aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2018-04-10 01:41:17 +0000
committerPirama Arumuga Nainar <pirama@google.com>2018-04-25 15:25:01 -0700
commitde96739c83aac4b306797ccec2796a1c3341ddb7 (patch)
treed00e2541be2cd16807e06c6f02e11f709d211be2
parent6ffc243251225819376182bea70d471822a2c977 (diff)
downloadllvm-de96739c83aac4b306797ccec2796a1c3341ddb7.tar.gz
Introduce a pass to begin more systematically fixing PR36028 and similar issues.
The key idea is to lower COPY nodes populating EFLAGS by scanning the uses of EFLAGS and introducing dedicated code to preserve the necessary state in a GPR. In the vast majority of cases, these uses are cmovCC and jCC instructions. For such cases, we can very easily save and restore the necessary information by simply inserting a setCC into a GPR where the original flags are live, and then testing that GPR directly to feed the cmov or conditional branch. However, things are a bit more tricky if arithmetic is using the flags. This patch handles the vast majority of cases that seem to come up in practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of partially preserved EFLAGS as LLVM doesn't currently model that at all. There are a large number of operations that techinaclly observe EFLAGS currently but shouldn't in this case -- they typically are using DF. Currently, they will not be handled by this approach. However, I have never seen this issue come up in practice. It is already pretty rare to have these patterns come up in practical code with LLVM. I had to resort to writing MIR tests to cover most of the logic in this pass already. I suspect even with its current amount of coverage of arithmetic users of EFLAGS it will be a significant improvement over the current use of pushf/popf. It will also produce substantially faster code in most of the common patterns. This patch also removes all of the old lowering for EFLAGS copies, and the hack that forced us to use a frame pointer when EFLAGS copies were found anywhere in a function so that the dynamic stack adjustment wasn't a problem. None of this is needed as we now lower all of these copies directly in MI and without require stack adjustments. Lots of thanks to Reid who came up with several aspects of this approach, and Craig who helped me work out a couple of things tripping me up while working on this. Differential Revision: https://reviews.llvm.org/D45146 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@329657 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/CodeGen/MachineBasicBlock.h7
-rw-r--r--lib/CodeGen/MachineBasicBlock.cpp8
-rw-r--r--lib/Target/X86/CMakeLists.txt1
-rw-r--r--lib/Target/X86/X86.h3
-rw-r--r--lib/Target/X86/X86FlagsCopyLowering.cpp734
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp21
-rw-r--r--lib/Target/X86/X86ISelLowering.h2
-rw-r--r--lib/Target/X86/X86InstrInfo.cpp102
-rw-r--r--lib/Target/X86/X86TargetMachine.cpp3
9 files changed, 763 insertions, 118 deletions
diff --git a/include/llvm/CodeGen/MachineBasicBlock.h b/include/llvm/CodeGen/MachineBasicBlock.h
index 8dc83442c30..f3130b6e128 100644
--- a/include/llvm/CodeGen/MachineBasicBlock.h
+++ b/include/llvm/CodeGen/MachineBasicBlock.h
@@ -457,6 +457,13 @@ public:
/// Replace successor OLD with NEW and update probability info.
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
+ /// Copy a successor (and any probability info) from original block to this
+ /// block's. Uses an iterator into the original blocks successors.
+ ///
+ /// This is useful when doing a partial clone of successors. Afterward, the
+ /// probabilities may need to be normalized.
+ void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
+
/// Transfers all the successors from MBB to this machine basic block (i.e.,
/// copies all the successors FromMBB and remove all the successors from
/// FromMBB).
diff --git a/lib/CodeGen/MachineBasicBlock.cpp b/lib/CodeGen/MachineBasicBlock.cpp
index 99e7615e534..858315b6703 100644
--- a/lib/CodeGen/MachineBasicBlock.cpp
+++ b/lib/CodeGen/MachineBasicBlock.cpp
@@ -720,6 +720,14 @@ void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
removeSuccessor(OldI);
}
+void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
+ succ_iterator I) {
+ if (Orig->Probs.empty())
+ addSuccessor(*I, Orig->getSuccProbability(I));
+ else
+ addSuccessorWithoutProb(*I);
+}
+
void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
Predecessors.push_back(Pred);
}
diff --git a/lib/Target/X86/CMakeLists.txt b/lib/Target/X86/CMakeLists.txt
index ed79f4fec4e..93712d57987 100644
--- a/lib/Target/X86/CMakeLists.txt
+++ b/lib/Target/X86/CMakeLists.txt
@@ -32,6 +32,7 @@ set(sources
X86FixupBWInsts.cpp
X86FixupLEAs.cpp
X86FixupSetCC.cpp
+ X86FlagsCopyLowering.cpp
X86FloatingPoint.cpp
X86FrameLowering.cpp
X86InstructionSelector.cpp
diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h
index dbb1d2233e7..5b4aacf25b4 100644
--- a/lib/Target/X86/X86.h
+++ b/lib/Target/X86/X86.h
@@ -70,6 +70,9 @@ FunctionPass *createX86OptimizeLEAs();
/// Return a pass that transforms setcc + movzx pairs into xor + setcc.
FunctionPass *createX86FixupSetCC();
+/// Return a pass that lowers EFLAGS copy pseudo instructions.
+FunctionPass *createX86FlagsCopyLoweringPass();
+
/// Return a pass that expands WinAlloca pseudo-instructions.
FunctionPass *createX86WinAllocaExpander();
diff --git a/lib/Target/X86/X86FlagsCopyLowering.cpp b/lib/Target/X86/X86FlagsCopyLowering.cpp
new file mode 100644
index 00000000000..1f4bd7fd501
--- /dev/null
+++ b/lib/Target/X86/X86FlagsCopyLowering.cpp
@@ -0,0 +1,734 @@
+//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
+/// flag bits.
+///
+/// We have to do this by carefully analyzing and rewriting the usage of the
+/// copied EFLAGS register because there is no general way to rematerialize the
+/// entire EFLAGS register safely and efficiently. Using `popf` both forces
+/// dynamic stack adjustment and can create correctness issues due to IF, TF,
+/// and other non-status flags being overwritten. Using sequences involving
+/// SAHF don't work on all x86 processors and are often quite slow compared to
+/// directly testing a single status preserved in its own GPR.
+///
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineSSAUpdater.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCSchedule.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define PASS_KEY "x86-flags-copy-lowering"
+#define DEBUG_TYPE PASS_KEY
+
+STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
+STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
+STATISTIC(NumTestsInserted, "Number of test instructions inserted");
+STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
+
+namespace llvm {
+
+void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
+
+} // end namespace llvm
+
+namespace {
+
+// Convenient array type for storing registers associated with each condition.
+using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
+
+class X86FlagsCopyLoweringPass : public MachineFunctionPass {
+public:
+ X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
+ initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ /// Pass identification, replacement for typeid.
+ static char ID;
+
+private:
+ MachineRegisterInfo *MRI;
+ const X86InstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const TargetRegisterClass *PromoteRC;
+
+ CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
+ MachineInstr &CopyDefI);
+
+ unsigned promoteCondToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond);
+ std::pair<unsigned, bool>
+ getCondOrInverseInReg(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ X86::CondCode Cond, CondRegArray &CondRegs);
+ void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
+ DebugLoc Loc, unsigned Reg);
+
+ void rewriteArithmetic(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &MI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+ void rewriteCMov(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &CMovI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+ void rewriteCondJmp(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &JmpI, CondRegArray &CondRegs);
+ void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
+ MachineInstr &CopyDefI);
+ void rewriteSetCC(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &SetCCI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+};
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
+ "X86 EFLAGS copy lowering", false, false)
+INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
+ "X86 EFLAGS copy lowering", false, false)
+
+FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
+ return new X86FlagsCopyLoweringPass();
+}
+
+char X86FlagsCopyLoweringPass::ID = 0;
+
+void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+namespace {
+/// An enumeration of the arithmetic instruction mnemonics which have
+/// interesting flag semantics.
+///
+/// We can map instruction opcodes into these mnemonics to make it easy to
+/// dispatch with specific functionality.
+enum class FlagArithMnemonic {
+ ADC,
+ ADCX,
+ ADOX,
+ RCL,
+ RCR,
+ SBB,
+};
+} // namespace
+
+static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ report_fatal_error("No support for lowering a copy into EFLAGS when used "
+ "by this instruction!");
+
+#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
+ case X86::MNEMONIC##8##SUFFIX: \
+ case X86::MNEMONIC##16##SUFFIX: \
+ case X86::MNEMONIC##32##SUFFIX: \
+ case X86::MNEMONIC##64##SUFFIX:
+
+#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
+ case X86::MNEMONIC##8ri: \
+ case X86::MNEMONIC##16ri8: \
+ case X86::MNEMONIC##32ri8: \
+ case X86::MNEMONIC##64ri8: \
+ case X86::MNEMONIC##16ri: \
+ case X86::MNEMONIC##32ri: \
+ case X86::MNEMONIC##64ri32: \
+ case X86::MNEMONIC##8mi: \
+ case X86::MNEMONIC##16mi8: \
+ case X86::MNEMONIC##32mi8: \
+ case X86::MNEMONIC##64mi8: \
+ case X86::MNEMONIC##16mi: \
+ case X86::MNEMONIC##32mi: \
+ case X86::MNEMONIC##64mi32: \
+ case X86::MNEMONIC##8i8: \
+ case X86::MNEMONIC##16i16: \
+ case X86::MNEMONIC##32i32: \
+ case X86::MNEMONIC##64i32:
+
+ LLVM_EXPAND_ADC_SBB_INSTR(ADC)
+ return FlagArithMnemonic::ADC;
+
+ LLVM_EXPAND_ADC_SBB_INSTR(SBB)
+ return FlagArithMnemonic::SBB;
+
+#undef LLVM_EXPAND_ADC_SBB_INSTR
+
+ LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
+ LLVM_EXPAND_INSTR_SIZES(RCL, r1)
+ LLVM_EXPAND_INSTR_SIZES(RCL, ri)
+ return FlagArithMnemonic::RCL;
+
+ LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
+ LLVM_EXPAND_INSTR_SIZES(RCR, r1)
+ LLVM_EXPAND_INSTR_SIZES(RCR, ri)
+ return FlagArithMnemonic::RCR;
+
+#undef LLVM_EXPAND_INSTR_SIZES
+
+ case X86::ADCX32rr:
+ case X86::ADCX64rr:
+ case X86::ADCX32rm:
+ case X86::ADCX64rm:
+ return FlagArithMnemonic::ADCX;
+
+ case X86::ADOX32rr:
+ case X86::ADOX64rr:
+ case X86::ADOX32rm:
+ case X86::ADOX64rm:
+ return FlagArithMnemonic::ADOX;
+ }
+}
+
+static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
+ MachineInstr &SplitI,
+ const X86InstrInfo &TII) {
+ MachineFunction &MF = *MBB.getParent();
+
+ assert(SplitI.getParent() == &MBB &&
+ "Split instruction must be in the split block!");
+ assert(SplitI.isBranch() &&
+ "Only designed to split a tail of branch instructions!");
+ assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
+ "Must split on an actual jCC instruction!");
+
+ // Dig out the previous instruction to the split point.
+ MachineInstr &PrevI = *std::prev(SplitI.getIterator());
+ assert(PrevI.isBranch() && "Must split after a branch!");
+ assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
+ "Must split after an actual jCC instruction!");
+ assert(!std::prev(PrevI.getIterator())->isTerminator() &&
+ "Must only have this one terminator prior to the split!");
+
+ // Grab the one successor edge that will stay in `MBB`.
+ MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
+
+ // Analyze the original block to see if we are actually splitting an edge
+ // into two edges. This can happen when we have multiple conditional jumps to
+ // the same successor.
+ bool IsEdgeSplit =
+ std::any_of(SplitI.getIterator(), MBB.instr_end(),
+ [&](MachineInstr &MI) {
+ assert(MI.isTerminator() &&
+ "Should only have spliced terminators!");
+ return llvm::any_of(
+ MI.operands(), [&](MachineOperand &MOp) {
+ return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
+ });
+ }) ||
+ MBB.getFallThrough() == &UnsplitSucc;
+
+ MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
+
+ // Insert the new block immediately after the current one. Any existing
+ // fallthrough will be sunk into this new block anyways.
+ MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
+
+ // Splice the tail of instructions into the new block.
+ NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
+
+ // Copy the necessary succesors (and their probability info) into the new
+ // block.
+ for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
+ if (IsEdgeSplit || *SI != &UnsplitSucc)
+ NewMBB.copySuccessor(&MBB, SI);
+ // Normalize the probabilities if we didn't end up splitting the edge.
+ if (!IsEdgeSplit)
+ NewMBB.normalizeSuccProbs();
+
+ // Now replace all of the moved successors in the original block with the new
+ // block. This will merge their probabilities.
+ for (MachineBasicBlock *Succ : NewMBB.successors())
+ if (Succ != &UnsplitSucc)
+ MBB.replaceSuccessor(Succ, &NewMBB);
+
+ // We should always end up replacing at least one successor.
+ assert(MBB.isSuccessor(&NewMBB) &&
+ "Failed to make the new block a successor!");
+
+ // Now update all the PHIs.
+ for (MachineBasicBlock *Succ : NewMBB.successors()) {
+ for (MachineInstr &MI : *Succ) {
+ if (!MI.isPHI())
+ break;
+
+ for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
+ OpIdx += 2) {
+ MachineOperand &OpV = MI.getOperand(OpIdx);
+ MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
+ assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
+ if (OpMBB.getMBB() != &MBB)
+ continue;
+
+ // Replace the operand for unsplit successors
+ if (!IsEdgeSplit || Succ != &UnsplitSucc) {
+ OpMBB.setMBB(&NewMBB);
+
+ // We have to continue scanning as there may be multiple entries in
+ // the PHI.
+ continue;
+ }
+
+ // When we have split the edge append a new successor.
+ MI.addOperand(MF, OpV);
+ MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
+ break;
+ }
+ }
+ }
+
+ return NewMBB;
+}
+
+bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
+ << " **********\n");
+
+ auto &Subtarget = MF.getSubtarget<X86Subtarget>();
+ MRI = &MF.getRegInfo();
+ TII = Subtarget.getInstrInfo();
+ TRI = Subtarget.getRegisterInfo();
+ PromoteRC = &X86::GR8RegClass;
+
+ if (MF.begin() == MF.end())
+ // Nothing to do for a degenerate empty function...
+ return false;
+
+ SmallVector<MachineInstr *, 4> Copies;
+ for (MachineBasicBlock &MBB : MF)
+ for (MachineInstr &MI : MBB)
+ if (MI.getOpcode() == TargetOpcode::COPY &&
+ MI.getOperand(0).getReg() == X86::EFLAGS)
+ Copies.push_back(&MI);
+
+ for (MachineInstr *CopyI : Copies) {
+ MachineBasicBlock &MBB = *CopyI->getParent();
+
+ MachineOperand &VOp = CopyI->getOperand(1);
+ assert(VOp.isReg() &&
+ "The input to the copy for EFLAGS should always be a register!");
+ MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
+ if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
+ // FIXME: The big likely candidate here are PHI nodes. We could in theory
+ // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
+ // enough that it is probably better to change every other part of LLVM
+ // to avoid creating them. The issue is that once we have PHIs we won't
+ // know which original EFLAGS value we need to capture with our setCCs
+ // below. The end result will be computing a complete set of setCCs that
+ // we *might* want, computing them in every place where we copy *out* of
+ // EFLAGS and then doing SSA formation on all of them to insert necessary
+ // PHI nodes and consume those here. Then hoping that somehow we DCE the
+ // unnecessary ones. This DCE seems very unlikely to be successful and so
+ // we will almost certainly end up with a glut of dead setCC
+ // instructions. Until we have a motivating test case and fail to avoid
+ // it by changing other parts of LLVM's lowering, we refuse to handle
+ // this complex case here.
+ DEBUG(dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
+ CopyDefI.dump());
+ report_fatal_error(
+ "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
+ }
+
+ auto Cleanup = make_scope_exit([&] {
+ // All uses of the EFLAGS copy are now rewritten, kill the copy into
+ // eflags and if dead the copy from.
+ CopyI->eraseFromParent();
+ if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
+ CopyDefI.eraseFromParent();
+ ++NumCopiesEliminated;
+ });
+
+ MachineOperand &DOp = CopyI->getOperand(0);
+ assert(DOp.isDef() && "Expected register def!");
+ assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
+ if (DOp.isDead())
+ continue;
+
+ MachineBasicBlock &TestMBB = *CopyDefI.getParent();
+ auto TestPos = CopyDefI.getIterator();
+ DebugLoc TestLoc = CopyDefI.getDebugLoc();
+
+ DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
+
+ // Scan for usage of newly set EFLAGS so we can rewrite them. We just buffer
+ // jumps because their usage is very constrained.
+ bool FlagsKilled = false;
+ SmallVector<MachineInstr *, 4> JmpIs;
+
+ // Gather the condition flags that have already been preserved in
+ // registers. We do this from scratch each time as we expect there to be
+ // very few of them and we expect to not revisit the same copy definition
+ // many times. If either of those change sufficiently we could build a map
+ // of these up front instead.
+ CondRegArray CondRegs = collectCondsInRegs(TestMBB, CopyDefI);
+
+ for (auto MII = std::next(CopyI->getIterator()), MIE = MBB.instr_end();
+ MII != MIE;) {
+ MachineInstr &MI = *MII++;
+ MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
+ if (!FlagUse) {
+ if (MI.findRegisterDefOperand(X86::EFLAGS)) {
+ // If EFLAGS are defined, it's as-if they were killed. We can stop
+ // scanning here.
+ //
+ // NB!!! Many instructions only modify some flags. LLVM currently
+ // models this as clobbering all flags, but if that ever changes this
+ // will need to be carefully updated to handle that more complex
+ // logic.
+ FlagsKilled = true;
+ break;
+ }
+ continue;
+ }
+
+ DEBUG(dbgs() << " Rewriting use: "; MI.dump());
+
+ // Check the kill flag before we rewrite as that may change it.
+ if (FlagUse->isKill())
+ FlagsKilled = true;
+
+ // Once we encounter a branch, the rest of the instructions must also be
+ // branches. We can't rewrite in place here, so we handle them below.
+ //
+ // Note that we don't have to handle tail calls here, even conditional
+ // tail calls, as those are not introduced into the X86 MI until post-RA
+ // branch folding or black placement. As a consequence, we get to deal
+ // with the simpler formulation of conditional branches followed by tail
+ // calls.
+ if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
+ auto JmpIt = MI.getIterator();
+ do {
+ JmpIs.push_back(&*JmpIt);
+ ++JmpIt;
+ } while (JmpIt != MBB.instr_end() &&
+ X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
+ X86::COND_INVALID);
+ break;
+ }
+
+ // Otherwise we can just rewrite in-place.
+ if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
+ rewriteCMov(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
+ } else if (X86::getCondFromSETOpc(MI.getOpcode()) != X86::COND_INVALID) {
+ rewriteSetCC(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
+ } else if (MI.getOpcode() == TargetOpcode::COPY) {
+ rewriteCopy(MI, *FlagUse, CopyDefI);
+ } else {
+ // We assume that arithmetic instructions that use flags also def them.
+ assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
+ "Expected a def of EFLAGS for this instruction!");
+
+ // NB!!! Several arithmetic instructions only *partially* update
+ // flags. Theoretically, we could generate MI code sequences that
+ // would rely on this fact and observe different flags independently.
+ // But currently LLVM models all of these instructions as clobbering
+ // all the flags in an undef way. We rely on that to simplify the
+ // logic.
+ FlagsKilled = true;
+
+ rewriteArithmetic(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
+ break;
+ }
+
+ // If this was the last use of the flags, we're done.
+ if (FlagsKilled)
+ break;
+ }
+
+ // If we didn't find a kill (or equivalent) check that the flags don't
+ // live-out of the basic block. Currently we don't support lowering copies
+ // of flags that live out in this fashion.
+ if (!FlagsKilled &&
+ llvm::any_of(MBB.successors(), [](MachineBasicBlock *SuccMBB) {
+ return SuccMBB->isLiveIn(X86::EFLAGS);
+ })) {
+ DEBUG({
+ dbgs() << "ERROR: Found a copied EFLAGS live-out from basic block:\n"
+ << "----\n";
+ MBB.dump();
+ dbgs() << "----\n"
+ << "ERROR: Cannot lower this EFLAGS copy!\n";
+ });
+ report_fatal_error(
+ "Cannot lower EFLAGS copy that lives out of a basic block!");
+ }
+
+ // Now rewrite the jumps that use the flags. These we handle specially
+ // because if there are multiple jumps we'll have to do surgery on the CFG.
+ for (MachineInstr *JmpI : JmpIs) {
+ // Past the first jump we need to split the blocks apart.
+ if (JmpI != JmpIs.front())
+ splitBlock(*JmpI->getParent(), *JmpI, *TII);
+
+ rewriteCondJmp(TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
+ }
+
+ // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
+ // the copy's def operand is itself a kill.
+ }
+
+#ifndef NDEBUG
+ for (MachineBasicBlock &MBB : MF)
+ for (MachineInstr &MI : MBB)
+ if (MI.getOpcode() == TargetOpcode::COPY &&
+ (MI.getOperand(0).getReg() == X86::EFLAGS ||
+ MI.getOperand(1).getReg() == X86::EFLAGS)) {
+ DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; MI.dump());
+ llvm_unreachable("Unlowered EFLAGS copy!");
+ }
+#endif
+
+ return true;
+}
+
+/// Collect any conditions that have already been set in registers so that we
+/// can re-use them rather than adding duplicates.
+CondRegArray
+X86FlagsCopyLoweringPass::collectCondsInRegs(MachineBasicBlock &MBB,
+ MachineInstr &CopyDefI) {
+ CondRegArray CondRegs = {};
+
+ // Scan backwards across the range of instructions with live EFLAGS.
+ for (MachineInstr &MI : llvm::reverse(
+ llvm::make_range(MBB.instr_begin(), CopyDefI.getIterator()))) {
+ X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
+ if (Cond != X86::COND_INVALID && MI.getOperand(0).isReg() &&
+ TRI->isVirtualRegister(MI.getOperand(0).getReg()))
+ CondRegs[Cond] = MI.getOperand(0).getReg();
+
+ // Stop scanning when we see the first definition of the EFLAGS as prior to
+ // this we would potentially capture the wrong flag state.
+ if (MI.findRegisterDefOperand(X86::EFLAGS))
+ break;
+ }
+ return CondRegs;
+}
+
+unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond) {
+ unsigned Reg = MRI->createVirtualRegister(PromoteRC);
+ auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
+ TII->get(X86::getSETFromCond(Cond)), Reg);
+ (void)SetI;
+ DEBUG(dbgs() << " save cond: "; SetI->dump());
+ ++NumSetCCsInserted;
+ return Reg;
+}
+
+std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
+ unsigned &CondReg = CondRegs[Cond];
+ unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
+ if (!CondReg && !InvCondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ if (CondReg)
+ return {CondReg, false};
+ else
+ return {InvCondReg, true};
+}
+
+void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator Pos,
+ DebugLoc Loc, unsigned Reg) {
+ // We emit test instructions as register/immediate test against -1. This
+ // allows register allocation to fold a memory operand if needed (that will
+ // happen often due to the places this code is emitted). But hopefully will
+ // also allow us to select a shorter encoding of `testb %reg, %reg` when that
+ // would be equivalent.
+ auto TestI =
+ BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8ri)).addReg(Reg).addImm(-1);
+ (void)TestI;
+ DEBUG(dbgs() << " test cond: "; TestI->dump());
+ ++NumTestsInserted;
+}
+
+void X86FlagsCopyLoweringPass::rewriteArithmetic(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ // Arithmetic is either reading CF or OF. Figure out which condition we need
+ // to preserve in a register.
+ X86::CondCode Cond;
+
+ // The addend to use to reset CF or OF when added to the flag value.
+ int Addend;
+
+ switch (getMnemonicFromOpcode(MI.getOpcode())) {
+ case FlagArithMnemonic::ADC:
+ case FlagArithMnemonic::ADCX:
+ case FlagArithMnemonic::RCL:
+ case FlagArithMnemonic::RCR:
+ case FlagArithMnemonic::SBB:
+ Cond = X86::COND_B; // CF == 1
+ // Set up an addend that when one is added will need a carry due to not
+ // having a higher bit available.
+ Addend = 255;
+ break;
+
+ case FlagArithMnemonic::ADOX:
+ Cond = X86::COND_O; // OF == 1
+ // Set up an addend that when one is added will turn from positive to
+ // negative and thus overflow in the signed domain.
+ Addend = 127;
+ break;
+ }
+
+ // Now get a register that contains the value of the flag input to the
+ // arithmetic. We require exactly this flag to simplify the arithmetic
+ // required to materialize it back into the flag.
+ unsigned &CondReg = CondRegs[Cond];
+ if (!CondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ // Insert an instruction that will set the flag back to the desired value.
+ unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
+ auto AddI =
+ BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
+ .addDef(TmpReg, RegState::Dead)
+ .addReg(CondReg)
+ .addImm(Addend);
+ (void)AddI;
+ DEBUG(dbgs() << " add cond: "; AddI->dump());
+ ++NumAddsInserted;
+ FlagUse.setIsKill(true);
+}
+
+void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc,
+ MachineInstr &CMovI,
+ MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ // First get the register containing this specific condition.
+ X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
+ unsigned CondReg;
+ bool Inverted;
+ std::tie(CondReg, Inverted) =
+ getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
+
+ MachineBasicBlock &MBB = *CMovI.getParent();
+
+ // Insert a direct test of the saved register.
+ insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
+
+ // Rewrite the CMov to use the !ZF flag from the test (but match register
+ // size and memory operand), and then kill its use of the flags afterward.
+ auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
+ CMovI.setDesc(TII->get(X86::getCMovFromCond(
+ Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
+ !CMovI.memoperands_empty())));
+ FlagUse.setIsKill(true);
+ DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
+}
+
+void X86FlagsCopyLoweringPass::rewriteCondJmp(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
+ // First get the register containing this specific condition.
+ X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
+ unsigned CondReg;
+ bool Inverted;
+ std::tie(CondReg, Inverted) =
+ getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
+
+ MachineBasicBlock &JmpMBB = *JmpI.getParent();
+
+ // Insert a direct test of the saved register.
+ insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
+
+ // Rewrite the jump to use the !ZF flag from the test, and kill its use of
+ // flags afterward.
+ JmpI.setDesc(TII->get(
+ X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
+ const int ImplicitEFLAGSOpIdx = 1;
+ JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
+ DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
+}
+
+void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
+ MachineOperand &FlagUse,
+ MachineInstr &CopyDefI) {
+ // Just replace this copy with the the original copy def.
+ MRI->replaceRegWith(MI.getOperand(0).getReg(),
+ CopyDefI.getOperand(0).getReg());
+ MI.eraseFromParent();
+}
+
+void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc,
+ MachineInstr &SetCCI,
+ MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
+ // Note that we can't usefully rewrite this to the inverse without complex
+ // analysis of the users of the setCC. Largely we rely on duplicates which
+ // could have been avoided already being avoided here.
+ unsigned &CondReg = CondRegs[Cond];
+ if (!CondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ // Rewriting this is trivial: we just replace the register and remove the
+ // setcc.
+ MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
+ SetCCI.eraseFromParent();
+}
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index c1fca9f1c18..7c32ca278bc 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -38674,26 +38674,7 @@ bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
}
}
-/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
-/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
-/// we don't adjust the stack we clobber the first frame index.
-/// See X86InstrInfo::copyPhysReg.
-static bool hasCopyImplyingStackAdjustment(const MachineFunction &MF) {
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- return any_of(MRI.reg_instructions(X86::EFLAGS),
- [](const MachineInstr &RI) { return RI.isCopy(); });
-}
-
-void X86TargetLowering::finalizeLowering(MachineFunction &MF) const {
- if (hasCopyImplyingStackAdjustment(MF)) {
- MachineFrameInfo &MFI = MF.getFrameInfo();
- MFI.setHasCopyImplyingStackAdjustment(true);
- }
-
- TargetLoweringBase::finalizeLowering(MF);
-}
-
-SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl,
+SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl,
SDValue Value, SDValue Addr,
SelectionDAG &DAG) const {
const Module *M = DAG.getMachineFunction().getMMI().getModule();
diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h
index 2fdc0c22e39..517ac3a1123 100644
--- a/lib/Target/X86/X86ISelLowering.h
+++ b/lib/Target/X86/X86ISelLowering.h
@@ -1121,8 +1121,6 @@ namespace llvm {
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const override;
- void finalizeLowering(MachineFunction &MF) const override;
-
SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
SDValue Addr, SelectionDAG &DAG)
const override;
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index f5aeb3f10fc..f98375c4437 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -6796,102 +6796,12 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
return;
}
- bool FromEFLAGS = SrcReg == X86::EFLAGS;
- bool ToEFLAGS = DestReg == X86::EFLAGS;
- int Reg = FromEFLAGS ? DestReg : SrcReg;
- bool is32 = X86::GR32RegClass.contains(Reg);
- bool is64 = X86::GR64RegClass.contains(Reg);
-
- if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
- int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
- int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
- int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
- int Pop = is64 ? X86::POP64r : X86::POP32r;
- int PopF = is64 ? X86::POPF64 : X86::POPF32;
- int AX = is64 ? X86::RAX : X86::EAX;
-
- if (!Subtarget.hasLAHFSAHF()) {
- assert(Subtarget.is64Bit() &&
- "Not having LAHF/SAHF only happens on 64-bit.");
- // Moving EFLAGS to / from another register requires a push and a pop.
- // Notice that we have to adjust the stack if we don't want to clobber the
- // first frame index. See X86FrameLowering.cpp - usesTheStack.
- if (FromEFLAGS) {
- BuildMI(MBB, MI, DL, get(PushF));
- BuildMI(MBB, MI, DL, get(Pop), DestReg);
- }
- if (ToEFLAGS) {
- BuildMI(MBB, MI, DL, get(Push))
- .addReg(SrcReg, getKillRegState(KillSrc));
- BuildMI(MBB, MI, DL, get(PopF));
- }
- return;
- }
-
- // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
- // inefficient. Instead:
- // - Save the overflow flag OF into AL using SETO, and restore it using a
- // signed 8-bit addition of AL and INT8_MAX.
- // - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
- // using LAHF/SAHF.
- // - When RAX/EAX is live and isn't the destination register, make sure it
- // isn't clobbered by PUSH/POP'ing it before and after saving/restoring
- // the flags.
- // This approach is ~2.25x faster than using PUSHF/POPF.
- //
- // This is still somewhat inefficient because we don't know which flags are
- // actually live inside EFLAGS. Were we able to do a single SETcc instead of
- // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
- //
- // PUSHF/POPF is also potentially incorrect because it affects other flags
- // such as TF/IF/DF, which LLVM doesn't model.
- //
- // Notice that we have to adjust the stack if we don't want to clobber the
- // first frame index.
- // See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
-
- const TargetRegisterInfo &TRI = getRegisterInfo();
- MachineBasicBlock::LivenessQueryResult LQR =
- MBB.computeRegisterLiveness(&TRI, AX, MI);
- // We do not want to save and restore AX if we do not have to.
- // Moreover, if we do so whereas AX is dead, we would need to set
- // an undef flag on the use of AX, otherwise the verifier will
- // complain that we read an undef value.
- // We do not want to change the behavior of the machine verifier
- // as this is usually wrong to read an undef value.
- if (MachineBasicBlock::LQR_Unknown == LQR) {
- LivePhysRegs LPR(TRI);
- LPR.addLiveOuts(MBB);
- MachineBasicBlock::iterator I = MBB.end();
- while (I != MI) {
- --I;
- LPR.stepBackward(*I);
- }
- // AX contains the top most register in the aliasing hierarchy.
- // It may not be live, but one of its aliases may be.
- for (MCRegAliasIterator AI(AX, &TRI, true);
- AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI)
- LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live
- : MachineBasicBlock::LQR_Dead;
- }
- bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR);
- if (!AXDead)
- BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
- if (FromEFLAGS) {
- BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
- BuildMI(MBB, MI, DL, get(X86::LAHF));
- BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
- }
- if (ToEFLAGS) {
- BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
- BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
- .addReg(X86::AL)
- .addImm(INT8_MAX);
- BuildMI(MBB, MI, DL, get(X86::SAHF));
- }
- if (!AXDead)
- BuildMI(MBB, MI, DL, get(Pop), AX);
- return;
+ if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
+ // FIXME: We use a fatal error here because historically LLVM has tried
+ // lower some of these physreg copies and we want to ensure we get
+ // reasonable bug reports if someone encounters a case no other testing
+ // found. This path should be removed after the LLVM 7 release.
+ report_fatal_error("Unable to copy EFLAGS physical register!");
}
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp
index d0841ba2df0..a0ffdd65e13 100644
--- a/lib/Target/X86/X86TargetMachine.cpp
+++ b/lib/Target/X86/X86TargetMachine.cpp
@@ -62,6 +62,7 @@ void initializeX86CallFrameOptimizationPass(PassRegistry &);
void initializeX86CmovConverterPassPass(PassRegistry &);
void initializeX86ExecutionDomainFixPass(PassRegistry &);
void initializeX86DomainReassignmentPass(PassRegistry &);
+void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
} // end namespace llvm
@@ -80,6 +81,7 @@ extern "C" void LLVMInitializeX86Target() {
initializeX86CmovConverterPassPass(PR);
initializeX86ExecutionDomainFixPass(PR);
initializeX86DomainReassignmentPass(PR);
+ initializeX86FlagsCopyLoweringPassPass(PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
@@ -451,6 +453,7 @@ void X86PassConfig::addPreRegAlloc() {
addPass(createX86CallFrameOptimization());
}
+ addPass(createX86FlagsCopyLoweringPass());
addPass(createX86WinAllocaExpander());
}
void X86PassConfig::addMachineSSAOptimization() {