summaryrefslogtreecommitdiff
path: root/bluetooth/async_fd_watcher.cc
blob: c4470d06481bd78e6342e2bfc9efd320083c45c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//
// Copyright 2016 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "async_fd_watcher.h"

#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <map>
#include <mutex>
#include <thread>
#include <vector>
#include "fcntl.h"
#include "sys/select.h"
#include "unistd.h"

static const int INVALID_FD = -1;

namespace android {
namespace hardware {
namespace bluetooth {
namespace async {

int AsyncFdWatcher::WatchFdForNonBlockingReads(
    int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
  // Add file descriptor and callback
  {
    std::unique_lock<std::mutex> guard(internal_mutex_);
    watched_fds_[file_descriptor] = on_read_fd_ready_callback;
  }

  // Start the thread if not started yet
  return tryStartThread();
}

int AsyncFdWatcher::ConfigureTimeout(
    const std::chrono::milliseconds timeout,
    const TimeoutCallback& on_timeout_callback) {
  // Add timeout and callback
  {
    std::unique_lock<std::mutex> guard(timeout_mutex_);
    timeout_cb_ = on_timeout_callback;
    timeout_ms_ = timeout;
  }

  notifyThread();
  return 0;
}

void AsyncFdWatcher::StopWatchingFileDescriptors() { stopThread(); }

AsyncFdWatcher::~AsyncFdWatcher() {}

// Make sure to call this with at least one file descriptor ready to be
// watched upon or the thread routine will return immediately
int AsyncFdWatcher::tryStartThread() {
  if (std::atomic_exchange(&running_, true)) return 0;

  // Set up the communication channel
  int pipe_fds[2];
  if (pipe2(pipe_fds, O_NONBLOCK)) return -1;

  notification_listen_fd_ = pipe_fds[0];
  notification_write_fd_ = pipe_fds[1];

  thread_ = std::thread([this]() { ThreadRoutine(); });
  if (!thread_.joinable()) return -1;

  return 0;
}

int AsyncFdWatcher::stopThread() {
  if (!std::atomic_exchange(&running_, false)) return 0;

  notifyThread();
  if (std::this_thread::get_id() != thread_.get_id()) {
    thread_.join();
  }

  {
    std::unique_lock<std::mutex> guard(internal_mutex_);
    watched_fds_.clear();
  }

  {
    std::unique_lock<std::mutex> guard(timeout_mutex_);
    timeout_cb_ = nullptr;
  }

  return 0;
}

int AsyncFdWatcher::notifyThread() {
  uint8_t buffer[] = {0};
  if (TEMP_FAILURE_RETRY(write(notification_write_fd_, &buffer, 1)) < 0) {
    return -1;
  }
  return 0;
}

void AsyncFdWatcher::ThreadRoutine() {
  while (running_) {
    fd_set read_fds;
    FD_ZERO(&read_fds);
    FD_SET(notification_listen_fd_, &read_fds);
    int max_read_fd = INVALID_FD;
    for (auto& it : watched_fds_) {
      FD_SET(it.first, &read_fds);
      max_read_fd = std::max(max_read_fd, it.first);
    }

    struct timeval timeout;
    struct timeval* timeout_ptr = NULL;
    if (timeout_ms_ > std::chrono::milliseconds(0)) {
      timeout.tv_sec = timeout_ms_.count() / 1000;
      timeout.tv_usec = (timeout_ms_.count() % 1000) * 1000;
      timeout_ptr = &timeout;
    }

    // Wait until there is data available to read on some FD.
    int nfds = std::max(notification_listen_fd_, max_read_fd);
    int retval = select(nfds + 1, &read_fds, NULL, NULL, timeout_ptr);

    // There was some error.
    if (retval < 0) continue;

    // Timeout.
    if (retval == 0) {
      // Allow the timeout callback to modify the timeout.
      TimeoutCallback saved_cb;
      {
        std::unique_lock<std::mutex> guard(timeout_mutex_);
        if (timeout_ms_ > std::chrono::milliseconds(0)) saved_cb = timeout_cb_;
      }
      if (saved_cb != nullptr) saved_cb();
      continue;
    }

    // Read data from the notification FD.
    if (FD_ISSET(notification_listen_fd_, &read_fds)) {
      char buffer[] = {0};
      TEMP_FAILURE_RETRY(read(notification_listen_fd_, buffer, 1));
      continue;
    }

    // Invoke the data ready callbacks if appropriate.
    std::vector<decltype(watched_fds_)::value_type> saved_callbacks;
    {
      std::unique_lock<std::mutex> guard(internal_mutex_);
      for (auto& it : watched_fds_) {
        if (FD_ISSET(it.first, &read_fds)) {
          saved_callbacks.push_back(it);
        }
      }
    }

    for (auto& it : saved_callbacks) {
      if (it.second) {
        it.second(it.first);
      }
    }
  }
}

}  // namespace async
}  // namespace bluetooth
}  // namespace hardware
}  // namespace android