aboutsummaryrefslogtreecommitdiff
path: root/bench/f16-dwconv.cc
blob: 94c253ebc62bae4f0ae553c81c6776388d10af95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>

#include <cpuinfo.h>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/dwconv.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/indirection.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>


static void f16_dwconv(benchmark::State& state,
  xnn_f16_dwconv_minmax_unipass_ukernel_function dwconv,
  xnn_init_f16_minmax_params_fn init_params,
  uint32_t cr, uint32_t kr,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (!cpuinfo_initialize()) {
    state.SkipWithError("cpuinfo initialization failed");
    return;
  }
  if (isa_check && !isa_check(state)) {
    return;
  }

  const size_t input_height = state.range(0);
  const size_t input_width = state.range(1);
  const size_t kernel_height = state.range(2);
  const size_t kernel_width = state.range(3);
  const size_t padding_height = state.range(4);
  const size_t padding_width = state.range(5);
  const size_t subsampling = state.range(6);
  const size_t dilation = state.range(7);
  const size_t channels = state.range(8);

  const size_t kernel_size = kernel_height * kernel_width;
  if (kernel_size != kr) {
    state.SkipWithError("kernel size mismatch");
    return;
  }

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
  auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);

  const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
  const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
  const size_t padding_left = padding_width / 2;
  const size_t padding_top = padding_height / 2;
  const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1;
  const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1;
  const size_t output_size = output_height * output_width;
  const size_t step_width = dilation == 1 ? subsampling : kernel_width;
  const size_t step_height = kernel_size + (output_width - 1) * step_width * kernel_height;

  const size_t c_stride = benchmark::utils::RoundUp<size_t>(channels, cr);

  std::vector<uint16_t> a(channels * input_height * input_width + XNN_EXTRA_BYTES / sizeof(uint16_t));
  std::generate(a.begin(), a.end(), std::ref(f16rng));
  std::vector<uint16_t> k(channels * kernel_height * kernel_width);
  std::generate(k.begin(), k.end(), std::ref(f16rng));
  std::vector<uint16_t> b(channels);
  std::generate(b.begin(), b.end(), std::ref(f16rng));

  std::vector<uint16_t> z(channels + XNN_EXTRA_BYTES / sizeof(uint16_t));

  const size_t w_elements = (kernel_size + 1) * c_stride;
  const size_t i_elements = output_height * step_height;
  const size_t c_elements = output_size * channels;
  const size_t num_buffers = 1 +
    benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
      sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements);

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers);
  std::fill(w.begin(), w.end(), 0.0f);
  xnn_pack_f16_dwconv_ghw_w(kernel_height, kernel_width, channels, cr,
      k.data(), b.data(), w.data(), 0 /* extra bytes */, nullptr);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements);
  }

  std::vector<const uint16_t*> i(i_elements * num_buffers);
  xnn_operator convolution_op = { };
  convolution_op.indirection_buffer = reinterpret_cast<const void**>(i.data());
  convolution_op.input              = a.data();
  convolution_op.input_pixel_stride = channels;
  convolution_op.zero_buffer        = z.data();
  convolution_op.input_height       = input_height;
  convolution_op.input_width        = input_width;
  convolution_op.output_height      = output_height;
  convolution_op.output_width       = output_width;
  convolution_op.kernel_height      = kernel_height;
  convolution_op.kernel_width       = kernel_width;
  convolution_op.stride_height      = subsampling;
  convolution_op.stride_width       = subsampling;
  convolution_op.dilation_height    = dilation;
  convolution_op.dilation_width     = dilation;
  convolution_op.padding_top        = padding_top;
  convolution_op.padding_left       = padding_left;

  xnn_indirection_init_dwconv2d(&convolution_op, step_height, step_width, 1 /* log2(sizeof(uint16_t)) */);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements);
  }

  std::vector<uint16_t> c(c_elements * num_buffers);
  std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);

  xnn_f16_minmax_params params;
  init_params(&params, UINT16_C(0xFC00) /* -inf */, UINT16_C(0x7C00) /* inf */);

  size_t buffer_index = 0;
  for (auto _ : state) {
    state.PauseTiming();
    benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
    buffer_index = (buffer_index + 1) % num_buffers;
    state.ResumeTiming();

    for (size_t y = 0; y < output_height; y++) {
      dwconv(channels, output_width,
        reinterpret_cast<const void**>(i.data() + buffer_index * i_elements + step_height * y),
        w.data() + buffer_index * w_elements,
        c.data() + buffer_index * c_elements + y * output_width * channels,
        kernel_height * step_width * sizeof(void*), 0,
        0, z.data(), &params);
    }
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 * output_size * channels * kernel_size, benchmark::Counter::kIsRate);

  state.counters["bytes"] = benchmark::Counter(
    uint64_t(state.iterations()) * (output_size + input_height * input_width + kernel_size + 1 /* bias */) * channels * sizeof(uint16_t),
    benchmark::Counter::kIsRate);
}

#if XNN_ENABLE_ARM_FP16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
  static void f16_dwconv_8x4__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x4__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      8, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_8x4__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x4__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      8, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_8x9__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x9__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      8, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_8x9__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x9__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      8, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_8x25__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x25__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      8, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_8x25__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up8x25__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      8, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x4__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x4__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      16, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x4__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x4__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      16, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x9__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x9__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      16, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x9__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x9__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      16, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x25__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x25__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      16, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_16x25__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up16x25__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      16, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x4__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x4__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      32, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x4__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x4__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      32, 4, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x9__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x9__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      32, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x9__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x9__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      32, 9, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x25__neonfp16arith_acc2(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x25__neonfp16arith_acc2,
      xnn_init_f16_minmax_neon_params,
      32, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  static void f16_dwconv_32x25__neonfp16arith(benchmark::State& state, const char* net) {
    f16_dwconv(state,
      xnn_f16_dwconv_minmax_ukernel_up32x25__neonfp16arith,
      xnn_init_f16_minmax_neon_params,
      32, 25, benchmark::utils::CheckNEONFP16ARITH);
  }

  BENCHMARK_DWCONV(f16_dwconv_8x4__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_8x4__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_8x9__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_8x9__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_8x25__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_8x25__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_16x4__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_16x4__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_16x9__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_16x9__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_16x25__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_16x25__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_32x4__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_32x4__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_32x9__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_32x9__neonfp16arith)
  BENCHMARK_DWCONV(f16_dwconv_32x25__neonfp16arith_acc2)
  BENCHMARK_DWCONV(f16_dwconv_32x25__neonfp16arith)
#endif  // XNN_ENABLE_ARM_FP16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64)

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif