
    // Buffer is configured for read-only access below.
    Type *data = static_cast<Type *>(
        const_cast<void *>(mlirDenseElementsAttrGetRawData(*this)));
    // Prepare the shape for the buffer_info.
    SmallVector<intptr_t, 4> shape;
    for (intptr_t i = 0; i < rank; ++i)
      shape.push_back(mlirShapedTypeGetDimSize(shapedType, i));
    // Prepare the strides for the buffer_info.
    SmallVector<intptr_t, 4> strides;
    intptr_t strideFactor = 1;
    for (intptr_t i = 1; i < rank; ++i) {
      strideFactor = 1;
      for (intptr_t j = i; j < rank; ++j) {
        strideFactor *= mlirShapedTypeGetDimSize(shapedType, j);
      }
      strides.push_back(sizeof(Type) * strideFactor);
    }
    strides.push_back(sizeof(Type));
    return py::buffer_info(data, sizeof(Type),
                           py::format_descriptor<Type>::format(), rank, shape,
                           strides, /*readonly=*/true);
  }
}; // namespace

/// Refinement of the PyDenseElementsAttribute for attributes containing integer
/// (and boolean) values. Supports element access.
class PyDenseIntElementsAttribute
    : public PyConcreteAttribute<PyDenseIntElementsAttribute,
                                 PyDenseElementsAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseIntElements;
  static constexpr const char *pyClassName = "DenseIntElementsAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  /// Returns the element at the given linear position. Asserts if the index is
  /// out of range.
  py::int_ dunderGetItem(intptr_t pos) {
    if (pos < 0 || pos >= dunderLen()) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds element");
    }

    MlirType type = mlirAttributeGetType(*this);
    type = mlirShapedTypeGetElementType(type);
    assert(mlirTypeIsAInteger(type) &&
           "expected integer element type in dense int elements attribute");
    // Dispatch element extraction to an appropriate C function based on the
    // elemental type of the attribute. py::int_ is implicitly constructible
    // from any C++ integral type and handles bitwidth correctly.
    // TODO: consider caching the type properties in the constructor to avoid
    // querying them on each element access.
    unsigned width = mlirIntegerTypeGetWidth(type);
    bool isUnsigned = mlirIntegerTypeIsUnsigned(type);
    if (isUnsigned) {
      if (width == 1) {
        return mlirDenseElementsAttrGetBoolValue(*this, pos);
      }
      if (width == 32) {
        return mlirDenseElementsAttrGetUInt32Value(*this, pos);
      }
      if (width == 64) {
        return mlirDenseElementsAttrGetUInt64Value(*this, pos);
      }
    } else {
      if (width == 1) {
        return mlirDenseElementsAttrGetBoolValue(*this, pos);
      }
      if (width == 32) {
        return mlirDenseElementsAttrGetInt32Value(*this, pos);
      }
      if (width == 64) {
        return mlirDenseElementsAttrGetInt64Value(*this, pos);
      }
    }
    throw SetPyError(PyExc_TypeError, "Unsupported integer type");
  }

  static void bindDerived(ClassTy &c) {
    c.def("__getitem__", &PyDenseIntElementsAttribute::dunderGetItem);
  }
};

/// Refinement of PyDenseElementsAttribute for attributes containing
/// floating-point values. Supports element access.
class PyDenseFPElementsAttribute
    : public PyConcreteAttribute<PyDenseFPElementsAttribute,
                                 PyDenseElementsAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseFPElements;
  static constexpr const char *pyClassName = "DenseFPElementsAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  py::float_ dunderGetItem(intptr_t pos) {
    if (pos < 0 || pos >= dunderLen()) {
      throw SetPyError(PyExc_IndexError,
                       "attempt to access out of bounds element");
    }

    MlirType type = mlirAttributeGetType(*this);
    type = mlirShapedTypeGetElementType(type);
    // Dispatch element extraction to an appropriate C function based on the
    // elemental type of the attribute. py::float_ is implicitly constructible
    // from float and double.
    // TODO: consider caching the type properties in the constructor to avoid
    // querying them on each element access.
    if (mlirTypeIsAF32(type)) {
      return mlirDenseElementsAttrGetFloatValue(*this, pos);
    }
    if (mlirTypeIsAF64(type)) {
      return mlirDenseElementsAttrGetDoubleValue(*this, pos);
    }
    throw SetPyError(PyExc_TypeError, "Unsupported floating-point type");
  }

  static void bindDerived(ClassTy &c) {
    c.def("__getitem__", &PyDenseFPElementsAttribute::dunderGetItem);
  }
};

/// Unit Attribute subclass. Unit attributes don't have values.
class PyUnitAttribute : public PyConcreteAttribute<PyUnitAttribute> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAUnit;
  static constexpr const char *pyClassName = "UnitAttr";
  using PyConcreteAttribute::PyConcreteAttribute;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          return PyUnitAttribute(context->getRef(),
                                 mlirUnitAttrGet(context->get()));
        },
        py::arg("context") = py::none(), "Create a Unit attribute.");
  }
};

} // namespace

//------------------------------------------------------------------------------
// Builtin type subclasses.
//------------------------------------------------------------------------------

namespace {

/// CRTP base classes for Python types that subclass Type and should be
/// castable from it (i.e. via something like IntegerType(t)).
/// By default, type class hierarchies are one level deep (i.e. a
/// concrete type class extends PyType); however, intermediate python-visible
/// base classes can be modeled by specifying a BaseTy.
template <typename DerivedTy, typename BaseTy = PyType>
class PyConcreteType : public BaseTy {
public:
  // Derived classes must define statics for:
  //   IsAFunctionTy isaFunction
  //   const char *pyClassName
  using ClassTy = py::class_<DerivedTy, BaseTy>;
  using IsAFunctionTy = bool (*)(MlirType);

  PyConcreteType() = default;
  PyConcreteType(PyMlirContextRef contextRef, MlirType t)
      : BaseTy(std::move(contextRef), t) {}
  PyConcreteType(PyType &orig)
      : PyConcreteType(orig.getContext(), castFrom(orig)) {}

  static MlirType castFrom(PyType &orig) {
    if (!DerivedTy::isaFunction(orig)) {
      auto origRepr = py::repr(py::cast(orig)).cast<std::string>();
      throw SetPyError(PyExc_ValueError, Twine("Cannot cast type to ") +
                                             DerivedTy::pyClassName +
                                             " (from " + origRepr + ")");
    }
    return orig;
  }

  static void bind(py::module &m) {
    auto cls = ClassTy(m, DerivedTy::pyClassName);
    cls.def(py::init<PyType &>(), py::keep_alive<0, 1>());
    DerivedTy::bindDerived(cls);
  }

  /// Implemented by derived classes to add methods to the Python subclass.
  static void bindDerived(ClassTy &m) {}
};

class PyIntegerType : public PyConcreteType<PyIntegerType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAInteger;
  static constexpr const char *pyClassName = "IntegerType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get_signless",
        [](unsigned width, DefaultingPyMlirContext context) {
          MlirType t = mlirIntegerTypeGet(context->get(), width);
          return PyIntegerType(context->getRef(), t);
        },
        py::arg("width"), py::arg("context") = py::none(),
        "Create a signless integer type");
    c.def_static(
        "get_signed",
        [](unsigned width, DefaultingPyMlirContext context) {
          MlirType t = mlirIntegerTypeSignedGet(context->get(), width);
          return PyIntegerType(context->getRef(), t);
        },
        py::arg("width"), py::arg("context") = py::none(),
        "Create a signed integer type");
    c.def_static(
        "get_unsigned",
        [](unsigned width, DefaultingPyMlirContext context) {
          MlirType t = mlirIntegerTypeUnsignedGet(context->get(), width);
          return PyIntegerType(context->getRef(), t);
        },
        py::arg("width"), py::arg("context") = py::none(),
        "Create an unsigned integer type");
    c.def_property_readonly(
        "width",
        [](PyIntegerType &self) { return mlirIntegerTypeGetWidth(self); },
        "Returns the width of the integer type");
    c.def_property_readonly(
        "is_signless",
        [](PyIntegerType &self) -> bool {
          return mlirIntegerTypeIsSignless(self);
        },
        "Returns whether this is a signless integer");
    c.def_property_readonly(
        "is_signed",
        [](PyIntegerType &self) -> bool {
          return mlirIntegerTypeIsSigned(self);
        },
        "Returns whether this is a signed integer");
    c.def_property_readonly(
        "is_unsigned",
        [](PyIntegerType &self) -> bool {
          return mlirIntegerTypeIsUnsigned(self);
        },
        "Returns whether this is an unsigned integer");
  }
};

/// Index Type subclass - IndexType.
class PyIndexType : public PyConcreteType<PyIndexType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAIndex;
  static constexpr const char *pyClassName = "IndexType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirIndexTypeGet(context->get());
          return PyIndexType(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a index type.");
  }
};

/// Floating Point Type subclass - BF16Type.
class PyBF16Type : public PyConcreteType<PyBF16Type> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsABF16;
  static constexpr const char *pyClassName = "BF16Type";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirBF16TypeGet(context->get());
          return PyBF16Type(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a bf16 type.");
  }
};

/// Floating Point Type subclass - F16Type.
class PyF16Type : public PyConcreteType<PyF16Type> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF16;
  static constexpr const char *pyClassName = "F16Type";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirF16TypeGet(context->get());
          return PyF16Type(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a f16 type.");
  }
};

/// Floating Point Type subclass - F32Type.
class PyF32Type : public PyConcreteType<PyF32Type> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF32;
  static constexpr const char *pyClassName = "F32Type";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirF32TypeGet(context->get());
          return PyF32Type(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a f32 type.");
  }
};

/// Floating Point Type subclass - F64Type.
class PyF64Type : public PyConcreteType<PyF64Type> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF64;
  static constexpr const char *pyClassName = "F64Type";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirF64TypeGet(context->get());
          return PyF64Type(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a f64 type.");
  }
};

/// None Type subclass - NoneType.
class PyNoneType : public PyConcreteType<PyNoneType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsANone;
  static constexpr const char *pyClassName = "NoneType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](DefaultingPyMlirContext context) {
          MlirType t = mlirNoneTypeGet(context->get());
          return PyNoneType(context->getRef(), t);
        },
        py::arg("context") = py::none(), "Create a none type.");
  }
};

/// Complex Type subclass - ComplexType.
class PyComplexType : public PyConcreteType<PyComplexType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAComplex;
  static constexpr const char *pyClassName = "ComplexType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](PyType &elementType) {
          // The element must be a floating point or integer scalar type.
          if (mlirTypeIsAIntegerOrFloat(elementType)) {
            MlirType t = mlirComplexTypeGet(elementType);
            return PyComplexType(elementType.getContext(), t);
          }
          throw SetPyError(
              PyExc_ValueError,
              Twine("invalid '") +
                  py::repr(py::cast(elementType)).cast<std::string>() +
                  "' and expected floating point or integer type.");
        },
        "Create a complex type");
    c.def_property_readonly(
        "element_type",
        [](PyComplexType &self) -> PyType {
          MlirType t = mlirComplexTypeGetElementType(self);
          return PyType(self.getContext(), t);
        },
        "Returns element type.");
  }
};

class PyShapedType : public PyConcreteType<PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAShaped;
  static constexpr const char *pyClassName = "ShapedType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_property_readonly(
        "element_type",
        [](PyShapedType &self) {
          MlirType t = mlirShapedTypeGetElementType(self);
          return PyType(self.getContext(), t);
        },
        "Returns the element type of the shaped type.");
    c.def_property_readonly(
        "has_rank",
        [](PyShapedType &self) -> bool { return mlirShapedTypeHasRank(self); },
        "Returns whether the given shaped type is ranked.");
    c.def_property_readonly(
        "rank",
        [](PyShapedType &self) {
          self.requireHasRank();
          return mlirShapedTypeGetRank(self);
        },
        "Returns the rank of the given ranked shaped type.");
    c.def_property_readonly(
        "has_static_shape",
        [](PyShapedType &self) -> bool {
          return mlirShapedTypeHasStaticShape(self);
        },
        "Returns whether the given shaped type has a static shape.");
    c.def(
        "is_dynamic_dim",
        [](PyShapedType &self, intptr_t dim) -> bool {
          self.requireHasRank();
          return mlirShapedTypeIsDynamicDim(self, dim);
        },
        "Returns whether the dim-th dimension of the given shaped type is "
        "dynamic.");
    c.def(
        "get_dim_size",
        [](PyShapedType &self, intptr_t dim) {
          self.requireHasRank();
          return mlirShapedTypeGetDimSize(self, dim);
        },
        "Returns the dim-th dimension of the given ranked shaped type.");
    c.def_static(
        "is_dynamic_size",
        [](int64_t size) -> bool { return mlirShapedTypeIsDynamicSize(size); },
        "Returns whether the given dimension size indicates a dynamic "
        "dimension.");
    c.def(
        "is_dynamic_stride_or_offset",
        [](PyShapedType &self, int64_t val) -> bool {
          self.requireHasRank();
          return mlirShapedTypeIsDynamicStrideOrOffset(val);
        },
        "Returns whether the given value is used as a placeholder for dynamic "
        "strides and offsets in shaped types.");
  }

private:
  void requireHasRank() {
    if (!mlirShapedTypeHasRank(*this)) {
      throw SetPyError(
          PyExc_ValueError,
          "calling this method requires that the type has a rank.");
    }
  }
};

/// Vector Type subclass - VectorType.
class PyVectorType : public PyConcreteType<PyVectorType, PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAVector;
  static constexpr const char *pyClassName = "VectorType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](std::vector<int64_t> shape, PyType &elementType,
           DefaultingPyLocation loc) {
          MlirType t = mlirVectorTypeGetChecked(shape.size(), shape.data(),
                                                elementType, loc);
          // TODO: Rework error reporting once diagnostic engine is exposed
          // in C API.
          if (mlirTypeIsNull(t)) {
            throw SetPyError(
                PyExc_ValueError,
                Twine("invalid '") +
                    py::repr(py::cast(elementType)).cast<std::string>() +
                    "' and expected floating point or integer type.");
          }
          return PyVectorType(elementType.getContext(), t);
        },
        py::arg("shape"), py::arg("elementType"), py::arg("loc") = py::none(),
        "Create a vector type");
  }
};

/// Ranked Tensor Type subclass - RankedTensorType.
class PyRankedTensorType
    : public PyConcreteType<PyRankedTensorType, PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsARankedTensor;
  static constexpr const char *pyClassName = "RankedTensorType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](std::vector<int64_t> shape, PyType &elementType,
           DefaultingPyLocation loc) {
          MlirType t = mlirRankedTensorTypeGetChecked(
              shape.size(), shape.data(), elementType, loc);
          // TODO: Rework error reporting once diagnostic engine is exposed
          // in C API.
          if (mlirTypeIsNull(t)) {
            throw SetPyError(
                PyExc_ValueError,
                Twine("invalid '") +
                    py::repr(py::cast(elementType)).cast<std::string>() +
                    "' and expected floating point, integer, vector or "
                    "complex "
                    "type.");
          }
          return PyRankedTensorType(elementType.getContext(), t);
        },
        py::arg("shape"), py::arg("element_type"), py::arg("loc") = py::none(),
        "Create a ranked tensor type");
  }
};

/// Unranked Tensor Type subclass - UnrankedTensorType.
class PyUnrankedTensorType
    : public PyConcreteType<PyUnrankedTensorType, PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAUnrankedTensor;
  static constexpr const char *pyClassName = "UnrankedTensorType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](PyType &elementType, DefaultingPyLocation loc) {
          MlirType t = mlirUnrankedTensorTypeGetChecked(elementType, loc);
          // TODO: Rework error reporting once diagnostic engine is exposed
          // in C API.
          if (mlirTypeIsNull(t)) {
            throw SetPyError(
                PyExc_ValueError,
                Twine("invalid '") +
                    py::repr(py::cast(elementType)).cast<std::string>() +
                    "' and expected floating point, integer, vector or "
                    "complex "
                    "type.");
          }
          return PyUnrankedTensorType(elementType.getContext(), t);
        },
        py::arg("element_type"), py::arg("loc") = py::none(),
        "Create a unranked tensor type");
  }
};

/// Ranked MemRef Type subclass - MemRefType.
class PyMemRefType : public PyConcreteType<PyMemRefType, PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsARankedTensor;
  static constexpr const char *pyClassName = "MemRefType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    // TODO: Add mlirMemRefTypeGet and mlirMemRefTypeGetAffineMap binding
    // once the affine map binding is completed.
    c.def_static(
         "get_contiguous_memref",
         // TODO: Make the location optional and create a default location.
         [](PyType &elementType, std::vector<int64_t> shape,
            unsigned memorySpace, DefaultingPyLocation loc) {
           MlirType t = mlirMemRefTypeContiguousGetChecked(
               elementType, shape.size(), shape.data(), memorySpace, loc);
           // TODO: Rework error reporting once diagnostic engine is exposed
           // in C API.
           if (mlirTypeIsNull(t)) {
             throw SetPyError(
                 PyExc_ValueError,
                 Twine("invalid '") +
                     py::repr(py::cast(elementType)).cast<std::string>() +
                     "' and expected floating point, integer, vector or "
                     "complex "
                     "type.");
           }
           return PyMemRefType(elementType.getContext(), t);
         },
         py::arg("element_type"), py::arg("shape"), py::arg("memory_space"),
         py::arg("loc") = py::none(), "Create a memref type")
        .def_property_readonly(
            "num_affine_maps",
            [](PyMemRefType &self) -> intptr_t {
              return mlirMemRefTypeGetNumAffineMaps(self);
            },
            "Returns the number of affine layout maps in the given MemRef "
            "type.")
        .def_property_readonly(
            "memory_space",
            [](PyMemRefType &self) -> unsigned {
              return mlirMemRefTypeGetMemorySpace(self);
            },
            "Returns the memory space of the given MemRef type.");
  }
};

/// Unranked MemRef Type subclass - UnrankedMemRefType.
class PyUnrankedMemRefType
    : public PyConcreteType<PyUnrankedMemRefType, PyShapedType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAUnrankedMemRef;
  static constexpr const char *pyClassName = "UnrankedMemRefType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
         "get",
         [](PyType &elementType, unsigned memorySpace,
            DefaultingPyLocation loc) {
           MlirType t =
               mlirUnrankedMemRefTypeGetChecked(elementType, memorySpace, loc);
           // TODO: Rework error reporting once diagnostic engine is exposed
           // in C API.
           if (mlirTypeIsNull(t)) {
             throw SetPyError(
                 PyExc_ValueError,
                 Twine("invalid '") +
                     py::repr(py::cast(elementType)).cast<std::string>() +
                     "' and expected floating point, integer, vector or "
                     "complex "
                     "type.");
           }
           return PyUnrankedMemRefType(elementType.getContext(), t);
         },
         py::arg("element_type"), py::arg("memory_space"),
         py::arg("loc") = py::none(), "Create a unranked memref type")
        .def_property_readonly(
            "memory_space",
            [](PyUnrankedMemRefType &self) -> unsigned {
              return mlirUnrankedMemrefGetMemorySpace(self);
            },
            "Returns the memory space of the given Unranked MemRef type.");
  }
};

/// Tuple Type subclass - TupleType.
class PyTupleType : public PyConcreteType<PyTupleType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsATuple;
  static constexpr const char *pyClassName = "TupleType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get_tuple",
        [](py::list elementList, DefaultingPyMlirContext context) {
          intptr_t num = py::len(elementList);
          // Mapping py::list to SmallVector.
          SmallVector<MlirType, 4> elements;
          for (auto element : elementList)
            elements.push_back(element.cast<PyType>());
          MlirType t = mlirTupleTypeGet(context->get(), num, elements.data());
          return PyTupleType(context->getRef(), t);
        },
        py::arg("elements"), py::arg("context") = py::none(),
        "Create a tuple type");
    c.def(
        "get_type",
        [](PyTupleType &self, intptr_t pos) -> PyType {
          MlirType t = mlirTupleTypeGetType(self, pos);
          return PyType(self.getContext(), t);
        },
        "Returns the pos-th type in the tuple type.");
    c.def_property_readonly(
        "num_types",
        [](PyTupleType &self) -> intptr_t {
          return mlirTupleTypeGetNumTypes(self);
        },
        "Returns the number of types contained in a tuple.");
  }
};

/// Function type.
class PyFunctionType : public PyConcreteType<PyFunctionType> {
public:
  static constexpr IsAFunctionTy isaFunction = mlirTypeIsAFunction;
  static constexpr const char *pyClassName = "FunctionType";
  using PyConcreteType::PyConcreteType;

  static void bindDerived(ClassTy &c) {
    c.def_static(
        "get",
        [](std::vector<PyType> inputs, std::vector<PyType> results,
           DefaultingPyMlirContext context) {
          SmallVector<MlirType, 4> inputsRaw(inputs.begin(), inputs.end());
          SmallVector<MlirType, 4> resultsRaw(results.begin(), results.end());
          MlirType t = mlirFunctionTypeGet(context->get(), inputsRaw.size(),
                                           inputsRaw.data(), resultsRaw.size(),
                                           resultsRaw.data());
          return PyFunctionType(context->getRef(), t);
        },
        py::arg("inputs"), py::arg("results"), py::arg("context") = py::none(),
        "Gets a FunctionType from a list of input and result types");
    c.def_property_readonly(
        "inputs",
        [](PyFunctionType &self) {
          MlirType t = self;
          auto contextRef = self.getContext();
          py::list types;
          for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(self); i < e;
               ++i) {
            types.append(PyType(contextRef, mlirFunctionTypeGetInput(t, i)));
          }
          return types;
        },
        "Returns the list of input types in the FunctionType.");
    c.def_property_readonly(
        "results",
        [](PyFunctionType &self) {
          auto contextRef = self.getContext();
          py::list types;
          for (intptr_t i = 0, e = mlirFunctionTypeGetNumResults(self); i < e;
               ++i) {
            types.append(
                PyType(contextRef, mlirFunctionTypeGetResult(self, i)));
          }
          return types;
        },
        "Returns the list of result types in the FunctionType.");
  }
};

} // namespace

//------------------------------------------------------------------------------
// Populates the pybind11 IR submodule.
//------------------------------------------------------------------------------

void mlir::python::populateIRSubmodule(py::module &m) {
  //----------------------------------------------------------------------------
  // Mapping of MlirContext
  //----------------------------------------------------------------------------
  py::class_<PyMlirContext>(m, "Context")
      .def(py::init<>(&PyMlirContext::createNewContextForInit))
      .def_static("_get_live_count", &PyMlirContext::getLiveCount)
      .def("_get_context_again",
           [](PyMlirContext &self) {
             PyMlirContextRef ref = PyMlirContext::forContext(self.get());
             return ref.releaseObject();
           })
      .def("_get_live_operation_count", &PyMlirContext::getLiveOperationCount)
      .def("_get_live_module_count", &PyMlirContext::getLiveModuleCount)
      .def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR,
                             &PyMlirContext::getCapsule)
      .def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyMlirContext::createFromCapsule)
      .def("__enter__", &PyMlirContext::contextEnter)
      .def("__exit__", &PyMlirContext::contextExit)
      .def_property_readonly_static(
          "current",
          [](py::object & /*class*/) {
            auto *context = PyThreadContextEntry::getDefaultContext();
            if (!context)
              throw SetPyError(PyExc_ValueError, "No current Context");
            return context;
          },
          "Gets the Context bound to the current thread or raises ValueError")
      .def_property_readonly(
          "dialects",
          [](PyMlirContext &self) { return PyDialects(self.getRef()); },
          "Gets a container for accessing dialects by name")
      .def_property_readonly(
          "d", [](PyMlirContext &self) { return PyDialects(self.getRef()); },
          "Alias for 'dialect'")
      .def(
          "get_dialect_descriptor",
          [=](PyMlirContext &self, std::string &name) {
            MlirDialect dialect = mlirContextGetOrLoadDialect(
                self.get(), {name.data(), name.size()});
            if (mlirDialectIsNull(dialect)) {
              throw SetPyError(PyExc_ValueError,
                               Twine("Dialect '") + name + "' not found");
            }
            return PyDialectDescriptor(self.getRef(), dialect);
          },
          "Gets or loads a dialect by name, returning its descriptor object")
      .def_property(
          "allow_unregistered_dialects",
          [](PyMlirContext &self) -> bool {
            return mlirContextGetAllowUnregisteredDialects(self.get());
          },
          [](PyMlirContext &self, bool value) {
            mlirContextSetAllowUnregisteredDialects(self.get(), value);
          });

  //----------------------------------------------------------------------------
  // Mapping of PyDialectDescriptor
  //----------------------------------------------------------------------------
  py::class_<PyDialectDescriptor>(m, "DialectDescriptor")
      .def_property_readonly("namespace",
                             [](PyDialectDescriptor &self) {
                               MlirStringRef ns =
                                   mlirDialectGetNamespace(self.get());
                               return py::str(ns.data, ns.length);
                             })
      .def("__repr__", [](PyDialectDescriptor &self) {
        MlirStringRef ns = mlirDialectGetNamespace(self.get());
        std::string repr("<DialectDescriptor ");
        repr.append(ns.data, ns.length);
        repr.append(">");
        return repr;
      });

  //----------------------------------------------------------------------------
  // Mapping of PyDialects
  //----------------------------------------------------------------------------
  py::class_<PyDialects>(m, "Dialects")
      .def("__getitem__",
           [=](PyDialects &self, std::string keyName) {
             MlirDialect dialect =
                 self.getDialectForKey(keyName, /*attrError=*/false);
             py::object descriptor =
                 py::cast(PyDialectDescriptor{self.getContext(), dialect});
             return createCustomDialectWrapper(keyName, std::move(descriptor));
           })
      .def("__getattr__", [=](PyDialects &self, std::string attrName) {
        MlirDialect dialect =
            self.getDialectForKey(attrName, /*attrError=*/true);
        py::object descriptor =
            py::cast(PyDialectDescriptor{self.getContext(), dialect});
        return createCustomDialectWrapper(attrName, std::move(descriptor));
      });

  //----------------------------------------------------------------------------
  // Mapping of PyDialect
  //----------------------------------------------------------------------------
  py::class_<PyDialect>(m, "Dialect")
      .def(py::init<py::object>(), "descriptor")
      .def_property_readonly(
          "descriptor", [](PyDialect &self) { return self.getDescriptor(); })
      .def("__repr__", [](py::object self) {
        auto clazz = self.attr("__class__");
        return py::str("<Dialect ") +
               self.attr("descriptor").attr("namespace") + py::str(" (class ") +
               clazz.attr("__module__") + py::str(".") +
               clazz.attr("__name__") + py::str(")>");
      });

  //----------------------------------------------------------------------------
  // Mapping of Location
  //----------------------------------------------------------------------------
  py::class_<PyLocation>(m, "Location")
      .def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR, &PyLocation::getCapsule)
      .def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyLocation::createFromCapsule)
      .def("__enter__", &PyLocation::contextEnter)
      .def("__exit__", &PyLocation::contextExit)
      .def("__eq__",
           [](PyLocation &self, PyLocation &other) -> bool {
             return mlirLocationEqual(self, other);
           })
      .def("__eq__", [](PyLocation &self, py::object other) { return false; })
      .def_property_readonly_static(
          "current",
          [](py::object & /*class*/) {
            auto *loc = PyThreadContextEntry::getDefaultLocation();
            if (!loc)
              throw SetPyError(PyExc_ValueError, "No current Location");
            return loc;
          },
          "Gets the Location bound to the current thread or raises ValueError")
      .def_static(
          "unknown",
          [](DefaultingPyMlirContext context) {
            return PyLocation(context->getRef(),
                              mlirLocationUnknownGet(context->get()));
          },
          py::arg("context") = py::none(),
          "Gets a Location representing an unknown location")
      .def_static(
          "file",
          [](std::string filename, int line, int col,
             DefaultingPyMlirContext context) {
            return PyLocation(
                context->getRef(),
                mlirLocationFileLineColGet(
                    context->get(), toMlirStringRef(filename), line, col));
          },
          py::arg("filename"), py::arg("line"), py::arg("col"),
          py::arg("context") = py::none(), kContextGetFileLocationDocstring)
      .def_property_readonly(
          "context",
          [](PyLocation &self) { return self.getContext().getObject(); },
          "Context that owns the Location")
      .def("__repr__", [](PyLocation &self) {
        PyPrintAccumulator printAccum;
        mlirLocationPrint(self, printAccum.getCallback(),
                          printAccum.getUserData());
        return printAccum.join();
      });

  //----------------------------------------------------------------------------
  // Mapping of Module
  //----------------------------------------------------------------------------
  py::class_<PyModule>(m, "Module")
      .def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR, &PyModule::getCapsule)
      .def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyModule::createFromCapsule)
      .def_static(
          "parse",
          [](const std::string moduleAsm, DefaultingPyMlirContext context) {
            MlirModule module = mlirModuleCreateParse(
                context->get(), toMlirStringRef(moduleAsm));
            // TODO: Rework error reporting once diagnostic engine is exposed
            // in C API.
            if (mlirModuleIsNull(module)) {
              throw SetPyError(
                  PyExc_ValueError,
                  "Unable to parse module assembly (see diagnostics)");
            }
            return PyModule::forModule(module).releaseObject();
          },
          py::arg("asm"), py::arg("context") = py::none(),
          kModuleParseDocstring)
      .def_static(
          "create",
          [](DefaultingPyLocation loc) {
            MlirModule module = mlirModuleCreateEmpty(loc);
            return PyModule::forModule(module).releaseObject();
          },
          py::arg("loc") = py::none(), "Creates an empty module")
      .def_property_readonly(
          "context",
          [](PyModule &self) { return self.getContext().getObject(); },
          "Context that created the Module")
      .def_property_readonly(
          "operation",
          [](PyModule &self) {
            return PyOperation::forOperation(self.getContext(),
                                             mlirModuleGetOperation(self.get()),
                                             self.getRef().releaseObject())
                .releaseObject();
          },
          "Accesses the module as an operation")
      .def_property_readonly(
          "body",
          [](PyModule &self) {
            PyOperationRef module_op = PyOperation::forOperation(
                self.getContext(), mlirModuleGetOperation(self.get()),
                self.getRef().releaseObject());
            PyBlock returnBlock(module_op, mlirModuleGetBody(self.get()));
            return returnBlock;
          },
          "Return the block for this module")
      .def(
          "dump",
          [](PyModule &self) {
            mlirOperationDump(mlirModuleGetOperation(self.get()));
          },
          kDumpDocstring)
      .def(
          "__str__",
          [](PyModule &self) {
            MlirOperation operation = mlirModuleGetOperation(self.get());
            PyPrintAccumulator printAccum;
            mlirOperationPrint(operation, printAccum.getCallback(),
                               printAccum.getUserData());
            return printAccum.join();
          },
          kOperationStrDunderDocstring);

  //----------------------------------------------------------------------------
  // Mapping of Operation.
  //----------------------------------------------------------------------------
  py::class_<PyOperationBase>(m, "_OperationBase")
      .def("__eq__",
           [](PyOperationBase &self, PyOperationBase &other) {
             return &self.getOperation() == &other.getOperation();
           })
      .def("__eq__",
           [](PyOperationBase &self, py::object other) { return false; })
      .def_property_readonly("attributes",
                             [](PyOperationBase &self) {
                               return PyOpAttributeMap(
                                   self.getOperation().getRef());
                             })
      .def_property_readonly("operands",
                             [](PyOperationBase &self) {
                               return PyOpOperandList(
                                   self.getOperation().getRef());
                             })
      .def_property_readonly("regions",
                             [](PyOperationBase &self) {
                               return PyRegionList(
                                   self.getOperation().getRef());
                             })
      .def_property_readonly(
          "results",
          [](PyOperationBase &self) {
            return PyOpResultList(self.getOperation().getRef());
          },
          "Returns the list of Operation results.")
      .def_property_readonly(
          "result",
          [](PyOperationBase &self) {
            auto &operation = self.getOperation();
            auto numResults = mlirOperationGetNumResults(operation);
            if (numResults != 1) {
              auto name = mlirIdentifierStr(mlirOperationGetName(operation));
              throw SetPyError(
                  PyExc_ValueError,
                  Twine("Cannot call .result on operation ") +
                      StringRef(name.data, name.length) + " which has " +
                      Twine(numResults) +
                      " results (it is only valid for operations with a "
                      "single result)");
            }
            return PyOpResult(operation.getRef(),
                              mlirOperationGetResult(operation, 0));
          },
          "Shortcut to get an op result if it has only one (throws an error "
          "otherwise).")
      .def("__iter__",
           [](PyOperationBase &self) {
             return PyRegionIterator(self.getOperation().getRef());
           })
      .def(
          "__str__",
          [](PyOperationBase &self) {
            return self.getAsm(/*binary=*/false,
                               /*largeElementsLimit=*/llvm::None,
                               /*enableDebugInfo=*/false,
                               /*prettyDebugInfo=*/false,
                               /*printGenericOpForm=*/false,
                               /*useLocalScope=*/false);
          },
          "Returns the assembly form of the operation.")
      .def("print", &PyOperationBase::print,
           // Careful: Lots of arguments must match up with print method.
           py::arg("file") = py::none(), py::arg("binary") = false,
           py::arg("large_elements_limit") = py::none(),
           py::arg("enable_debug_info") = false,
           py::arg("pretty_debug_info") = false,
           py::arg("print_generic_op_form") = false,
           py::arg("use_local_scope") = false, kOperationPrintDocstring)
      .def("get_asm", &PyOperationBase::getAsm,
           // Careful: Lots of arguments must match up with get_asm method.
           py::arg("binary") = false,
           py::arg("large_elements_limit") = py::none(),
           py::arg("enable_debug_info") = false,
           py::arg("pretty_debug_info") = false,
           py::arg("print_generic_op_form") = false,
           py::arg("use_local_scope") = false, kOperationGetAsmDocstring);

  py::class_<PyOperation, PyOperationBase>(m, "Operation")
      .def_static("create", &PyOperation::create, py::arg("name"),
                  py::arg("operands") = py::none(),
                  py::arg("results") = py::none(),
                  py::arg("attributes") = py::none(),
                  py::arg("successors") = py::none(), py::arg("regions") = 0,
                  py::arg("loc") = py::none(), py::arg("ip") = py::none(),
                  kOperationCreateDocstring)
      .def_property_readonly(
          "context",
          [](PyOperation &self) { return self.getContext().getObject(); },
          "Context that owns the Operation")
      .def_property_readonly("opview", &PyOperation::createOpView);

  py::class_<PyOpView, PyOperationBase>(m, "OpView")
      .def(py::init<py::object>())
      .def_property_readonly("operation", &PyOpView::getOperationObject)
      .def_property_readonly(
          "context",
          [](PyOpView &self) {
            return self.getOperation().getContext().getObject();
          },
          "Context that owns the Operation")
      .def("__str__",
           [](PyOpView &self) { return py::str(self.getOperationObject()); });

  //----------------------------------------------------------------------------
  // Mapping of PyRegion.
  //----------------------------------------------------------------------------
  py::class_<PyRegion>(m, "Region")
      .def_property_readonly(
          "blocks",
          [](PyRegion &self) {
            return PyBlockList(self.getParentOperation(), self.get());
          },
          "Returns a forward-optimized sequence of blocks.")
      .def(
          "__iter__",
          [](PyRegion &self) {
            self.checkValid();
            MlirBlock firstBlock = mlirRegionGetFirstBlock(self.get());
            return PyBlockIterator(self.getParentOperation(), firstBlock);
          },
          "Iterates over blocks in the region.")
      .def("__eq__",
           [](PyRegion &self, PyRegion &other) {
             return self.get().ptr == other.get().ptr;
           })
      .def("__eq__", [](PyRegion &self, py::object &other) { return false; });

  //----------------------------------------------------------------------------
  // Mapping of PyBlock.
  //----------------------------------------------------------------------------
  py::class_<PyBlock>(m, "Block")
      .def_property_readonly(
          "arguments",
          [](PyBlock &self) {
            return PyBlockArgumentList(self.getParentOperation(), self.get());
          },
          "Returns a list of block arguments.")
      .def_property_readonly(
          "operations",
          [](PyBlock &self) {
            return PyOperationList(self.getParentOperation(), self.get());
          },
          "Returns a forward-optimized sequence of operations.")
      .def(
          "__iter__",
          [](PyBlock &self) {
            self.checkValid();
            MlirOperation firstOperation =
                mlirBlockGetFirstOperation(self.get());
            return PyOperationIterator(self.getParentOperation(),
                                       firstOperation);
          },
          "Iterates over operations in the block.")
      .def("__eq__",
           [](PyBlock &self, PyBlock &other) {
             return self.get().ptr == other.get().ptr;
           })
      .def("__eq__", [](PyBlock &self, py::object &other) { return false; })
      .def(
          "__str__",
          [](PyBlock &self) {
            self.checkValid();
            PyPrintAccumulator printAccum;
            mlirBlockPrint(self.get(), printAccum.getCallback(),
                           printAccum.getUserData());
            return printAccum.join();
          },
          "Returns the assembly form of the block.");

  //----------------------------------------------------------------------------
  // Mapping of PyInsertionPoint.
  //----------------------------------------------------------------------------

  py::class_<PyInsertionPoint>(m, "InsertionPoint")
      .def(py::init<PyBlock &>(), py::arg("block"),
           "Inserts after the last operation but still inside the block.")
      .def("__enter__", &PyInsertionPoint::contextEnter)
      .def("__exit__", &PyInsertionPoint::contextExit)
      .def_property_readonly_static(
          "current",
          [](py::object & /*class*/) {
            auto *ip = PyThreadContextEntry::getDefaultInsertionPoint();
            if (!ip)
              throw SetPyError(PyExc_ValueError, "No current InsertionPoint");
            return ip;
          },
          "Gets the InsertionPoint bound to the current thread or raises "
          "ValueError if none has been set")
      .def(py::init<PyOperationBase &>(), py::arg("beforeOperation"),
           "Inserts before a referenced operation.")
      .def_static("at_block_begin", &PyInsertionPoint::atBlockBegin,
                  py::arg("block"), "Inserts at the beginning of the block.")
      .def_static("at_block_terminator", &PyInsertionPoint::atBlockTerminator,
                  py::arg("block"), "Inserts before the block terminator.")
      .def("insert", &PyInsertionPoint::insert, py::arg("operation"),
           "Inserts an operation.");

  //----------------------------------------------------------------------------
  // Mapping of PyAttribute.
  //----------------------------------------------------------------------------
  py::class_<PyAttribute>(m, "Attribute")
      .def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR,
                             &PyAttribute::getCapsule)
      .def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyAttribute::createFromCapsule)
      .def_static(
          "parse",
          [](std::string attrSpec, DefaultingPyMlirContext context) {
            MlirAttribute type = mlirAttributeParseGet(
                context->get(), toMlirStringRef(attrSpec));
            // TODO: Rework error reporting once diagnostic engine is exposed
            // in C API.
            if (mlirAttributeIsNull(type)) {
              throw SetPyError(PyExc_ValueError,
                               Twine("Unable to parse attribute: '") +
                                   attrSpec + "'");
            }
            return PyAttribute(context->getRef(), type);
          },
          py::arg("asm"), py::arg("context") = py::none(),
          "Parses an attribute from an assembly form")
      .def_property_readonly(
          "context",
          [](PyAttribute &self) { return self.getContext().getObject(); },
          "Context that owns the Attribute")
      .def_property_readonly("type",
                             [](PyAttribute &self) {
                               return PyType(self.getContext()->getRef(),
                                             mlirAttributeGetType(self));
                             })
      .def(
          "get_named",
          [](PyAttribute &self, std::string name) {
            return PyNamedAttribute(self, std::move(name));
          },
          py::keep_alive<0, 1>(), "Binds a name to the attribute")
      .def("__eq__",
           [](PyAttribute &self, PyAttribute &other) { return self == other; })
      .def("__eq__", [](PyAttribute &self, py::object &other) { return false; })
      .def(
          "dump", [](PyAttribute &self) { mlirAttributeDump(self); },
          kDumpDocstring)
      .def(
          "__str__",
          [](PyAttribute &self) {
            PyPrintAccumulator printAccum;
            mlirAttributePrint(self, printAccum.getCallback(),
                               printAccum.getUserData());
            return printAccum.join();
          },
          "Returns the assembly form of the Attribute.")
      .def("__repr__", [](PyAttribute &self) {
        // Generally, assembly formats are not printed for __repr__ because
        // this can cause exceptionally long debug output and exceptions.
        // However, attribute values are generally considered useful and are
        // printed. This may need to be re-evaluated if debug dumps end up
        // being excessive.
        PyPrintAccumulator printAccum;
        printAccum.parts.append("Attribute(");
        mlirAttributePrint(self, printAccum.getCallback(),
                           printAccum.getUserData());
        printAccum.parts.append(")");
        return printAccum.join();
      });

  //----------------------------------------------------------------------------
  // Mapping of PyNamedAttribute
  //----------------------------------------------------------------------------
  py::class_<PyNamedAttribute>(m, "NamedAttribute")
      .def("__repr__",
           [](PyNamedAttribute &self) {
             PyPrintAccumulator printAccum;
             printAccum.parts.append("NamedAttribute(");
             printAccum.parts.append(self.namedAttr.name.data);
             printAccum.parts.append("=");
             mlirAttributePrint(self.namedAttr.attribute,
                                printAccum.getCallback(),
                                printAccum.getUserData());
             printAccum.parts.append(")");
             return printAccum.join();
           })
      .def_property_readonly(
          "name",
          [](PyNamedAttribute &self) {
            return py::str(self.namedAttr.name.data,
                           self.namedAttr.name.length);
          },
          "The name of the NamedAttribute binding")
      .def_property_readonly(
          "attr",
          [](PyNamedAttribute &self) {
            // TODO: When named attribute is removed/refactored, also remove
            // this constructor (it does an inefficient table lookup).
            auto contextRef = PyMlirContext::forContext(
                mlirAttributeGetContext(self.namedAttr.attribute));
            return PyAttribute(std::move(contextRef), self.namedAttr.attribute);
          },
          py::keep_alive<0, 1>(),
          "The underlying generic attribute of the NamedAttribute binding");

  // Builtin attribute bindings.
  PyFloatAttribute::bind(m);
  PyIntegerAttribute::bind(m);
  PyBoolAttribute::bind(m);
  PyStringAttribute::bind(m);
  PyDenseElementsAttribute::bind(m);
  PyDenseIntElementsAttribute::bind(m);
  PyDenseFPElementsAttribute::bind(m);
  PyUnitAttribute::bind(m);

  //----------------------------------------------------------------------------
  // Mapping of PyType.
  //----------------------------------------------------------------------------
  py::class_<PyType>(m, "Type")
      .def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR, &PyType::getCapsule)
      .def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyType::createFromCapsule)
      .def_static(
          "parse",
          [](std::string typeSpec, DefaultingPyMlirContext context) {
            MlirType type =
                mlirTypeParseGet(context->get(), toMlirStringRef(typeSpec));
            // TODO: Rework error reporting once diagnostic engine is exposed
            // in C API.
            if (mlirTypeIsNull(type)) {
              throw SetPyError(PyExc_ValueError,
                               Twine("Unable to parse type: '") + typeSpec +
                                   "'");
            }
            return PyType(context->getRef(), type);
          },
          py::arg("asm"), py::arg("context") = py::none(),
          kContextParseTypeDocstring)
      .def_property_readonly(
          "context", [](PyType &self) { return self.getContext().getObject(); },
          "Context that owns the Type")
      .def("__eq__", [](PyType &self, PyType &other) { return self == other; })
      .def("__eq__", [](PyType &self, py::object &other) { return false; })
      .def(
          "dump", [](PyType &self) { mlirTypeDump(self); }, kDumpDocstring)
      .def(
          "__str__",
          [](PyType &self) {
            PyPrintAccumulator printAccum;
            mlirTypePrint(self, printAccum.getCallback(),
                          printAccum.getUserData());
            return printAccum.join();
          },
          "Returns the assembly form of the type.")
      .def("__repr__", [](PyType &self) {
        // Generally, assembly formats are not printed for __repr__ because
        // this can cause exceptionally long debug output and exceptions.
        // However, types are an exception as they typically have compact
        // assembly forms and printing them is useful.
        PyPrintAccumulator printAccum;
        printAccum.parts.append("Type(");
        mlirTypePrint(self, printAccum.getCallback(), printAccum.getUserData());
        printAccum.parts.append(")");
        return printAccum.join();
      });

  // Builtin type bindings.
  PyIntegerType::bind(m);
  PyIndexType::bind(m);
  PyBF16Type::bind(m);
  PyF16Type::bind(m);
  PyF32Type::bind(m);
  PyF64Type::bind(m);
  PyNoneType::bind(m);
  PyComplexType::bind(m);
  PyShapedType::bind(m);
  PyVectorType::bind(m);
  PyRankedTensorType::bind(m);
  PyUnrankedTensorType::bind(m);
  PyMemRefType::bind(m);
  PyUnrankedMemRefType::bind(m);
  PyTupleType::bind(m);
  PyFunctionType::bind(m);

  //----------------------------------------------------------------------------
  // Mapping of Value.
  //----------------------------------------------------------------------------
  py::class_<PyValue>(m, "Value")
      .def_property_readonly(
          "context",
          [](PyValue &self) { return self.getParentOperation()->getContext(); },
          "Context in which the value lives.")
      .def(
          "dump", [](PyValue &self) { mlirValueDump(self.get()); },
          kDumpDocstring)
      .def("__eq__",
           [](PyValue &self, PyValue &other) {
             return self.get().ptr == other.get().ptr;
           })
      .def("__eq__", [](PyValue &self, py::object other) { return false; })
      .def(
          "__str__",
          [](PyValue &self) {
            PyPrintAccumulator printAccum;
            printAccum.parts.append("Value(");
            mlirValuePrint(self.get(), printAccum.getCallback(),
                           printAccum.getUserData());
            printAccum.parts.append(")");
            return printAccum.join();
          },
          kValueDunderStrDocstring)
      .def_property_readonly("type", [](PyValue &self) {
        return PyType(self.getParentOperation()->getContext(),
                      mlirValueGetType(self.get()));
      });
  PyBlockArgument::bind(m);
  PyOpResult::bind(m);

  // Container bindings.
  PyBlockArgumentList::bind(m);
  PyBlockIterator::bind(m);
  PyBlockList::bind(m);
  PyOperationIterator::bind(m);
  PyOperationList::bind(m);
  PyOpAttributeMap::bind(m);
  PyOpOperandList::bind(m);
  PyOpResultList::bind(m);
  PyRegionIterator::bind(m);
  PyRegionList::bind(m);
}