aboutsummaryrefslogtreecommitdiff
path: root/src/operators/convolution-nhwc.c
blob: 12dc39047d5e158b059fdefe9d211c8115c82325 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#include <fp16.h>

#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/cache.h>
#include <xnnpack/common.h>
#include <xnnpack/compute.h>
#include <xnnpack/indirection.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params.h>
#include <xnnpack/post-operation.h>
#include <xnnpack/microparams-init.h>

#ifndef XNN_ENABLE_GEMM_M_SPECIALIZATION
#error "XNN_ENABLE_GEMM_M_SPECIALIZATION is not defined"
#endif

static inline size_t compute_output_dimension_with_tf_same_padding(
    size_t input_dimension,
    size_t subsampling_dimension)
{
  return divide_round_up(input_dimension, subsampling_dimension);
}

static inline const struct dwconv_parameters* find_dwconv_ukernel(
    size_t kernel_size,
    const struct dwconv_parameters* ukernel,
    size_t num_ukernels)
{
  while (num_ukernels-- != 0) {
    if (ukernel->primary_tile == kernel_size) {
      return ukernel;
    }
    ukernel++;
  }
  return NULL;
}

#if XNN_PLATFORM_JIT
static inline uintptr_t cached_code_at_offset(xnn_operator_t op, size_t offset)
{
  return (uintptr_t)op->code_cache->cache.code.start + offset;
}

static size_t get_generated_gemm(
    struct xnn_hmp_gemm_codegen generators,
    struct jit_gemm_params *jit_gemm_params,
    size_t mr,
    size_t group_output_channels,
    size_t nr,
    size_t group_input_channels,
    size_t log2_input_element_size,
    struct xnn_code_cache* code_cache)
{
  size_t offset = XNN_CACHE_NOT_FOUND;
  xnn_jit_gemm_code_generator_function generator = generators.function[XNN_UARCH_DEFAULT];
  if (generator == NULL) {
    goto error;
  }

  enum xnn_status status = xnn_status_success;

  status = xnn_reserve_code_memory(&code_cache->cache.code, XNN_DEFAULT_MICROKERNEL_SIZE);
  if (xnn_status_success != status) {
    xnn_log_error("failed to ensure sufficient space in the code buffer for a microkernel");
    goto error;
  }

  const size_t old_size = code_cache->cache.code.size;
  void* old_code = (uint8_t*) code_cache->cache.code.start + old_size;
  status = generator(&code_cache->cache.code, mr, group_output_channels % nr,
                     group_input_channels << log2_input_element_size,
                     jit_gemm_params);

  if (xnn_status_success != status) {
    xnn_log_error("failed to generate GEMM microkernel");
    goto error;
  }

  const size_t new_size = code_cache->cache.code.size;
  return xnn_get_or_insert_code_cache(code_cache, old_code, new_size - old_size);

error:
  return offset;
}

static void generate_gemms_up_to_max_mr(
    size_t max_mr,
    struct gemm_codegens generators,
    struct jit_gemm_params *jit_gemm_params,
    size_t group_output_channels,
    size_t nr,
    size_t group_input_channels,
    size_t log2_input_element_size,
    xnn_operator_t convolution_op)
{
  assert(XNN_MAX_MR >= max_mr);
  if (convolution_op->code_cache == NULL) {
    return;
  }
  convolution_op->ukernel.gemm.gemm_cases[0].generated_code_offset[XNN_UARCH_DEFAULT] =
      get_generated_gemm(generators.gemm1, jit_gemm_params, 1, group_output_channels, nr, group_input_channels,
                         log2_input_element_size, convolution_op->code_cache);
  for (size_t mr = 2; mr <= max_mr; mr++) {
    convolution_op->ukernel.gemm.gemm_cases[mr - 1].generated_code_offset[XNN_UARCH_DEFAULT] =
        get_generated_gemm(generators.gemm, jit_gemm_params, mr, group_output_channels, nr, group_input_channels,
                           log2_input_element_size, convolution_op->code_cache);
  }
}

static size_t get_generated_igemm(
    struct xnn_hmp_igemm_codegen generators,
    struct jit_gemm_params *jit_gemm_params,
    size_t group_output_channels,
    size_t nr,
    size_t group_input_channels,
    size_t log2_input_element_size,
    size_t kernel_size,
    size_t mr,
    struct xnn_code_cache* code_cache)
{
  size_t offset = XNN_CACHE_NOT_FOUND;
  xnn_jit_igemm_code_generator_function generator = generators.function[XNN_UARCH_DEFAULT];
  if (generator == NULL) {
    goto error;
  }
  enum xnn_status status = xnn_status_success;

  status = xnn_reserve_code_memory(&code_cache->cache.code, XNN_DEFAULT_MICROKERNEL_SIZE);
  if (xnn_status_success != status) {
    xnn_log_error("failed to ensure sufficient space in code buffer for microkernel");
    goto error;
  }

  const size_t old_size = code_cache->cache.code.size;
  void* old_code = (uint8_t*) code_cache->cache.code.start + old_size;
  status = generator(&code_cache->cache.code, mr, group_output_channels % nr,
                     group_input_channels << log2_input_element_size,
                     kernel_size * mr * sizeof(void*), jit_gemm_params);
  if (status != xnn_status_success) {
    xnn_log_error("failed to generate IGEMM microkernel");
    goto error;
  }

  const size_t new_size = code_cache->cache.code.size;
  return xnn_get_or_insert_code_cache(code_cache, old_code, new_size - old_size);

error:
  return offset;
}

static void generate_igemms_up_to_max_mr(
    size_t max_mr,
    struct gemm_codegens generators,
    struct jit_gemm_params *jit_gemm_params,
    size_t group_output_channels,
    size_t nr,
    size_t group_input_channels,
    size_t log2_input_element_size,
    size_t kernel_size,
    xnn_operator_t convolution_op)
{
  assert(XNN_MAX_MR >= max_mr);
  if (convolution_op->code_cache == NULL) {
    return;
  }
  convolution_op->ukernel.igemm.igemm_cases[0].generated_code_offset[XNN_UARCH_DEFAULT] =
      get_generated_igemm(generators.igemm1, jit_gemm_params, group_output_channels, nr, group_input_channels,
                          log2_input_element_size, kernel_size, 1, convolution_op->code_cache);
  for (size_t mr = 2; mr <= max_mr; mr++) {
    convolution_op->ukernel.igemm.igemm_cases[mr - 1].generated_code_offset[XNN_UARCH_DEFAULT] =
      get_generated_igemm(generators.igemm, jit_gemm_params, group_output_channels, nr, group_input_channels,
                          log2_input_element_size, kernel_size, mr, convolution_op->code_cache);
  }
}
#endif  // XNN_PLATFORM_JIT

static enum xnn_status create_convolution2d_nhwc(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    const void* kernel,
    const void* bias,
    uint32_t flags,
    uint32_t log2_input_element_size,
    uint32_t log2_filter_element_size,
    uint32_t bias_element_size,
    xnn_pack_vmulcaddc_w_function pack_vmulcaddc_w,
    xnn_pack_dwconv_hwg_w_function pack_dwconv_hwg_w,
    xnn_pack_dwconv_ghw_w_function pack_dwconv_ghw_w,
    xnn_pack_gemm_goi_w_function pack_gemm_goi_w,
    xnn_pack_conv_kgo_w_function pack_conv_kgo_w,
    xnn_pack_conv_goki_w_function pack_conv_goki_w,
    const void* packing_params,
    int input_padding_byte,
    int packed_weights_padding_byte,
    size_t extra_weights_bytes,
    xnn_init_qc8_scale_params_fn init_scale_params,
    const float* scale_params,
    const void* gemm_params,
    size_t gemm_params_size,
    const void* dwconv_params,
    size_t dwconv_params_size,
    const void* vmulcaddc_params,
    size_t vmulcaddc_params_size,
    const struct gemm_parameters* gemm_parameters,
    const struct dwconv_parameters* dwconv_ukernel,
    const struct vmulcaddc_parameters* vmulcaddc_parameters,
    struct jit_gemm_params* jit_gemm_params,
    bool linear_activation,
    bool relu_activation,
    uint32_t datatype_init_flags,
    enum xnn_operator_type operator_type,
    size_t num_post_operations,
    void* post_operation_params,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  xnn_operator_t convolution_op = NULL;
  enum xnn_status status = xnn_status_uninitialized;

  if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
    xnn_log_error(
      "failed to create %s operator: XNNPACK is not initialized",
      xnn_operator_type_to_string(operator_type));
    goto error;
  }

  status = xnn_status_unsupported_hardware;

  if ((xnn_params.init_flags & datatype_init_flags) != datatype_init_flags) {
    xnn_log_error(
      "failed to create %s operator: operations on data type are not supported",
      xnn_operator_type_to_string(operator_type));
    goto error;
  }

  status = xnn_status_invalid_parameter;

  if (kernel_width == 0 || kernel_height == 0) {
    xnn_log_error(
      "failed to create %s operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
      xnn_operator_type_to_string(operator_type), kernel_width, kernel_height);
    goto error;
  }

  if (subsampling_width == 0 || subsampling_height == 0) {
    xnn_log_error(
      "failed to create %s operator with %" PRIu32 "x%" PRIu32 " subsampling: subsampling dimensions must be non-zero",
      xnn_operator_type_to_string(operator_type), subsampling_width, subsampling_height);
    goto error;
  }

  if (dilation_width == 0 || dilation_height == 0) {
    xnn_log_error(
      "failed to create %s operator with %" PRIu32 "x%" PRIu32 " dilation: dilation dimensions must be non-zero",
      xnn_operator_type_to_string(operator_type), dilation_width, dilation_height);
    goto error;
  }

  if (groups == 0) {
    xnn_log_error(
      "failed to create %s operator with %" PRIu32 " groups: number of groups must be non-zero",
      xnn_operator_type_to_string(operator_type), groups);
    goto error;
  }

  if (group_input_channels == 0) {
    xnn_log_error(
      "failed to create %s operator with %zu input channels per group: number of channels must be non-zero",
      xnn_operator_type_to_string(operator_type), group_input_channels);
    goto error;
  }

  if (group_output_channels == 0) {
    xnn_log_error(
      "failed to create %s operator with %zu output channels per group: number of channels must be non-zero",
      xnn_operator_type_to_string(operator_type), group_output_channels);
    goto error;
  }

  const size_t input_channels = groups * group_input_channels;
  if (input_channel_stride < input_channels) {
    xnn_log_error(
      "failed to create %s operator with input channel stride of %zu: "
      "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
      xnn_operator_type_to_string(operator_type),
      input_channel_stride, groups, group_input_channels);
    goto error;
  }

  const size_t output_channels = groups * group_output_channels;
  if (output_channel_stride < output_channels) {
    xnn_log_error(
      "failed to create %s operator with output channel stride of %zu: "
      "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
      xnn_operator_type_to_string(operator_type),
      output_channel_stride, groups, group_output_channels);
    goto error;
  }

  if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
    xnn_log_error(
      "failed to create depthwise %s operator with %zu input channels per group: "
      "depthwise convolution must have exactly 1 input channel per group",
      xnn_operator_type_to_string(operator_type), group_input_channels);
    goto error;
  }

  const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
  if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
    if (any_padding) {
      xnn_log_error(
        "failed to create %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
        "TensorFlow SAME padding can't be combined with explicit padding specification",
        xnn_operator_type_to_string(operator_type),
        input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
      goto error;
    }
  }

  status = xnn_status_out_of_memory;

  convolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
  if (convolution_op == NULL) {
    xnn_log_error(
      "failed to allocate %zu bytes for %s operator descriptor",
      sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type));
    goto error;
  }

  if (caches != NULL) {
    convolution_op->weights_cache = caches->weights_cache;
    convolution_op->code_cache = caches->code_cache;
  }

  const size_t kernel_size = kernel_height * kernel_width;

  enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_default;
  const bool unit_subsampling = (subsampling_width | subsampling_height) == 1;
  if (group_input_channels == 1 && group_output_channels == 1 && kernel_size == 1 && unit_subsampling && !any_padding && vmulcaddc_parameters != NULL) {
    ukernel_type = xnn_ukernel_type_vmulcaddc;
  } else if (group_input_channels == 1 && group_output_channels == 1 && dwconv_ukernel != NULL)
  {
    ukernel_type = xnn_ukernel_type_dwconv;
  } else if (kernel_size == 1 && unit_subsampling && !any_padding) {
    ukernel_type = xnn_ukernel_type_gemm;
  } else {
    ukernel_type = xnn_ukernel_type_igemm;
  }
  assert(ukernel_type != xnn_ukernel_type_default);

  if (num_post_operations != 0 && ukernel_type != xnn_ukernel_type_gemm) {
    xnn_log_error(
        "convolution with post operations not support for these parameters: "
        "kernel_size: %zu unit_subsampling: %d padding: %d",
        kernel_size, unit_subsampling, any_padding);
    goto error;
  }

  size_t zero_size = 0;
  switch (ukernel_type) {
    case xnn_ukernel_type_vmulcaddc:
    {
      assert(vmulcaddc_parameters != NULL);
      assert(vmulcaddc_params != NULL);

      const size_t c_stride = round_up_po2(groups, vmulcaddc_parameters->channel_tile);
      const size_t packed_weights_size = ((UINT32_C(1) << log2_filter_element_size) + bias_element_size) * c_stride;
      size_t aligned_total_weights_size = round_up_po2(packed_weights_size, XNN_ALLOCATION_ALIGNMENT);
      void* weights_ptr = xnn_get_pointer_to_write_weights(
          convolution_op, aligned_total_weights_size, packed_weights_padding_byte);
      if (weights_ptr == NULL) {
        xnn_log_error("failed to reserve or allocated %zu bytes for %s operator vmulcaddc packed weights",
                      aligned_total_weights_size, xnn_operator_type_to_string(operator_type));
        goto error;
      }

      pack_vmulcaddc_w(
        groups, vmulcaddc_parameters->channel_tile,
        kernel, bias, weights_ptr, packing_params);

      if (use_weights_cache(convolution_op)) {
        convolution_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
            convolution_op->weights_cache, weights_ptr, aligned_total_weights_size);
      }

      memcpy(&convolution_op->params, vmulcaddc_params, vmulcaddc_params_size);

      convolution_op->ukernel.vmulcaddc = (struct xnn_ukernel_vmulcaddc) {
        .function = vmulcaddc_parameters->ukernel,
        .mr = vmulcaddc_parameters->row_tile,
      };
      break;
    }
    case xnn_ukernel_type_dwconv:
    {
      assert(dwconv_ukernel != NULL);
      assert(dwconv_ukernel->primary_tile == kernel_size);

      const size_t c_stride = round_up_po2(groups, dwconv_ukernel->channel_tile);
      const size_t packed_weights_size = ((kernel_size << log2_filter_element_size) + bias_element_size + extra_weights_bytes) * c_stride;
      size_t aligned_total_weights_size = round_up_po2(packed_weights_size, XNN_ALLOCATION_ALIGNMENT);
      void* weights_ptr = xnn_get_pointer_to_write_weights(
          convolution_op, aligned_total_weights_size, packed_weights_padding_byte);
      if (weights_ptr == NULL) {
        xnn_log_error("failed to reserve or allocated %zu bytes for %s operator dwconv packed weights",
                      aligned_total_weights_size, xnn_operator_type_to_string(operator_type));
        goto error;
      }
      memcpy(&convolution_op->params, dwconv_params, dwconv_params_size);

      if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
        pack_dwconv_hwg_w(
          kernel_height, kernel_width,
          groups, dwconv_ukernel->channel_tile,
          kernel, bias, weights_ptr,
          dwconv_ukernel->channel_tile * extra_weights_bytes,
          packing_params);
      } else {
        pack_dwconv_ghw_w(
          kernel_height, kernel_width,
          groups, dwconv_ukernel->channel_tile,
          kernel, bias, weights_ptr,
          dwconv_ukernel->channel_tile * extra_weights_bytes,
          packing_params);
      }

      if (scale_params != NULL) {
        assert(init_scale_params != NULL);

        init_scale_params(
          groups, dwconv_ukernel->channel_tile,
          dwconv_ukernel->channel_tile * ((kernel_size << log2_filter_element_size) + bias_element_size + extra_weights_bytes),
          scale_params,
          (void*) ((uintptr_t) weights_ptr + dwconv_ukernel->channel_tile * ((kernel_size << log2_filter_element_size) + bias_element_size)));
      }

      if (use_weights_cache(convolution_op)) {
        convolution_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
            convolution_op->weights_cache, weights_ptr, aligned_total_weights_size);
      }

      const union dwconv_fused_ukernels* ukernels = &dwconv_ukernel->minmax;
      if (linear_activation && dwconv_ukernel->linear.unipass != NULL) {
        ukernels = &dwconv_ukernel->linear;
      }
      convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) {
        .unipass_function = ukernels->unipass,
        .primary_tile = dwconv_ukernel->primary_tile,
        .incremental_tile = dwconv_ukernel->incremental_tile,
      };

      zero_size = XNN_EXTRA_BYTES + (c_stride << log2_input_element_size);
      break;
    }
    case xnn_ukernel_type_gemm:
    case xnn_ukernel_type_igemm:
    {
      const uint32_t nr = gemm_parameters->nr;
      const uint32_t kr = UINT32_C(1) << gemm_parameters->log2_kr;
      const uint32_t sr = UINT32_C(1) << gemm_parameters->log2_sr;
      const size_t n_stride = round_up(group_output_channels, nr);
      const size_t k_stride = round_up_po2(group_input_channels, kr * sr);

      const size_t packed_group_weights_size = ((kernel_size * k_stride << log2_filter_element_size) + bias_element_size + extra_weights_bytes) * n_stride;
      const size_t aligned_total_weights_size = round_up_po2(packed_group_weights_size * groups, XNN_ALLOCATION_ALIGNMENT);
      void* weights_ptr = xnn_get_pointer_to_write_weights(
        convolution_op, aligned_total_weights_size, packed_weights_padding_byte);
      if (weights_ptr == NULL) {
        xnn_log_error("failed to reserve or allocated %zu bytes for %s operator gemm packed weights",
                      aligned_total_weights_size, xnn_operator_type_to_string(operator_type));
        goto error;
      }
      memcpy(&convolution_op->params, gemm_params, gemm_params_size);
      convolution_op->num_post_operation_params = num_post_operations;
      convolution_op->post_operation_params = post_operation_params;

      const struct gemm_fused_ukernels* gemm_ukernels = &gemm_parameters->minmax;
      const uint32_t mr = gemm_parameters->mr;
      if (linear_activation && gemm_parameters->linear.gemm[mr - 1].function[XNN_UARCH_DEFAULT] != NULL) {
        gemm_ukernels = &gemm_parameters->linear;
      } else if (relu_activation && gemm_parameters->relu.gemm[mr - 1].function[XNN_UARCH_DEFAULT] != NULL) {
        gemm_ukernels = &gemm_parameters->relu;
      }
      switch (ukernel_type) {
        case xnn_ukernel_type_gemm:
            pack_gemm_goi_w(
                groups, group_output_channels, group_input_channels,
                nr, kr, sr,
                kernel, bias, weights_ptr, gemm_parameters->nr * extra_weights_bytes, packing_params);
          convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
            .mr = mr,
            .nr = nr,
            .kr = kr,
            .sr = sr,
          };

          assert(XNN_MAX_MR >= mr);
          for (size_t i = 0; i < mr; i++) {
            convolution_op->ukernel.gemm.gemm_cases[i] = gemm_ukernels->gemm[i];
          }

          #if XNN_PLATFORM_JIT
            generate_gemms_up_to_max_mr(
              mr, gemm_parameters->generator, jit_gemm_params, group_output_channels, nr,
              group_input_channels, log2_input_element_size, convolution_op);
          #endif  // XNN_PLATFORM_JIT

          break;
        case xnn_ukernel_type_igemm:
          if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
            pack_conv_kgo_w(
              groups, group_output_channels, kernel_size,
              nr, kr, sr,
              kernel, bias, weights_ptr, gemm_parameters->nr * extra_weights_bytes, packing_params);
          } else {
            pack_conv_goki_w(
              groups, group_output_channels, kernel_size, group_input_channels,
              nr, kr, sr,
              kernel, bias, weights_ptr, gemm_parameters->nr * extra_weights_bytes, packing_params);
          }
          convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
            .mr = mr,
            .nr = nr,
            .kr = kr,
            .sr = sr,
          };

          assert(XNN_MAX_MR >= mr);
          for (size_t i = 0; i < mr; i++) {
            convolution_op->ukernel.igemm.igemm_cases[i] = gemm_ukernels->igemm[i];
          }

          #if XNN_PLATFORM_JIT
            generate_igemms_up_to_max_mr(
              mr, gemm_parameters->generator, jit_gemm_params, group_output_channels, nr,
              group_input_channels, log2_input_element_size, kernel_size, convolution_op);
          #endif  // XNN_PLATFORM_JIT

          break;
        default:
          XNN_UNREACHABLE;
      }

      if (scale_params != NULL) {
        assert(init_scale_params != NULL);

        void* group_weights = (void*)
          ((uintptr_t) weights_ptr + gemm_parameters->nr * ((kernel_size * k_stride << log2_filter_element_size) + bias_element_size));
        const size_t weights_stride = (kernel_size * k_stride << log2_filter_element_size) + bias_element_size + extra_weights_bytes;
        for (uint32_t group = 0; group < groups; group++) {
          init_scale_params(
            group_output_channels, gemm_parameters->nr,
            gemm_parameters->nr * weights_stride,
            scale_params, group_weights);
          scale_params += group_output_channels;
          group_weights = (void*) ((uintptr_t) group_weights + n_stride * weights_stride);
        }
      }

      if (use_weights_cache(convolution_op)) {
        convolution_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
            convolution_op->weights_cache, weights_ptr, aligned_total_weights_size);
      }

      zero_size = XNN_EXTRA_BYTES + (k_stride << log2_input_element_size);
      break;
    }
    default:
      XNN_UNREACHABLE;
  }

  const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1;
  if (any_padding || tf_same_padding) {
    convolution_op->zero_buffer = xnn_allocate_simd_memory(zero_size);
    if (convolution_op->zero_buffer == NULL) {
      xnn_log_error(
        "failed to allocate %zu bytes for %s operator zero padding",
        zero_size, xnn_operator_type_to_string(operator_type));
      goto error;
    }
    memset(convolution_op->zero_buffer, input_padding_byte, zero_size);
  }

  convolution_op->padding_top = input_padding_top;
  convolution_op->padding_right = input_padding_right;
  convolution_op->padding_bottom = input_padding_bottom;
  convolution_op->padding_left = input_padding_left;

  convolution_op->kernel_height = kernel_height;
  convolution_op->kernel_width = kernel_width;
  convolution_op->stride_height = subsampling_height;
  convolution_op->stride_width = subsampling_width;
  convolution_op->dilation_height = dilation_height;
  convolution_op->dilation_width = dilation_width;
  convolution_op->groups = groups;
  convolution_op->group_input_channels = group_input_channels;
  convolution_op->group_output_channels = group_output_channels;
  convolution_op->input_pixel_stride = input_channel_stride;
  convolution_op->output_pixel_stride = output_channel_stride;

  convolution_op->type = operator_type;
  convolution_op->ukernel.type = ukernel_type;
  convolution_op->flags = flags & ~XNN_FLAG_TENSORFLOW_SAME_PADDING;
  if (tf_same_padding) {
    convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING;
  }

  convolution_op->state = xnn_run_state_invalid;

  *convolution_op_out = convolution_op;
  return xnn_status_success;

error:
  xnn_delete_operator(convolution_op);
  return status;
}

enum xnn_status xnn_create_convolution2d_nhwc_qu8(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    uint8_t input_zero_point,
    float input_scale,
    uint8_t kernel_zero_point,
    float kernel_scale,
    const uint8_t* kernel,
    const int32_t* bias,
    uint8_t output_zero_point,
    float output_scale,
    uint8_t output_min,
    uint8_t output_max,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  if (input_scale <= 0.0f || !isnormal(input_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qu8), input_scale);
    return xnn_status_invalid_parameter;
  }

  if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g kernel scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qu8), kernel_scale);
    return xnn_status_invalid_parameter;
  }

  if (output_scale <= 0.0f || !isnormal(output_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qu8), output_scale);
    return xnn_status_invalid_parameter;
  }

  if (output_min >= output_max) {
    xnn_log_error(
      "failed to create %s operator with [%" PRIu8 ", %" PRIu8 "] output range: range min must be below range max",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qu8), output_min, output_max);
    return xnn_status_invalid_parameter;
  }

  const float requantization_scale = input_scale * kernel_scale / output_scale;
  if (requantization_scale >= 256.0f) {
    xnn_log_error(
      "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
      "requantization scale %.7g is greater or equal to 256.0",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qu8),
      input_scale, kernel_scale, output_scale, requantization_scale);
    return xnn_status_unsupported_parameter;
  }

  const struct xnn_qu8_packing_params packing_params = {
    .input_zero_point = input_zero_point,
    .kernel_zero_point = kernel_zero_point,
  };


  union xnn_qu8_conv_minmax_params gemm_params;
  if XNN_LIKELY(xnn_params.qu8.gemm.init.qu8 != NULL) {
    xnn_params.qu8.gemm.init.qu8(&gemm_params,
      kernel_zero_point, requantization_scale, output_zero_point, output_min, output_max);
  }

  union xnn_qu8_conv_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.qu8.dwconv, XNN_MAX_QU8_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.qu8(&dwconv_params,
      kernel_zero_point, requantization_scale, output_zero_point, output_min, output_max);
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
    sizeof(int32_t) /* sizeof(bias element) */,
    (xnn_pack_vmulcaddc_w_function) NULL,
    (xnn_pack_dwconv_hwg_w_function) xnn_pack_qu8_dwconv_hwg_w,
    (xnn_pack_dwconv_ghw_w_function) xnn_pack_qu8_dwconv_ghw_w,
    (xnn_pack_gemm_goi_w_function) xnn_pack_qu8_gemm_goi_w,
    (xnn_pack_conv_kgo_w_function) xnn_pack_qu8_conv_kgo_w,
    (xnn_pack_conv_goki_w_function) xnn_pack_qu8_conv_goki_w,
    &packing_params, input_zero_point /* input padding byte */, kernel_zero_point /* packed weights padding byte */,
    0 /* extra weights bytes */, NULL /* init scale params fn */, NULL /* scale params */,
    &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    NULL /* vmulcaddc params */, 0,
    &xnn_params.qu8.gemm, dwconv_ukernel, NULL /* vmulcaddc parameters */,
    NULL /* jit_gemm_params */,
    false /* linear activation */, false /* relu activation */, XNN_INIT_FLAG_QU8,
    xnn_operator_type_convolution_nhwc_qu8,
    0, NULL,
    caches,
    convolution_op_out);
}

enum xnn_status xnn_create_convolution2d_nhwc_qs8(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    int8_t input_zero_point,
    float input_scale,
    float kernel_scale,
    const int8_t* kernel,
    const int32_t* bias,
    int8_t output_zero_point,
    float output_scale,
    int8_t output_min,
    int8_t output_max,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  if (input_scale <= 0.0f || !isnormal(input_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qs8), input_scale);
    return xnn_status_invalid_parameter;
  }

  if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g kernel scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qs8), kernel_scale);
    return xnn_status_invalid_parameter;
  }

  if (output_scale <= 0.0f || !isnormal(output_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qs8), output_scale);
    return xnn_status_invalid_parameter;
  }

  if (output_min >= output_max) {
    xnn_log_error(
      "failed to create %s operator with [%" PRId8 ", %" PRId8 "] output range: range min must be below range max",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qs8), output_min, output_max);
    return xnn_status_invalid_parameter;
  }

  const float requantization_scale = input_scale * kernel_scale / output_scale;
  if (requantization_scale >= 256.0f) {
    xnn_log_error(
      "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
      "requantization scale %.7g is greater or equal to 256.0",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qs8),
      input_scale, kernel_scale, output_scale, requantization_scale);
    return xnn_status_unsupported_parameter;
  }

  const struct xnn_qs8_packing_params packing_params = { .input_zero_point = input_zero_point, };

  union xnn_qs8_conv_minmax_params gemm_params;
  if XNN_LIKELY(xnn_params.qs8.gemm.init.qs8 != NULL) {
    xnn_params.qs8.gemm.init.qs8(&gemm_params,
      requantization_scale, output_zero_point, output_min, output_max);
  }

  union xnn_qs8_conv_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.qs8.dwconv, XNN_MAX_QS8_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.qs8(&dwconv_params,
      requantization_scale, output_zero_point, output_min, output_max);
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    0 /* log2(sizeof(input element)) = log2(sizeof(int8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
    sizeof(int32_t) /* sizeof(bias element) */,
    (xnn_pack_vmulcaddc_w_function) NULL,
    (xnn_pack_dwconv_hwg_w_function) xnn_pack_qs8_dwconv_hwg_w,
    (xnn_pack_dwconv_ghw_w_function) xnn_pack_qs8_dwconv_ghw_w,
    (xnn_pack_gemm_goi_w_function) xnn_pack_qs8_gemm_goi_w,
    (xnn_pack_conv_kgo_w_function) xnn_pack_qs8_conv_kgo_w,
    (xnn_pack_conv_goki_w_function) xnn_pack_qs8_conv_goki_w,
    &packing_params, input_zero_point /* input padding byte */, 0 /* packed weights padding byte */,
    0 /* extra weights bytes */, NULL /* init scale params fn */, NULL /* scale params */,
    &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    NULL /* vmulcaddc params */, 0,
    &xnn_params.qs8.gemm, dwconv_ukernel, NULL /* vmulcaddc parameters */,
    NULL /* jit_gemm_params */,
    false /* linear activation */, false /* relu activation */, XNN_INIT_FLAG_QS8,
    xnn_operator_type_convolution_nhwc_qs8,
    0, NULL,
    caches,
    convolution_op_out);
}

enum xnn_status xnn_create_convolution2d_nhwc_qc8(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    int8_t input_zero_point,
    float input_scale,
    const float* kernel_scale,
    const int8_t* kernel,
    const int32_t* bias,
    int8_t output_zero_point,
    float output_scale,
    int8_t output_min,
    int8_t output_max,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  if (input_scale <= 0.0f || !isnormal(input_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qc8), input_scale);
    return xnn_status_invalid_parameter;
  }

  for (size_t output_channel = 0; output_channel < groups * group_output_channels; output_channel++) {
    if (kernel_scale[output_channel] <= 0.0f || !isnormal(kernel_scale[output_channel])) {
      xnn_log_error(
        "failed to create %s operator with %.7g kernel scale in output channel #%zu: "
        "scale must be finite, normalized, and positive",
        xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qc8), kernel_scale[output_channel],
        output_channel);
      return xnn_status_invalid_parameter;
    }
  }

  if (output_scale <= 0.0f || !isnormal(output_scale)) {
    xnn_log_error(
      "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qc8), output_scale);
    return xnn_status_invalid_parameter;
  }

  if (output_min >= output_max) {
    xnn_log_error(
      "failed to create %s operator with [%" PRId8 ", %" PRId8 "] output range: range min must be below range max",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qc8), output_min, output_max);
    return xnn_status_invalid_parameter;
  }

  float* requantization_scale = XNN_SIMD_ALLOCA(groups * group_output_channels * sizeof(float));
  for (size_t output_channel = 0; output_channel < groups * group_output_channels; output_channel++) {
    requantization_scale[output_channel] = input_scale * kernel_scale[output_channel] / output_scale;
    if (requantization_scale[output_channel] >= 256.0f) {
      xnn_log_error(
        "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale in output channel #%zu: "
        "requantization scale %.7g is greater or equal to 256.0",
        xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_qc8),
        input_scale, kernel_scale[output_channel], output_scale,
        output_channel, requantization_scale[output_channel]);
      return xnn_status_unsupported_parameter;
    }
  }

  const struct xnn_qs8_packing_params packing_params = { .input_zero_point = input_zero_point, };

  union xnn_qc8_conv_minmax_params gemm_params;
  if XNN_LIKELY(xnn_params.qc8.gemm.init.qc8 != NULL) {
    xnn_params.qc8.gemm.init.qc8(&gemm_params,
      output_zero_point, output_min, output_max);
  }

  union xnn_qc8_conv_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.qc8.dwconv, XNN_MAX_QC8_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.qc8(&dwconv_params,
      output_zero_point, output_min, output_max);
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    0 /* log2(sizeof(input element)) = log2(sizeof(int8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
    sizeof(int32_t) /* sizeof(bias element) */,
    (xnn_pack_vmulcaddc_w_function) NULL,
    (xnn_pack_dwconv_hwg_w_function) xnn_pack_qs8_dwconv_hwg_w,
    (xnn_pack_dwconv_ghw_w_function) xnn_pack_qs8_dwconv_ghw_w,
    (xnn_pack_gemm_goi_w_function) xnn_pack_qs8_gemm_goi_w,
    (xnn_pack_conv_kgo_w_function) xnn_pack_qs8_conv_kgo_w,
    (xnn_pack_conv_goki_w_function) xnn_pack_qs8_conv_goki_w,
    &packing_params, input_zero_point /* input padding byte */, 0 /* packed weights padding byte */,
    sizeof(float) /* extra weights bytes */, xnn_init_qc8_scale_fp32_params, requantization_scale,
    &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    NULL /* vmulcaddc params */, 0,
    &xnn_params.qc8.gemm, dwconv_ukernel, NULL /* vmulcaddc parameters */,
    NULL /* jit_gemm_params */,
    false /* linear activation */, false /* relu activation */, XNN_INIT_FLAG_QC8,
    xnn_operator_type_convolution_nhwc_qc8,
    0, NULL,
    caches,
    convolution_op_out);
}

enum xnn_status xnn_create_convolution2d_nhwc_f16(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    const void* kernel,
    const void* bias,
    float output_min,
    float output_max,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  if (isnan(output_min)) {
    xnn_log_error(
      "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f16));
    return xnn_status_invalid_parameter;
  }

  if (isnan(output_max)) {
    xnn_log_error(
      "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f16));
    return xnn_status_invalid_parameter;
  }

  const uint16_t fp16_output_min = fp16_ieee_from_fp32_value(output_min);
  const uint16_t fp16_output_max = fp16_ieee_from_fp32_value(output_max);
  const float rounded_output_min = fp16_ieee_to_fp32_value(fp16_output_min);
  const float rounded_output_max = fp16_ieee_to_fp32_value(fp16_output_max);
  if (rounded_output_min >= rounded_output_max) {
    xnn_log_error(
      "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f16), rounded_output_min, rounded_output_max);
    return xnn_status_invalid_parameter;
  }

  union xnn_f16_minmax_params gemm_params;
  if XNN_LIKELY(xnn_params.f16.gemm.init.f16 != NULL) {
    xnn_params.f16.gemm.init.f16(&gemm_params,
      fp16_output_min, fp16_output_max);
  }

  union xnn_f16_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.f16.dwconv, XNN_MAX_F16_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.f16(&dwconv_params, fp16_output_min, fp16_output_max);
  }

  union xnn_f16_minmax_params vmulcaddc_params;
  if XNN_LIKELY(xnn_params.f16.vmulcaddc.init.f16 != NULL) {
    xnn_params.f16.vmulcaddc.init.f16(&vmulcaddc_params, fp16_output_min, fp16_output_max);
  }

  xnn_pack_vmulcaddc_w_function pack_vmulcaddc_w = (xnn_pack_vmulcaddc_w_function) xnn_pack_f16_vmulcaddc_w;
  xnn_pack_dwconv_hwg_w_function pack_dwconv_hwg_w = (xnn_pack_dwconv_hwg_w_function) xnn_pack_f16_dwconv_hwg_w;
  xnn_pack_dwconv_ghw_w_function pack_dwconv_ghw_w = (xnn_pack_dwconv_ghw_w_function) xnn_pack_f16_dwconv_ghw_w;
  xnn_pack_gemm_goi_w_function pack_gemm_goi_w = (xnn_pack_gemm_goi_w_function) xnn_pack_f16_gemm_goi_w;
  xnn_pack_conv_kgo_w_function pack_conv_kgo_w = (xnn_pack_conv_kgo_w_function) xnn_pack_f16_conv_kgo_w;
  xnn_pack_conv_goki_w_function pack_conv_goki_w = (xnn_pack_conv_goki_w_function) xnn_pack_f16_conv_goki_w;
  if (flags & XNN_FLAG_FP32_STATIC_WEIGHTS) {
    pack_vmulcaddc_w = (xnn_pack_vmulcaddc_w_function) xnn_pack_f32_to_f16_vmulcaddc_w;
    pack_dwconv_hwg_w = (xnn_pack_dwconv_hwg_w_function) xnn_pack_f32_to_f16_dwconv_hwg_w;
    pack_dwconv_ghw_w = (xnn_pack_dwconv_ghw_w_function) xnn_pack_f32_to_f16_dwconv_ghw_w;
    pack_gemm_goi_w = (xnn_pack_gemm_goi_w_function) xnn_pack_f32_to_f16_gemm_goi_w;
    pack_conv_kgo_w = (xnn_pack_conv_kgo_w_function) xnn_pack_f32_to_f16_conv_kgo_w;
    pack_conv_goki_w = (xnn_pack_conv_goki_w_function) xnn_pack_f32_to_f16_conv_goki_w;
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    1 /* log2(sizeof(input element)) = log2(sizeof(uint16_t)) */,
    1 /* log2(sizeof(filter element)) = log2(sizeof(uint16_t)) */,
    sizeof(uint16_t) /* sizeof(bias element) */,
    pack_vmulcaddc_w,
    pack_dwconv_hwg_w,
    pack_dwconv_ghw_w,
    pack_gemm_goi_w,
    pack_conv_kgo_w,
    pack_conv_goki_w,
    NULL /* packing params */, 0 /* input padding byte */, 0 /* packed weights padding byte */,
    0 /* extra weights bytes */, NULL /* init scale params fn */, NULL /* scale params */,
    &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    &vmulcaddc_params, sizeof(vmulcaddc_params),
    &xnn_params.f16.gemm, dwconv_ukernel, &xnn_params.f16.vmulcaddc,
    NULL /* jit_gemm_params */,
    false /* linear activation */, false /* relu activation */, XNN_INIT_FLAG_F16,
    xnn_operator_type_convolution_nhwc_f16,
    0, NULL,
    caches,
    convolution_op_out);
}

enum xnn_status xnn_create_convolution2d_nhwc_f32(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    const float* kernel,
    const float* bias,
    float output_min,
    float output_max,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  if (isnan(output_min)) {
    xnn_log_error(
      "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f32));
    return xnn_status_invalid_parameter;
  }

  if (isnan(output_max)) {
    xnn_log_error(
      "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f32));
    return xnn_status_invalid_parameter;
  }

  if (output_min >= output_max) {
    xnn_log_error(
      "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f32), output_min, output_max);
    return xnn_status_invalid_parameter;
  }

  const bool linear_activation = (output_max == INFINITY) && (output_min == -output_max);
  const bool relu_activation = (output_max == INFINITY) && (output_min == 0.0f);

  const struct gemm_parameters* gemm_parameters = &xnn_params.f32.gemm;
  if (gemm_parameters->nr > group_output_channels) {
    // Default micro-kernel is suboptimal. Try to find a better micro-kernel.

    if (xnn_params.f32.gemm2.minmax.igemm[gemm_parameters->mr].function[XNN_UARCH_DEFAULT] != NULL) {
      gemm_parameters = &xnn_params.f32.gemm2;
    }
  }

  union xnn_f32_minmax_params gemm_params;
  if XNN_LIKELY(gemm_parameters->init.f32 != NULL) {
    gemm_parameters->init.f32(&gemm_params, output_min, output_max);
  }

  struct jit_gemm_params jit_gemm_params = {
    .f32_minmax = {
      .min = output_min,
      .max = output_max
    }
  };

  union xnn_f32_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.f32.dwconv, XNN_MAX_F32_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.f32(&dwconv_params, output_min, output_max);
  }

  union xnn_f32_minmax_params vmulcaddc_params;
  if XNN_LIKELY(xnn_params.f32.vmulcaddc.init.f32 != NULL) {
    xnn_params.f32.vmulcaddc.init.f32(&vmulcaddc_params, output_min, output_max);
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
    2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
    sizeof(float) /* sizeof(bias element) */,
    (xnn_pack_vmulcaddc_w_function) xnn_pack_f32_vmulcaddc_w,
    (xnn_pack_dwconv_hwg_w_function) xnn_pack_f32_dwconv_hwg_w,
    (xnn_pack_dwconv_ghw_w_function) xnn_pack_f32_dwconv_ghw_w,
    (xnn_pack_gemm_goi_w_function) xnn_pack_f32_gemm_goi_w,
    (xnn_pack_conv_kgo_w_function) xnn_pack_f32_conv_kgo_w,
    (xnn_pack_conv_goki_w_function) xnn_pack_f32_conv_goki_w,
    NULL /* packing params */, 0 /* input padding byte */, 0 /* packed weights padding byte */,
    0 /* extra weights bytes */, NULL /* init scale params fn */, NULL /* scale params */,
    &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    &vmulcaddc_params, sizeof(vmulcaddc_params),
    gemm_parameters, dwconv_ukernel, &xnn_params.f32.vmulcaddc,
    &jit_gemm_params,
    linear_activation, relu_activation, XNN_INIT_FLAG_F32,
    xnn_operator_type_convolution_nhwc_f32,
    0, NULL,
    caches,
    convolution_op_out);
}

enum xnn_status xnn_create_fused_convolution2d_nhwc_f32(
    uint32_t input_padding_top,
    uint32_t input_padding_right,
    uint32_t input_padding_bottom,
    uint32_t input_padding_left,
    uint32_t kernel_height,
    uint32_t kernel_width,
    uint32_t subsampling_height,
    uint32_t subsampling_width,
    uint32_t dilation_height,
    uint32_t dilation_width,
    uint32_t groups,
    size_t group_input_channels,
    size_t group_output_channels,
    size_t input_channel_stride,
    size_t output_channel_stride,
    const float* kernel,
    const float* bias,
    size_t num_post_operations,
    struct xnn_post_operation* post_operations,
    uint32_t flags,
    xnn_caches_t caches,
    xnn_operator_t* convolution_op_out)
{
  #if !XNN_ENABLE_JIT
    xnn_log_error(
      "failed to create %s operator: convolution with post operations available only if JIT is enabled",
      xnn_operator_type_to_string(xnn_operator_type_convolution_nhwc_f32));
    return xnn_status_invalid_parameter;
  #endif

  // Convolution is specified with linear activation, any clamping should be specified as a post operator.
  const float output_max = INFINITY;
  const float output_min = -INFINITY;

  struct jit_gemm_params jit_gemm_params = {
    .f32_minmax = {
      .min = output_min,
      .max = output_max
    },
    .num_post_operations = num_post_operations,
    .post_operations = post_operations,
  };

  char* post_operation_params = allocate_and_initialize_post_operation_params(num_post_operations, post_operations);

  union xnn_f32_minmax_params gemm_params;
  if XNN_LIKELY(xnn_params.f32.gemm.init.f32 != NULL) {
    xnn_params.f32.gemm.init.f32(&gemm_params, output_min, output_max);
  }

  union xnn_f32_minmax_params dwconv_params;
  const struct dwconv_parameters* dwconv_ukernel =
    find_dwconv_ukernel(kernel_height * kernel_width, xnn_params.f32.dwconv, XNN_MAX_F32_DWCONV_UKERNELS);
  if XNN_LIKELY(dwconv_ukernel != NULL) {
    dwconv_ukernel->init.f32(&dwconv_params, output_min, output_max);
  }

  union xnn_f32_minmax_params vmulcaddc_params;
  if XNN_LIKELY(xnn_params.f32.vmulcaddc.init.f32 != NULL) {
    xnn_params.f32.vmulcaddc.init.f32(&vmulcaddc_params, output_min, output_max);
  }

  return create_convolution2d_nhwc(
    input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
    kernel_height, kernel_width,
    subsampling_height, subsampling_width,
    dilation_height, dilation_width,
    groups, group_input_channels, group_output_channels,
    input_channel_stride, output_channel_stride,
    kernel, bias, flags,
    2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
    2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
    sizeof(float) /* sizeof(bias element) */,
    (xnn_pack_vmulcaddc_w_function) xnn_pack_f32_vmulcaddc_w,
    (xnn_pack_dwconv_hwg_w_function) xnn_pack_f32_dwconv_hwg_w,
    (xnn_pack_dwconv_ghw_w_function) xnn_pack_f32_dwconv_ghw_w,
    (xnn_pack_gemm_goi_w_function) xnn_pack_f32_gemm_goi_w,
    (xnn_pack_conv_kgo_w_function) xnn_pack_f32_conv_kgo_w,
    (xnn_pack_conv_goki_w_function) xnn_pack_f32_conv_goki_w,
    NULL /* packing params */, 0 /* input padding byte */, 0 /* packed weights padding byte */,
    0 /* extra weights bytes */, NULL /* init scale params fn */, NULL /* scale params */,
    (void*) &gemm_params, sizeof(gemm_params),
    &dwconv_params, sizeof(dwconv_params),
    &vmulcaddc_params, sizeof(vmulcaddc_params),
    &xnn_params.f32.gemm, dwconv_ukernel, &xnn_params.f32.vmulcaddc,
    &jit_gemm_params,
    true /* linear_activation */, false /* relu_activation */, XNN_INIT_FLAG_F32,
    xnn_operator_type_convolution_nhwc_f32,
    num_post_operations, post_operation_params,
    caches,
    convolution_op_out);
}

static enum xnn_status setup_convolution2d_nhwc(
  xnn_operator_t convolution_op,
  enum xnn_operator_type expected_operator_type,
  size_t batch_size,
  size_t input_height,
  size_t input_width,
  const void* input,
  void* output,
  uint32_t datatype_init_flags,
  uint32_t log2_input_element_size,
  uint32_t log2_filter_element_size,
  uint32_t extra_weights_elements_size,
  uint32_t log2_output_element_size,
  size_t num_threads)
{
  if (convolution_op->type != expected_operator_type) {
    xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
      xnn_operator_type_to_string(expected_operator_type),
      xnn_operator_type_to_string(convolution_op->type));
    return xnn_status_invalid_parameter;
  }
  convolution_op->state = xnn_run_state_invalid;

  if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
    xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
      xnn_operator_type_to_string(convolution_op->type));
    return xnn_status_uninitialized;
  }

  if ((xnn_params.init_flags & datatype_init_flags) != datatype_init_flags) {
    xnn_log_error(
      "failed to create %s operator: operations on data type are not supported",
      xnn_operator_type_to_string(convolution_op->type));
    return xnn_status_unsupported_hardware;
  }

  if (input_width == 0 || input_height == 0) {
    xnn_log_error(
      "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero",
      xnn_operator_type_to_string(convolution_op->type), input_width, input_height);
    return xnn_status_invalid_parameter;
  }

  if (batch_size == 0) {
    convolution_op->state = xnn_run_state_skip;
    return xnn_status_success;
  }

  if (convolution_op->weights_cache != NULL && !xnn_weights_cache_is_finalized(convolution_op->weights_cache)) {
    xnn_log_error("failed to setup %s operator: weights cache is not finalized",
      xnn_operator_type_to_string(convolution_op->type));
    return xnn_status_invalid_state;
  }

  convolution_op->batch_size = batch_size;
  convolution_op->input_height = input_height;
  convolution_op->input_width = input_width;
  convolution_op->input = input;

  if (convolution_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) {
    convolution_op->output_height = compute_output_dimension_with_tf_same_padding(
        input_height, convolution_op->stride_height);
    convolution_op->output_width = compute_output_dimension_with_tf_same_padding(
        input_width, convolution_op->stride_width);

    const uint32_t effective_kernel_height = (convolution_op->kernel_height - 1) * convolution_op->dilation_height + 1;
    const uint32_t effective_kernel_width = (convolution_op->kernel_width - 1) * convolution_op->dilation_width + 1;
    const size_t total_padding_height =
      (convolution_op->output_height - 1) * convolution_op->stride_height + effective_kernel_height - input_height;
    const size_t total_padding_width =
      (convolution_op->output_width - 1) * convolution_op->stride_width + effective_kernel_width - input_width;
    convolution_op->padding_top = total_padding_height / 2;
    convolution_op->padding_left = total_padding_width / 2;
    convolution_op->padding_bottom = total_padding_height - convolution_op->padding_top;
    convolution_op->padding_right = total_padding_width - convolution_op->padding_left;
  } else {
    convolution_op->output_height = xnn_compute_convolution_output_dimension(
        convolution_op->padding_top + input_height + convolution_op->padding_bottom,
        convolution_op->kernel_height,
        convolution_op->dilation_height,
        convolution_op->stride_height);
    convolution_op->output_width = xnn_compute_convolution_output_dimension(
        convolution_op->padding_left + input_width + convolution_op->padding_right,
        convolution_op->kernel_width,
        convolution_op->dilation_width,
        convolution_op->stride_width);
  }
  convolution_op->output = output;

  switch (convolution_op->ukernel.type) {
    case xnn_ukernel_type_gemm:
    {
      // Convolution maps directly to GEMM and doesn't use indirection buffer.

      const size_t output_height = convolution_op->output_height;
      const size_t output_width = convolution_op->output_width;
      const size_t output_size = output_height * output_width;
      const size_t batch_output_size = batch_size * output_size;

      const size_t groups = convolution_op->groups;
      const size_t group_input_channels = convolution_op->group_input_channels;
      const size_t w_stride = extra_weights_elements_size +
        (round_up_po2(group_input_channels, convolution_op->ukernel.gemm.kr * convolution_op->ukernel.gemm.sr) << log2_filter_element_size);
      const size_t group_output_channels = convolution_op->group_output_channels;

      uint32_t mr = convolution_op->ukernel.gemm.mr;
      const uint32_t nr = convolution_op->ukernel.gemm.nr;
      struct xnn_hmp_gemm_ukernel *gemm_cases = convolution_op->ukernel.gemm.gemm_cases;

      #if XNN_ENABLE_GEMM_M_SPECIALIZATION
        mr = xnn_get_heuristic_mr_gemm(batch_output_size, mr, nr, gemm_cases);
      #else
        if (batch_output_size == 1 && gemm_cases[0].function[XNN_UARCH_DEFAULT] != NULL) {
          mr = 1;
        }
      #endif

      #if XNN_PLATFORM_JIT
        if (convolution_op->code_cache != NULL) {
          const size_t jit_code_offset = gemm_cases[mr - 1].generated_code_offset[XNN_UARCH_DEFAULT];
          if (jit_code_offset != XNN_CACHE_NOT_FOUND) {
            gemm_cases[mr - 1].function[XNN_UARCH_DEFAULT] =
                (xnn_gemm_ukernel_function) cached_code_at_offset(convolution_op, jit_code_offset);
          }
        }
      #endif  // XNN_PLATFORM_JIT
      struct xnn_hmp_gemm_ukernel gemm_ukernel = gemm_cases[mr - 1];

      convolution_op->context.gemm = (struct gemm_context) {
          .k_scaled = group_input_channels << log2_input_element_size,
          .a = input,
          .a_stride = convolution_op->input_pixel_stride << log2_input_element_size,
          .packed_w = packed_weights(convolution_op),
          .w_stride = w_stride,
          .wg_stride = w_stride * round_up(group_output_channels, nr),
          .c = output,
          .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
          .cn_stride = nr << log2_output_element_size,
          .cg_stride = group_output_channels << log2_output_element_size,
          .log2_csize = log2_output_element_size,
          .ukernel = gemm_ukernel,
      };
      memcpy(&convolution_op->context.gemm.params, &convolution_op->params, sizeof(convolution_op->context.gemm.params));
      if (convolution_op->num_post_operation_params == 0) {
        convolution_op->context.gemm.fused_params = &convolution_op->context.gemm.params;
      } else {
        convolution_op->context.gemm.fused_params = convolution_op->post_operation_params;
      }

      #if XNN_TEST_MODE
        const size_t nc = nr;
      #else
        size_t nc = group_output_channels;
        if (num_threads > 1) {
          const size_t num_other_tiles = groups * divide_round_up(batch_output_size, mr);
          const size_t target_tiles_per_thread = 5;
          const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
          if (max_nc < nc) {
            nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
          }
        }
      #endif
      if (groups == 1) {
        #if XNN_MAX_UARCH_TYPES > 1
          if (xnn_is_hmp_gemm_ukernel(gemm_ukernel)) {
            convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d_with_uarch;
            convolution_op->compute.task_2d_tile_2d_with_id = (pthreadpool_task_2d_tile_2d_with_id_t) xnn_compute_hmp_gemm;
          } else {
            convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
            convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
          }
        #else
          convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
          convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
        #endif
        convolution_op->compute.range[0] = batch_output_size;
        convolution_op->compute.range[1] = group_output_channels;
        convolution_op->compute.tile[0] = mr;
        convolution_op->compute.tile[1] = nc;
      } else {
        #if XNN_MAX_UARCH_TYPES > 1
          if (xnn_is_hmp_gemm_ukernel(gemm_ukernel)) {
            convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d_with_uarch;
            convolution_op->compute.task_3d_tile_2d_with_id = (pthreadpool_task_3d_tile_2d_with_id_t) xnn_compute_hmp_grouped_gemm;
          } else {
            convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
            convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_grouped_gemm;
          }
        #else
          convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
          convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_grouped_gemm;
        #endif
        convolution_op->compute.range[0] = groups;
        convolution_op->compute.range[1] = batch_output_size;
        convolution_op->compute.range[2] = group_output_channels;
        convolution_op->compute.tile[0] = mr;
        convolution_op->compute.tile[1] = nc;
      }
      convolution_op->state = xnn_run_state_ready;

      return xnn_status_success;
    }
    case xnn_ukernel_type_igemm:
    {
      const size_t groups = convolution_op->groups;
      const size_t kernel_height = convolution_op->kernel_height;
      const size_t kernel_width = convolution_op->kernel_width;
      const size_t kernel_size = kernel_height * kernel_width;
      const size_t output_height = convolution_op->output_height;
      const size_t output_width = convolution_op->output_width;
      const size_t output_size = output_height * output_width;

      uint32_t mr = convolution_op->ukernel.igemm.mr;
      const uint32_t nr = convolution_op->ukernel.igemm.nr;
      struct xnn_hmp_igemm_ukernel* igemm_cases = convolution_op->ukernel.igemm.igemm_cases;

      #if XNN_ENABLE_GEMM_M_SPECIALIZATION
        mr = xnn_get_heuristic_mr_igemm(output_size, mr, nr, igemm_cases);
      #else
        if (output_size == 1 && igemm_cases[0].function[XNN_UARCH_DEFAULT] != NULL) {
          mr = 1;
        }
      #endif

      #if XNN_PLATFORM_JIT
        if (convolution_op->code_cache != NULL) {
          const size_t jit_code_offset = igemm_cases[mr - 1].generated_code_offset[XNN_UARCH_DEFAULT];
          if (jit_code_offset != XNN_CACHE_NOT_FOUND) {
            igemm_cases[mr - 1].function[XNN_UARCH_DEFAULT] =
                (xnn_igemm_ukernel_function) cached_code_at_offset(convolution_op, jit_code_offset);
          }
        }
      #endif  // XNN_PLATFORM_JIT
      struct xnn_hmp_igemm_ukernel igemm_ukernel = igemm_cases[mr - 1];

      const size_t tiled_output_size = round_up(output_size, mr);
      const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size;

      if (input_height != convolution_op->last_input_height ||
          input_width != convolution_op->last_input_width)
      {
        const void** indirection_buffer = (const void**) xnn_reallocate_memory((void*) convolution_op->indirection_buffer, indirection_buffer_size);
        if (indirection_buffer == NULL) {
          xnn_log_error(
            "failed to allocate %zu bytes for %s operator indirection buffer",
            indirection_buffer_size, xnn_operator_type_to_string(convolution_op->type));
          return xnn_status_out_of_memory;
        }
        convolution_op->indirection_buffer = indirection_buffer;
        convolution_op->last_input = input;
        convolution_op->last_input_height = input_height;
        convolution_op->last_input_width = input_width;

        xnn_indirection_init_conv2d(convolution_op, mr, log2_input_element_size);
      }

      const size_t group_input_channels = convolution_op->group_input_channels;
      const size_t w_stride = extra_weights_elements_size +
        (round_up_po2(group_input_channels, convolution_op->ukernel.igemm.kr * convolution_op->ukernel.igemm.sr) * kernel_size << log2_filter_element_size);
      const size_t group_output_channels = convolution_op->group_output_channels;
      convolution_op->context.igemm = (struct igemm_context) {
          .ks = kernel_size,
          .ks_scaled = kernel_size * mr * sizeof(void*),
          .kc = group_input_channels << log2_input_element_size,
          .w_stride = w_stride,
          .indirect_a = convolution_op->indirection_buffer,
          .a_offset = (size_t) ((uintptr_t) input - (uintptr_t) convolution_op->last_input),
          .zero = convolution_op->zero_buffer,
          .packed_w = packed_weights(convolution_op),
          .c = convolution_op->output,
          .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
          .cn_stride = nr << log2_output_element_size,
          .ga_stride = group_input_channels << log2_input_element_size,
          .gw_stride = w_stride * round_up(group_output_channels, nr),
          .gc_stride = group_output_channels << log2_output_element_size,
          .ba_stride = input_height * input_width * convolution_op->input_pixel_stride << log2_input_element_size,
          .bc_stride = output_size * convolution_op->output_pixel_stride << log2_output_element_size,
          .log2_csize = log2_output_element_size,
          .ukernel = igemm_ukernel,
      };
      memcpy(&convolution_op->context.igemm.params, &convolution_op->params, sizeof(convolution_op->context.igemm.params));

      #if XNN_TEST_MODE
        const size_t nc = nr;
      #else
        size_t nc = group_output_channels;
        if (num_threads > 1) {
          const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr);
          const size_t target_tiles_per_thread = 5;
          const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
          if (max_nc < nc) {
            nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
          }
        }
      #endif
      if (groups == 1) {
        #if XNN_MAX_UARCH_TYPES > 1
          if (xnn_is_hmp_igemm_ukernel(igemm_ukernel)) {
            if (batch_size > 1) {
              convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d_with_uarch;
              convolution_op->compute.task_3d_tile_2d_with_id = (pthreadpool_task_3d_tile_2d_with_id_t) xnn_compute_batch_hmp_igemm;
            } else {
              convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d_with_uarch;
              convolution_op->compute.task_2d_tile_2d_with_id = (pthreadpool_task_2d_tile_2d_with_id_t) xnn_compute_hmp_igemm;
            }
          } else {
            if (batch_size > 1) {
              convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
              convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_batch_igemm;
            } else {
              convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
              convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_igemm;
            }
          }
        #else
          if (batch_size > 1) {
            convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
            convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_batch_igemm;
          } else {
            convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
            convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_igemm;
          }
        #endif
        if (batch_size > 1) {
          convolution_op->compute.range[0] = batch_size;
          convolution_op->compute.range[1] = output_size;
          convolution_op->compute.range[2] = group_output_channels;
        } else {
          convolution_op->compute.range[0] = output_size;
          convolution_op->compute.range[1] = group_output_channels;
        }
        convolution_op->compute.tile[0] = mr;
        convolution_op->compute.tile[1] = nc;
      } else {
        #if XNN_MAX_UARCH_TYPES > 1
          if (xnn_is_hmp_igemm_ukernel(igemm_ukernel)) {
            if (batch_size > 1) {
              convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d_with_uarch;
              convolution_op->compute.task_4d_tile_2d_with_id = (pthreadpool_task_4d_tile_2d_with_id_t) xnn_compute_hmp_grouped_batch_igemm;
            } else {
              convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d_with_uarch;
              convolution_op->compute.task_3d_tile_2d_with_id = (pthreadpool_task_3d_tile_2d_with_id_t) xnn_compute_hmp_grouped_igemm;
            }
          } else {
            if (batch_size > 1) {
              convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d;
              convolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_grouped_batch_igemm;
            } else {
              convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
              convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_grouped_igemm;
            }
          }
        #else
          if (batch_size > 1) {
            convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d;
            convolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_grouped_batch_igemm;
          } else {
            convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
            convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_grouped_igemm;
          }
        #endif
        if (batch_size > 1) {
          convolution_op->compute.range[0] = batch_size;
          convolution_op->compute.range[1] = groups;
          convolution_op->compute.range[2] = output_size;
          convolution_op->compute.range[3] = group_output_channels;
        } else {
          convolution_op->compute.range[0] = groups;
          convolution_op->compute.range[1] = output_size;
          convolution_op->compute.range[2] = group_output_channels;
        }
        convolution_op->compute.tile[0] = mr;
        convolution_op->compute.tile[1] = nc;
      }
      convolution_op->state = xnn_run_state_ready;

      return xnn_status_success;
    }
    case xnn_ukernel_type_dwconv:
    {
      const size_t kernel_height = convolution_op->kernel_height;
      const size_t kernel_width = convolution_op->kernel_width;
      const size_t kernel_size = kernel_height * kernel_width;
      const size_t output_height = convolution_op->output_height;
      const size_t output_width = convolution_op->output_width;
      const size_t step_width = convolution_op->dilation_width == 1 ? convolution_op->stride_width : kernel_width;
      const size_t step_height = kernel_size + (output_width - 1) * step_width * kernel_height;
      if (input_height != convolution_op->last_input_height || input_width != convolution_op->last_input_width) {
        const size_t indirection_buffer_size = sizeof(void*) * output_height * step_height;

        const void** indirection_buffer =
          (const void**) xnn_reallocate_memory(convolution_op->indirection_buffer, indirection_buffer_size);
        if (indirection_buffer == NULL) {
          xnn_log_error("failed to allocate %zu bytes for %s operator indirection buffer",
            indirection_buffer_size, xnn_operator_type_to_string(convolution_op->type));
          return xnn_status_out_of_memory;
        }
        convolution_op->indirection_buffer = indirection_buffer;

        xnn_indirection_init_dwconv2d(convolution_op, step_height, step_width, log2_input_element_size);

        convolution_op->last_input = input;
        convolution_op->last_input_height = input_height;
        convolution_op->last_input_width = input_width;
      }

      const size_t groups = convolution_op->groups;
      convolution_op->context.dwconv = (struct dwconv_context) {
          .indirect_input = convolution_op->indirection_buffer,
          .indirect_input_width_stride = kernel_height * step_width * sizeof(void*),
          .indirect_input_height_stride = step_height * sizeof(void*),
          .input_offset = (size_t) ((uintptr_t) input - (uintptr_t) convolution_op->last_input),
          .input_batch_stride = (input_height * input_width * convolution_op->input_pixel_stride) << log2_input_element_size,
          .packed_weights = packed_weights(convolution_op),
          .output = convolution_op->output,
          .output_batch_stride = (output_height * output_width * convolution_op->output_pixel_stride) << log2_output_element_size,
          .output_height_stride = (output_width * convolution_op->output_pixel_stride) << log2_output_element_size,
          .output_width = output_width,
          .groups = groups,
          .zero = convolution_op->zero_buffer,
          .output_increment = (convolution_op->output_pixel_stride - groups) << log2_output_element_size,
          .unipass_ukernel = convolution_op->ukernel.dwconv.unipass_function,
      };
      memcpy(&convolution_op->context.dwconv.params, &convolution_op->params, sizeof(convolution_op->context.dwconv.params));

      convolution_op->compute.type = xnn_parallelization_type_2d;
      convolution_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_dwconv_unipass;
      convolution_op->compute.range[0] = batch_size;
      convolution_op->compute.range[1] = output_height;
      convolution_op->state = xnn_run_state_ready;

      return xnn_status_success;
    }
    case xnn_ukernel_type_vmulcaddc:
    {
      const size_t batch_output_size = batch_size * convolution_op->output_height * convolution_op->output_width;

      convolution_op->context.vmulcaddc = (struct vmulcaddc_context) {
          .n = convolution_op->groups << log2_input_element_size,
          .x = input,
          .x_stride = convolution_op->input_pixel_stride << log2_input_element_size,
          .w = packed_weights(convolution_op),
          .y = output,
          .y_stride = convolution_op->output_pixel_stride << log2_output_element_size,
          .ukernel = convolution_op->ukernel.vmulcaddc.function,
      };
      memcpy(&convolution_op->context.vmulcaddc.params, &convolution_op->params, sizeof(convolution_op->context.vmulcaddc.params));

      #if XNN_TEST_MODE
        const size_t mc = convolution_op->ukernel.vmulcaddc.mr;
      #else
        size_t mc = batch_output_size;
        if (num_threads > 1) {
          const size_t target_tiles_per_thread = 5;
          const size_t max_mc = divide_round_up(batch_output_size, num_threads * target_tiles_per_thread);
          if (max_mc < mc) {
            const uint32_t mr = convolution_op->ukernel.vmulcaddc.mr;
            mc = min(mc, divide_round_up(mc, max_mc * mr) * mr);
          }
        }
      #endif
      convolution_op->compute.type = xnn_parallelization_type_1d_tile_1d;
      convolution_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_vmulcaddc;
      convolution_op->compute.range[0] = batch_output_size;
      convolution_op->compute.tile[0] = mc;
      convolution_op->state = xnn_run_state_ready;

      return xnn_status_success;
    }
    default:
      XNN_UNREACHABLE;
  }
}

enum xnn_status xnn_setup_convolution2d_nhwc_qu8(
    xnn_operator_t convolution_op,
    size_t batch_size,
    size_t input_height,
    size_t input_width,
    const uint8_t* input,
    uint8_t* output,
    pthreadpool_t threadpool)
{
  return setup_convolution2d_nhwc(
    convolution_op, xnn_operator_type_convolution_nhwc_qu8,
    batch_size, input_height, input_width,
    input, output,
    XNN_INIT_FLAG_QU8,
    0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
    sizeof(int32_t) /* sizeof(extra weights elements) */,
    0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */,
    pthreadpool_get_threads_count(threadpool));
}

enum xnn_status xnn_setup_convolution2d_nhwc_qs8(
    xnn_operator_t convolution_op,
    size_t batch_size,
    size_t input_height,
    size_t input_width,
    const int8_t* input,
    int8_t* output,
    pthreadpool_t threadpool)
{
  return setup_convolution2d_nhwc(
    convolution_op, xnn_operator_type_convolution_nhwc_qs8,
    batch_size, input_height, input_width,
    input, output,
    XNN_INIT_FLAG_QS8,
    0 /* log2(sizeof(input element)) = log2(sizeof(int8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
    sizeof(int32_t) /* sizeof(extra weights elements) */,
    0 /* log2(sizeof(output element)) = log2(sizeof(int8_t)) */,
    pthreadpool_get_threads_count(threadpool));
}

enum xnn_status xnn_setup_convolution2d_nhwc_qc8(
    xnn_operator_t convolution_op,
    size_t batch_size,
    size_t input_height,
    size_t input_width,
    const int8_t* input,
    int8_t* output,
    pthreadpool_t threadpool)
{
  return setup_convolution2d_nhwc(
    convolution_op, xnn_operator_type_convolution_nhwc_qc8,
    batch_size, input_height, input_width,
    input, output,
    XNN_INIT_FLAG_QC8,
    0 /* log2(sizeof(input element)) = log2(sizeof(int8_t)) */,
    0 /* log2(sizeof(filter element)) = log2(sizeof(int8_t)) */,
    sizeof(int32_t) + sizeof(float) /* sizeof(extra weights elements) */,
    0 /* log2(sizeof(output element)) = log2(sizeof(int8_t)) */,
    pthreadpool_get_threads_count(threadpool));
}

enum xnn_status xnn_setup_convolution2d_nhwc_f16(
    xnn_operator_t convolution_op,
    size_t batch_size,
    size_t input_height,
    size_t input_width,
    const void* input,
    void* output,
    pthreadpool_t threadpool)
{
  return setup_convolution2d_nhwc(
    convolution_op, xnn_operator_type_convolution_nhwc_f16,
    batch_size, input_height, input_width,
    input, output,
    XNN_INIT_FLAG_F16,
    1 /* log2(sizeof(input element)) = log2(sizeof(uint16_t)) */,
    1 /* log2(sizeof(filter element)) = log2(sizeof(uint16_t)) */,
    sizeof(uint16_t) /* sizeof(extra weights elements) */,
    1 /* log2(sizeof(output element)) = log2(sizeof(uint16_t)) */,
    pthreadpool_get_threads_count(threadpool));
}

enum xnn_status xnn_setup_convolution2d_nhwc_f32(
    xnn_operator_t convolution_op,
    size_t batch_size,
    size_t input_height,
    size_t input_width,
    const float* input,
    float* output,
    pthreadpool_t threadpool)
{
  return setup_convolution2d_nhwc(
    convolution_op, xnn_operator_type_convolution_nhwc_f32,
    batch_size, input_height, input_width,
    input, output,
    XNN_INIT_FLAG_F32,
    2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
    2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
    sizeof(float) /* sizeof(extra weights elements) */,
    2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
    pthreadpool_get_threads_count(threadpool));
}