summaryrefslogtreecommitdiff
path: root/app/hwcrypto/caam.c
blob: 87647c2a965323e8ae5bf95ba97ff9d9d4021ea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*
 * Copyright (C) 2016 Freescale Semiconductor, Inc.
 * Copyright 2017 NXP
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
#include <lk/err_ptr.h>
#include <malloc.h>
#include <openssl/hkdf.h>
#include <openssl/digest.h>
#include <reg.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <uapi/err.h>

#include "caam.h"
#include <imx-regs.h>
#include "fsl_caam_internal.h"

#define TLOG_LVL      TLOG_LVL_DEFAULT
#define TLOG_TAG      "caam_drv"
#include "tlog.h"

struct caam_job_rings {
    uint32_t in[1];  /* single entry input ring */
    uint32_t out[2]; /* single entry output ring (consists of two words) */
};


/*
 * According to CAAM docs max number of descriptors in single sequence is 64
 * You can chain them though
 */
#define MAX_DSC_NUM   64

struct caam_job {
    uint32_t dsc[MAX_DSC_NUM];  /* job descriptors */
    uint32_t dsc_used;          /* number of filled entries */
    uint32_t status;            /* job result */
};

static struct caam_job_rings *g_rings;
static struct caam_job *g_job;

const uint32_t rng_inst_dsc[] = {
    RNG_INST_DESC1,
    RNG_INST_DESC2,
    RNG_INST_DESC3,
    RNG_INST_DESC4,
    RNG_INST_DESC5,
    RNG_INST_DESC6,
    RNG_INST_DESC7,
    RNG_INST_DESC8,
    RNG_INST_DESC9
};

#if WITH_CAAM_SELF_TEST
static void caam_test(void);
#endif

static void caam_clk_get(void)
{
    uint32_t val;

    /* make sure clock is on */
    val = readl(ccm_base + CCM_CAAM_CCGR_OFFSET);
#if defined(MACH_IMX6)
    val |= (3 << 8) | (3 < 10) | (3 << 12);
#elif defined(MACH_IMX7)
    val  = (3 << 0); /* Always enabled (for now) */
#else
#error Unsupported IMX architecture
#endif
    writel(val, ccm_base + CCM_CAAM_CCGR_OFFSET);
}

static void setup_job_rings(void)
{
    int rc;
    struct dma_pmem pmem;

    /* Initialize job ring addresses */
    memset(g_rings, 0, sizeof(*g_rings));
    rc = prepare_dma(g_rings, sizeof(g_rings), DMA_FLAG_TO_DEVICE, &pmem);
    if (rc != 1) {
        TLOGE("prepare_dma failed: %d\n", rc);
        abort();
    }

    writel((uint32_t)pmem.paddr + __offsetof(struct caam_job_rings, in),  CAAM_IRBAR0);  // input ring address
    writel((uint32_t)pmem.paddr + __offsetof(struct caam_job_rings, out), CAAM_ORBAR0);  // output ring address

    /* Initialize job ring sizes */
    writel(countof(g_rings->in), CAAM_IRSR0);
    writel(countof(g_rings->in), CAAM_ORSR0);
}

static void run_job(struct caam_job *job)
{
    int ret;
    uint32_t job_pa;
    struct dma_pmem pmem;

    /* prepare dma job */
    ret = prepare_dma(job->dsc, job->dsc_used * sizeof(uint32_t),
                      DMA_FLAG_TO_DEVICE, &pmem);
    assert(ret == 1);
    job_pa = (uint32_t)pmem.paddr;

    /* Add job to input ring */
    g_rings->out[0] = 0;
    g_rings->out[1] = 0;
    g_rings->in[0] = job_pa;

    ret = prepare_dma(g_rings, sizeof(g_rings), DMA_FLAG_TO_DEVICE, &pmem);
    assert(ret == 1);

    /* get clock */
    caam_clk_get();

    /* start job */
    writel(1, CAAM_IRJAR0);

    /* Wait for job ring to complete the job: 1 completed job expected */
    while(readl(CAAM_ORSFR0) != 1);

    finish_dma(g_rings->out, sizeof(g_rings->out), DMA_FLAG_FROM_DEVICE);

    /* check that descriptor address is the one expected in the out ring */
    assert(g_rings->out[0] == job_pa);

    job->status = g_rings->out[1];

    /* remove job */
    writel(1, CAAM_ORJRR0);
}

int init_caam_env(void)
{
    caam_base = mmap(NULL, CAAM_REG_SIZE,  MMAP_FLAG_IO_HANDLE, CAAM_MMIO_ID);
    if (IS_ERR(caam_base)) {
        TLOGE("caam base mapping failed(%d)!\n", PTR_ERR(caam_base));
        return PTR_ERR(caam_base);
    }

    sram_base = mmap(NULL, CAAM_SEC_RAM_SIZE,  MMAP_FLAG_IO_HANDLE, CAAM_SEC_RAM_MMIO_ID);
    if (IS_ERR(sram_base)) {
        TLOGE("caam secure ram base mapping failed(%d)!\n", PTR_ERR(sram_base));
        return PTR_ERR(sram_base);
    }

    ccm_base = mmap(NULL, CCM_REG_SIZE, MMAP_FLAG_IO_HANDLE, CCM_MMIO_ID);
    if (IS_ERR(ccm_base)) {
        TLOGE("ccm base mapping failed(%d)!\n", PTR_ERR(ccm_base));
        return PTR_ERR(ccm_base);
    }

    TLOGD("caam bases: %p, %p, %p\n", caam_base, sram_base, ccm_base);

    /* allocate rings */
    assert(sizeof(struct caam_job_rings) <= 16); /* TODO handle alignment */
    g_rings = memalign(16, sizeof(struct caam_job_rings));
    if (!g_rings) {
        TLOGE("out of memory allocating rings\n");
        return ERR_NO_MEMORY;
    }

    /* allocate jobs */
    g_job = memalign(MAX_DSC_NUM * sizeof(uint32_t), sizeof(struct caam_job));
    if (!g_job) {
        TLOGE("out of memory allocating job\n");
        return ERR_NO_MEMORY;
    }

    caam_open();
#if WITH_CAAM_SELF_TEST
    caam_test();
#endif

    return 0;
}

void caam_open(void)
{
    uint32_t temp_reg;

    /* switch on CAAM clock */
    caam_clk_get();

    /* Initialize job ring addresses */
    setup_job_rings();

    /* HAB disables interrupts for JR0 so do the same here */
    temp_reg = readl(CAAM_JRCFGR0_LS) | JRCFG_LS_IMSK;
    writel(temp_reg, CAAM_JRCFGR0_LS);

    /* if RNG already instantiated then skip it */
    if ((readl(CAAM_RDSTA) & RDSTA_IF0) != RDSTA_IF0) {
        /* Enter TRNG Program mode */
        writel(RTMCTL_PGM, CAAM_RTMCTL);

        /* Set OSC_DIV field to TRNG */
        temp_reg = readl(CAAM_RTMCTL) | (RNG_TRIM_OSC_DIV << 2);
        writel(temp_reg, CAAM_RTMCTL);

        /* Set delay */
        writel(((RNG_TRIM_ENT_DLY << 16) | 0x09C4), CAAM_RTSDCTL);
        writel((RNG_TRIM_ENT_DLY >> 1), CAAM_RTFRQMIN);
        writel((RNG_TRIM_ENT_DLY << 4), CAAM_RTFRQMAX);

        /* Resume TRNG Run mode */
        temp_reg = readl(CAAM_RTMCTL) ^ RTMCTL_PGM;
        writel(temp_reg, CAAM_RTMCTL);

        temp_reg = readl(CAAM_RTMCTL) | RTMCTL_ERR;
        writel(temp_reg, CAAM_RTMCTL);

        /* init rng job */
        assert(sizeof(rng_inst_dsc) <= sizeof(g_job->dsc));
        memcpy(g_job->dsc, rng_inst_dsc, sizeof(rng_inst_dsc));
        g_job->dsc_used = countof(rng_inst_dsc);

        run_job(g_job);

        if (g_job->status & JOB_RING_STS) {
            TLOGE("job failed (0x%08x)\n", g_job->status);
            abort();
        }

        /* ensure that the RNG was correctly instantiated */
        temp_reg = readl(CAAM_RDSTA);
        if (temp_reg != (RDSTA_IF0 | RDSTA_SKVN)) {
            TLOGE("Bad RNG state 0x%X\n", temp_reg);
            abort();
        }
    }

    return;
}

uint32_t caam_decap_blob(const uint8_t *kmod, size_t kmod_size,
                         uint8_t *plain, const uint8_t *blob, uint32_t size)
{
    int ret;
    uint32_t kmod_pa;
    uint32_t blob_pa;
    uint32_t plain_pa;
    struct dma_pmem pmem;

    assert(size + CAAM_KB_HEADER_LEN < 0xFFFFu);
    assert(kmod_size == 16);

    ret = prepare_dma((void *)kmod, kmod_size, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    kmod_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma((void *)blob, size + CAAM_KB_HEADER_LEN, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    blob_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma((void *)plain, size, DMA_FLAG_FROM_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    plain_pa = (uint32_t)pmem.paddr;

    g_job->dsc[0] = 0xB0800008;
    g_job->dsc[1] = 0x14400010;
    g_job->dsc[2] = kmod_pa;
    g_job->dsc[3] = 0xF0000000 | (0x0000ffff & (size + CAAM_KB_HEADER_LEN));
    g_job->dsc[4] = blob_pa;
    g_job->dsc[5] = 0xF8000000 | (0x0000ffff & (size));
    g_job->dsc[6] = plain_pa;
    g_job->dsc[7] = 0x860D0000;
    g_job->dsc_used = 8;

    run_job(g_job);

    if (g_job->status & JOB_RING_STS) {
        TLOGE("job failed (0x%08x)\n", g_job->status);
        return CAAM_FAILURE;
    }

    finish_dma(plain, size, DMA_FLAG_FROM_DEVICE);
    return CAAM_SUCCESS;
}

uint32_t caam_gen_blob(const uint8_t *kmod, size_t kmod_size,
                       const uint8_t *plain, uint8_t *blob, uint32_t size)
{
    int ret;
    uint32_t kmod_pa;
    uint32_t blob_pa;
    uint32_t plain_pa;
    struct dma_pmem pmem;

    assert(size + CAAM_KB_HEADER_LEN < 0xFFFFu);
    assert(kmod_size == 16);

    ret = prepare_dma((void *)kmod, kmod_size, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    kmod_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma((void *)plain, size, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    plain_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma((void *)blob, size + CAAM_KB_HEADER_LEN, DMA_FLAG_FROM_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    blob_pa = (uint32_t)pmem.paddr;

    g_job->dsc[0] = 0xB0800008;
    g_job->dsc[1] = 0x14400010;
    g_job->dsc[2] = kmod_pa;
    g_job->dsc[3] = 0xF0000000 | (0x0000ffff & (size));
    g_job->dsc[4] = plain_pa;
    g_job->dsc[5] = 0xF8000000 | (0x0000ffff & (size + CAAM_KB_HEADER_LEN));
    g_job->dsc[6] = blob_pa;
    g_job->dsc[7] = 0x870D0000;
    g_job->dsc_used = 8;

    run_job(g_job);

    if (g_job->status & JOB_RING_STS) {
        TLOGE("job failed (0x%08x)\n", g_job->status);
        return CAAM_FAILURE;
    }

    finish_dma(blob, size + CAAM_KB_HEADER_LEN, DMA_FLAG_FROM_DEVICE);
    return CAAM_SUCCESS;
}

uint32_t caam_aes_op(const uint8_t *key, size_t key_size,
                     const uint8_t *in, uint8_t *out, size_t len, bool enc)
{
    int ret;
    uint32_t in_pa;
    uint32_t out_pa;
    uint32_t key_pa;
    struct dma_pmem pmem;

    assert(key_size == 16);
    assert(len <= 0xFFFFu);
    assert(len % 16 == 0);

    ret = prepare_dma((void *)key, key_size, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    key_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma((void *)in, len, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    in_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma(out, len, DMA_FLAG_FROM_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    out_pa = (uint32_t)pmem.paddr;

    /*
     * Now AES key use aeskey.
     * aeskey is derived from the first 16 bytes of RPMB key.
     */
    g_job->dsc[0] = 0xb0800008;
    g_job->dsc[1] = 0x02000010;
    g_job->dsc[2] = key_pa;
    g_job->dsc[3] = enc ? 0x8210020D : 0x8210020C;
    g_job->dsc[4] = 0x22120000 | (0x0000ffff & len);
    g_job->dsc[5] = in_pa;
    g_job->dsc[6] = 0x60300000 | (0x0000ffff & len);
    g_job->dsc[7] = out_pa;
    g_job->dsc_used = 8;

    run_job(g_job);

    if (g_job->status & JOB_RING_STS) {
        TLOGE("job failed (0x%08x)\n", g_job->status);
        return CAAM_FAILURE;
    }

    finish_dma(out, len, DMA_FLAG_FROM_DEVICE);
    return CAAM_SUCCESS;
}

uint32_t caam_hwrng(uint8_t *out, size_t len)
{
    int ret;
    struct dma_pmem pmem;

    while (len) {
        ret = prepare_dma(out, len,
                          DMA_FLAG_FROM_DEVICE | DMA_FLAG_ALLOW_PARTIAL,
                          &pmem);
        if (ret != 1) {
            TLOGE("failed (%d) to prepare dma buffer\n", ret);
            return CAAM_FAILURE;
        }

        g_job->dsc[0] = 0xB0800004;
        g_job->dsc[1] = 0x82500000;
        g_job->dsc[2] = 0x60340000 | (0x0000ffff & pmem.size);
        g_job->dsc[3] = (uint32_t)pmem.paddr;
        g_job->dsc_used = 4;

        run_job(g_job);

        if (g_job->status & JOB_RING_STS) {
            TLOGE("job failed (0x%08x)\n", g_job->status);
            return CAAM_FAILURE;
        }

        finish_dma(out, pmem.size, DMA_FLAG_FROM_DEVICE);

        len -= pmem.size;
        out += pmem.size;
    }

    return CAAM_SUCCESS;
}

void *caam_get_keybox(void)
{
    return sram_base;
}


uint32_t caam_hash(uint8_t *in, uint8_t *out, uint32_t len)
{
    int ret;
    uint32_t in_pa;
    uint32_t out_pa;
    struct dma_pmem pmem;

    assert(len <= 0xFFFFu);

    ret = prepare_dma((void *)in, len, DMA_FLAG_TO_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    in_pa = (uint32_t)pmem.paddr;

    ret = prepare_dma(out, len, DMA_FLAG_FROM_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    out_pa = (uint32_t)pmem.paddr;

    g_job->dsc[0] = 0xB0800006;
    g_job->dsc[1] = 0x8441000D;
    g_job->dsc[2] = 0x24140000 | (0x0000ffff & len);
    g_job->dsc[3] = in_pa;
    g_job->dsc[4] = 0x54200000 | 20;
    g_job->dsc[5] = out_pa;
    g_job->dsc_used = 6;

    run_job(g_job);

    if (g_job->status & JOB_RING_STS) {
        TLOGE("job failed (0x%08x)\n", g_job->status);
        return CAAM_FAILURE;
    }

    finish_dma(out, len, DMA_FLAG_FROM_DEVICE);
    return CAAM_SUCCESS;
}

uint32_t caam_gen_kdfv1_root_key(uint8_t *out, uint32_t size)
{
    int ret;
    uint32_t pa;
    struct dma_pmem pmem;

    assert(size == 32);

    ret = prepare_dma((void *)out, size, DMA_FLAG_FROM_DEVICE, &pmem);
    if (ret != 1) {
        TLOGE("failed (%d) to prepare dma buffer\n", ret);
        return CAAM_FAILURE;
    }
    pa = (uint32_t)pmem.paddr;

    /*
     * This sequence uses caam blob generation protocol in
     * master key verification mode to generate unique for device
     * persistent 256-bit sequence that we will be using a root key
     * for our key derivation function v1. This is the only known way
     * on this platform of producing persistent unique device key that
     * does not require persistent storage. Dsc[2..5] effectively contains
     * 16 bytes of randomly generated salt that gets mixed (among other
     * things) with device master key to produce result.
     */
    g_job->dsc[0] = 0xB080000B;
    g_job->dsc[1] = 0x14C00010;
    g_job->dsc[2] = 0x7083A393;  /* salt word 0 */
    g_job->dsc[3] = 0x2CC0C9F7;  /* salt word 1 */
    g_job->dsc[4] = 0xFC5D2FC0;  /* salt word 2 */
    g_job->dsc[5] = 0x2C4B04E7;  /* salt word 3 */
    g_job->dsc[6] = 0xF0000000;
    g_job->dsc[7] = 0;
    g_job->dsc[8] = 0xF8000030;
    g_job->dsc[9] = pa;
    g_job->dsc[10] = 0x870D0002;
    g_job->dsc_used = 11;

    run_job(g_job);

    if (g_job->status & JOB_RING_STS) {
        TLOGE("job failed (0x%08x)\n", g_job->status);
        return CAAM_FAILURE;
    }

    finish_dma(out, size, DMA_FLAG_FROM_DEVICE);
    return CAAM_SUCCESS;
}


#if  WITH_CAAM_SELF_TEST

/*
 * HWRNG
 */
static void caam_hwrng_test(void)
{
    DECLARE_SG_SAFE_BUF(out1, 32);
    DECLARE_SG_SAFE_BUF(out2, 32);

    caam_hwrng(out1, sizeof(out1));
    caam_hwrng(out2, sizeof(out2));

    if (memcmp(out1, out2, sizeof(out1)) == 0)
        TLOGI("caam hwrng test FAILED!!!\n");
    else
        TLOGI("caam hwrng test PASS!!!\n");
}

/*
 * Blob
 */
static void caam_blob_test(void)
{
    uint i = 0;
    DECLARE_SG_SAFE_BUF(keymd, 16);
    DECLARE_SG_SAFE_BUF(plain, 32);
    DECLARE_SG_SAFE_BUF(plain_bak, 32);
    DECLARE_SG_SAFE_BUF(blob, 128);

    /* generate random key mod */
    caam_hwrng(keymd, sizeof(keymd));

    /* build known input */
    for (i = 0; i< sizeof(plain); i++) {
        plain[i] = i + '0';
        plain_bak[i] = plain[i];
    }

    /* encap  blob */
    caam_gen_blob(keymd, 16, plain, blob, sizeof(plain));
    memset(plain, 0xff, sizeof(plain));

    /* decap blob */
    caam_decap_blob(keymd, 16, plain, blob, sizeof(plain));

    /* compare with original */
    if (memcmp(plain, plain_bak, sizeof(plain)))
        TLOGI("caam blob test FAILED!!!\n");
    else
        TLOGI("caam blob test PASS!!!\n");
}

/*
 *  AES
 */
static void caam_aes_test(void)
{
    DECLARE_SG_SAFE_BUF(key, 16);
    DECLARE_SG_SAFE_BUF(buf1, 32);
    DECLARE_SG_SAFE_BUF(buf2, 32);
    DECLARE_SG_SAFE_BUF(buf3, 32);

    /* generate random key */
    caam_hwrng(key, sizeof(key));

    /* create input */
    for (uint i = 0; i < sizeof(buf1); i++) {
        buf1[i] = i + '0';
    }

    /* reset output */
    memset(buf2, 0x55, sizeof(buf2));
    memset(buf3, 0xAA, sizeof(buf3));

    /* encrypt same data twice */
    caam_aes_op(key, 16, buf1, buf2, sizeof(buf1), true);
    caam_aes_op(key, 16, buf1, buf3, sizeof(buf1), true);

    /* compare results */
    if (memcmp(buf2, buf3, sizeof(buf1)))
        TLOGI("caam AES enc test FAILED!!!\n");
    else
        TLOGI("caam AES enc test PASS!!!\n");

    /* decrypt res */
    caam_aes_op(key, 16, buf3, buf2, sizeof(buf3), false);

    /* compare with original */
    if (memcmp(buf1, buf2, sizeof(buf1)))
        TLOGI("caam AES enc test FAILED!!!\n");
    else
        TLOGI("caam AES enc test PASS!!!\n");
}

/*
 * HASH (SHA-1)
 */
static void caam_hash_test(void)
{
    DECLARE_SG_SAFE_BUF(in, 32);
    DECLARE_SG_SAFE_BUF(hash1, 32);
    DECLARE_SG_SAFE_BUF(hash2, 32);

    /* generate input */
    for (uint i = 0; i < sizeof(in); i++) {
        in[i] = i + '1';
    }

    /* reset output */
    memset(hash1, 0x55, sizeof(hash1));
    memset(hash2, 0xAA, sizeof(hash2));

    /* invoke hash twice */
    caam_hash(in, hash1, sizeof(in));
    caam_hash(in, hash2, sizeof(in));

    /* compare results */
    if (memcmp(hash1, hash2, 20) != 0)
        TLOGI("caam hash test FAILED!!!\n");
    else
        TLOGI("caam hash test PASS!!!\n");
}

static void caam_kdfv1_root_key_test(void)
{
    DECLARE_SG_SAFE_BUF(out1, 32);
    DECLARE_SG_SAFE_BUF(out2, 32);

    caam_gen_kdfv1_root_key(out1, 32);
    caam_gen_kdfv1_root_key(out2, 32);

    if (memcmp(out1, out2, 32) != 0)
        TLOGI("caam gen kdf root key test FAILED!!!\n");
    else
        TLOGI("caam gen kdf root key test PASS!!!\n");
}

static void caam_test(void)
{
    caam_hwrng_test();
    caam_blob_test();
    caam_kdfv1_root_key_test();
    caam_aes_test();
    caam_hash_test();
}

#endif /* WITH_CAAM_SELF_TEST */