aboutsummaryrefslogtreecommitdiff
path: root/src/libANGLE/Program.cpp
blob: 3b65c836f54b6f116c44952517cda6b460a5387e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.

#include "libANGLE/Program.h"

#include <algorithm>
#include <utility>

#include "common/angle_version_info.h"
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/platform_helpers.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/ErrorStrings.h"
#include "libANGLE/MemoryProgramCache.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/Version.h"
#include "libANGLE/capture/FrameCapture.h"
#include "libANGLE/features.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/renderer/ContextImpl.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "libANGLE/trace.h"
#include "platform/PlatformMethods.h"
#include "platform/autogen/FrontendFeatures_autogen.h"

namespace gl
{

namespace
{
void InitUniformBlockLinker(const ProgramState &state, UniformBlockLinker *blockLinker)
{
    for (ShaderType shaderType : AllShaderTypes())
    {
        const SharedCompiledShaderState &shader = state.getAttachedShader(shaderType);
        if (shader)
        {
            blockLinker->addShaderBlocks(shaderType, &shader->uniformBlocks);
        }
    }
}

void InitShaderStorageBlockLinker(const ProgramState &state, ShaderStorageBlockLinker *blockLinker)
{
    for (ShaderType shaderType : AllShaderTypes())
    {
        const SharedCompiledShaderState &shader = state.getAttachedShader(shaderType);
        if (shader)
        {
            blockLinker->addShaderBlocks(shaderType, &shader->shaderStorageBlocks);
        }
    }
}

// Provides a mechanism to access the result of asynchronous linking.
class LinkEvent : angle::NonCopyable
{
  public:
    virtual ~LinkEvent() {}

    // Please be aware that these methods may be called under a gl::Context other
    // than the one where the LinkEvent was created.
    //
    // Waits until the linking is actually done. Returns true if the linking
    // succeeded, false otherwise.
    virtual angle::Result wait(const Context *context) = 0;
    // Peeks whether the linking is still ongoing.
    virtual bool isLinking() = 0;
};

// Wraps an already done linking.
class LinkEventDone final : public LinkEvent
{
  public:
    LinkEventDone(angle::Result result) : mResult(result) {}
    angle::Result wait(const Context *context) override { return mResult; }
    bool isLinking() override { return false; }

  private:
    angle::Result mResult;
};

void ScheduleSubTasks(const std::shared_ptr<angle::WorkerThreadPool> &workerThreadPool,
                      std::vector<std::shared_ptr<rx::LinkSubTask>> &tasks,
                      std::vector<std::shared_ptr<angle::WaitableEvent>> *eventsOut)
{
    eventsOut->reserve(tasks.size());
    for (const std::shared_ptr<rx::LinkSubTask> &subTask : tasks)
    {
        eventsOut->push_back(workerThreadPool->postWorkerTask(subTask));
    }
}
}  // anonymous namespace

const char *GetLinkMismatchErrorString(LinkMismatchError linkError)
{
    switch (linkError)
    {
        case LinkMismatchError::TYPE_MISMATCH:
            return "Type";
        case LinkMismatchError::ARRAYNESS_MISMATCH:
            return "Array-ness";
        case LinkMismatchError::ARRAY_SIZE_MISMATCH:
            return "Array size";
        case LinkMismatchError::PRECISION_MISMATCH:
            return "Precision";
        case LinkMismatchError::STRUCT_NAME_MISMATCH:
            return "Structure name";
        case LinkMismatchError::FIELD_NUMBER_MISMATCH:
            return "Field number";
        case LinkMismatchError::FIELD_NAME_MISMATCH:
            return "Field name";

        case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH:
            return "Interpolation type";
        case LinkMismatchError::INVARIANCE_MISMATCH:
            return "Invariance";

        case LinkMismatchError::BINDING_MISMATCH:
            return "Binding layout qualifier";
        case LinkMismatchError::LOCATION_MISMATCH:
            return "Location layout qualifier";
        case LinkMismatchError::OFFSET_MISMATCH:
            return "Offset layout qualifier";
        case LinkMismatchError::INSTANCE_NAME_MISMATCH:
            return "Instance name qualifier";
        case LinkMismatchError::FORMAT_MISMATCH:
            return "Format qualifier";

        case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH:
            return "Layout qualifier";
        case LinkMismatchError::MATRIX_PACKING_MISMATCH:
            return "Matrix Packing";

        case LinkMismatchError::FIELD_LOCATION_MISMATCH:
            return "Field location";
        case LinkMismatchError::FIELD_STRUCT_NAME_MISMATCH:
            return "Field structure name";
        default:
            UNREACHABLE();
            return "";
    }
}

template <typename T>
void UpdateInterfaceVariable(std::vector<T> *block, const sh::ShaderVariable &var)
{
    if (!var.isStruct())
    {
        block->emplace_back(var);
        block->back().resetEffectiveLocation();
    }

    for (const sh::ShaderVariable &field : var.fields)
    {
        ASSERT(!var.name.empty() || var.isShaderIOBlock);

        // Shader I/O block naming is similar to UBOs and SSBOs:
        //
        //     in Block
        //     {
        //         type field;  // produces "field"
        //     };
        //
        //     in Block2
        //     {
        //         type field;  // produces "Block2.field"
        //     } block2;
        //
        const std::string &baseName = var.isShaderIOBlock ? var.structOrBlockName : var.name;
        const std::string prefix    = var.name.empty() ? "" : baseName + ".";

        if (!field.isStruct())
        {
            sh::ShaderVariable fieldCopy = field;
            fieldCopy.updateEffectiveLocation(var);
            fieldCopy.name = prefix + field.name;
            block->emplace_back(fieldCopy);
        }

        for (const sh::ShaderVariable &nested : field.fields)
        {
            sh::ShaderVariable nestedCopy = nested;
            nestedCopy.updateEffectiveLocation(field);
            nestedCopy.name = prefix + field.name + "." + nested.name;
            block->emplace_back(nestedCopy);
        }
    }
}

// Saves the linking context for later use in resolveLink().
struct Program::LinkingState
{
    LinkingVariables linkingVariables;
    ProgramLinkedResources resources;
    std::unique_ptr<LinkEvent> linkEvent;
    bool linkingFromBinary;
};

const char *const g_fakepath = "C:\\fakepath";

// InfoLog implementation.
InfoLog::InfoLog() : mLazyStream(nullptr) {}

InfoLog::~InfoLog() {}

size_t InfoLog::getLength() const
{
    if (!mLazyStream)
    {
        return 0;
    }

    const std::string &logString = mLazyStream->str();
    return logString.empty() ? 0 : logString.length() + 1;
}

void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
    size_t index = 0;

    if (bufSize > 0)
    {
        const std::string logString(str());

        if (!logString.empty())
        {
            index = std::min(static_cast<size_t>(bufSize) - 1, logString.length());
            memcpy(infoLog, logString.c_str(), index);
        }

        infoLog[index] = '\0';
    }

    if (length)
    {
        *length = static_cast<GLsizei>(index);
    }
}

// append a sanitized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
    ensureInitialized();

    std::string msg(message);

    size_t found;
    do
    {
        found = msg.find(g_fakepath);
        if (found != std::string::npos)
        {
            msg.erase(found, strlen(g_fakepath));
        }
    } while (found != std::string::npos);

    if (!msg.empty())
    {
        *mLazyStream << message << std::endl;
    }
}

void InfoLog::reset()
{
    if (mLazyStream)
    {
        mLazyStream.reset(nullptr);
    }
}

bool InfoLog::empty() const
{
    if (!mLazyStream)
    {
        return true;
    }

    return mLazyStream->rdbuf()->in_avail() == 0;
}

void LogLinkMismatch(InfoLog &infoLog,
                     const std::string &variableName,
                     const char *variableType,
                     LinkMismatchError linkError,
                     const std::string &mismatchedStructOrBlockFieldName,
                     ShaderType shaderType1,
                     ShaderType shaderType2)
{
    std::ostringstream stream;
    stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '"
           << variableName;

    if (!mismatchedStructOrBlockFieldName.empty())
    {
        stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName;
    }

    stream << "' differ between " << GetShaderTypeString(shaderType1) << " and "
           << GetShaderTypeString(shaderType2) << " shaders.";

    infoLog << stream.str();
}

bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock)
{
    // Only 'packed' blocks are allowed to be considered inactive.
    return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED;
}

// VariableLocation implementation.
VariableLocation::VariableLocation() : index(kUnused), arrayIndex(0), ignored(false) {}

VariableLocation::VariableLocation(unsigned int arrayIndexIn, unsigned int index)
    : index(index), ignored(false)
{
    ASSERT(arrayIndex != GL_INVALID_INDEX);
    SetBitField(arrayIndex, arrayIndexIn);
}

// ProgramBindings implementation.
ProgramBindings::ProgramBindings() {}

ProgramBindings::~ProgramBindings() {}

void ProgramBindings::bindLocation(GLuint index, const std::string &name)
{
    mBindings[name] = index;
}

int ProgramBindings::getBindingByName(const std::string &name) const
{
    auto iter = mBindings.find(name);
    return (iter != mBindings.end()) ? iter->second : -1;
}

template <typename T>
int ProgramBindings::getBinding(const T &variable) const
{
    return getBindingByName(variable.name);
}

ProgramBindings::const_iterator ProgramBindings::begin() const
{
    return mBindings.begin();
}

ProgramBindings::const_iterator ProgramBindings::end() const
{
    return mBindings.end();
}

std::map<std::string, GLuint> ProgramBindings::getStableIterationMap() const
{
    return std::map<std::string, GLuint>(mBindings.begin(), mBindings.end());
}

// ProgramAliasedBindings implementation.
ProgramAliasedBindings::ProgramAliasedBindings() {}

ProgramAliasedBindings::~ProgramAliasedBindings() {}

void ProgramAliasedBindings::bindLocation(GLuint index, const std::string &name)
{
    mBindings[name] = ProgramBinding(index);

    // EXT_blend_func_extended spec: "If it specifies the base name of an array,
    // it identifies the resources associated with the first element of the array."
    //
    // Normalize array bindings so that "name" and "name[0]" map to the same entry.
    // If this binding is of the form "name[0]", then mark the "name" binding as
    // aliased but do not update it yet in case "name" is not actually an array.
    size_t nameLengthWithoutArrayIndex;
    unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
    if (arrayIndex == 0)
    {
        std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
        auto iter            = mBindings.find(baseName);
        if (iter != mBindings.end())
        {
            iter->second.aliased = true;
        }
    }
}

int ProgramAliasedBindings::getBindingByName(const std::string &name) const
{
    auto iter = mBindings.find(name);
    return (iter != mBindings.end()) ? iter->second.location : -1;
}

int ProgramAliasedBindings::getBindingByLocation(GLuint location) const
{
    for (const auto &iter : mBindings)
    {
        if (iter.second.location == location)
        {
            return iter.second.location;
        }
    }
    return -1;
}

template <typename T>
int ProgramAliasedBindings::getBinding(const T &variable) const
{
    const std::string &name = variable.name;

    // Check with the normalized array name if applicable.
    if (variable.isArray())
    {
        size_t nameLengthWithoutArrayIndex;
        unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
        if (arrayIndex == 0)
        {
            std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
            auto iter            = mBindings.find(baseName);
            // If "name" exists and is not aliased, that means it was modified more
            // recently than its "name[0]" form and should be used instead of that.
            if (iter != mBindings.end() && !iter->second.aliased)
            {
                return iter->second.location;
            }
        }
        else if (arrayIndex == GL_INVALID_INDEX)
        {
            auto iter = mBindings.find(variable.name);
            // If "name" exists and is not aliased, that means it was modified more
            // recently than its "name[0]" form and should be used instead of that.
            if (iter != mBindings.end() && !iter->second.aliased)
            {
                return iter->second.location;
            }
            // The base name was aliased, so use the name with the array notation.
            return getBindingByName(name + "[0]");
        }
    }

    return getBindingByName(name);
}
template int ProgramAliasedBindings::getBinding<UsedUniform>(const UsedUniform &variable) const;
template int ProgramAliasedBindings::getBinding<ProgramOutput>(const ProgramOutput &variable) const;
template int ProgramAliasedBindings::getBinding<sh::ShaderVariable>(
    const sh::ShaderVariable &variable) const;

ProgramAliasedBindings::const_iterator ProgramAliasedBindings::begin() const
{
    return mBindings.begin();
}

ProgramAliasedBindings::const_iterator ProgramAliasedBindings::end() const
{
    return mBindings.end();
}

std::map<std::string, ProgramBinding> ProgramAliasedBindings::getStableIterationMap() const
{
    return std::map<std::string, ProgramBinding>(mBindings.begin(), mBindings.end());
}

// ProgramState implementation.
ProgramState::ProgramState(rx::GLImplFactory *factory)
    : mLabel(),
      mAttachedShaders{},
      mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
      mBinaryRetrieveableHint(false),
      mSeparable(false),
      mExecutable(new ProgramExecutable(factory, &mInfoLog))
{}

ProgramState::~ProgramState()
{
    ASSERT(!hasAnyAttachedShader());
}

const std::string &ProgramState::getLabel()
{
    return mLabel;
}

SharedCompiledShaderState ProgramState::getAttachedShader(ShaderType shaderType) const
{
    ASSERT(shaderType != ShaderType::InvalidEnum);
    return mAttachedShaders[shaderType];
}

bool ProgramState::hasAnyAttachedShader() const
{
    for (const SharedCompiledShaderState &shader : mAttachedShaders)
    {
        if (shader)
        {
            return true;
        }
    }
    return false;
}

ShaderType ProgramState::getAttachedTransformFeedbackStage() const
{
    if (mAttachedShaders[ShaderType::Geometry])
    {
        return ShaderType::Geometry;
    }
    if (mAttachedShaders[ShaderType::TessEvaluation])
    {
        return ShaderType::TessEvaluation;
    }
    return ShaderType::Vertex;
}

// The common portion of parallel link and load jobs
class Program::MainLinkLoadTask : public angle::Closure
{
  public:
    MainLinkLoadTask(const std::shared_ptr<angle::WorkerThreadPool> &subTaskWorkerPool,
                     ProgramState *state,
                     std::shared_ptr<rx::LinkTask> &&linkTask)
        : mSubTaskWorkerPool(subTaskWorkerPool), mState(*state), mLinkTask(std::move(linkTask))
    {
        ASSERT(subTaskWorkerPool.get());
    }
    ~MainLinkLoadTask() override = default;

    angle::Result getResult(const Context *context)
    {
        InfoLog &infoLog = mState.getExecutable().getInfoLog();

        ANGLE_TRY(mResult);
        ANGLE_TRY(mLinkTask->getResult(context, infoLog));

        for (const std::shared_ptr<rx::LinkSubTask> &task : mSubTasks)
        {
            ANGLE_TRY(task->getResult(context, infoLog));
        }

        return angle::Result::Continue;
    }

    void waitSubTasks() { angle::WaitableEvent::WaitMany(&mSubTaskWaitableEvents); }

    bool areSubTasksLinking()
    {
        if (mLinkTask->isLinkingInternally())
        {
            return true;
        }
        return !angle::WaitableEvent::AllReady(&mSubTaskWaitableEvents);
    }

  protected:
    void scheduleSubTasks(std::vector<std::shared_ptr<rx::LinkSubTask>> &&linkSubTasks,
                          std::vector<std::shared_ptr<rx::LinkSubTask>> &&postLinkSubTasks)
    {
        // Only one of linkSubTasks or postLinkSubTasks should have tasks.  This is because
        // currently, there is no support for ordering them.
        ASSERT(linkSubTasks.empty() || postLinkSubTasks.empty());

        // Schedule link subtasks
        mSubTasks = std::move(linkSubTasks);
        ScheduleSubTasks(mSubTaskWorkerPool, mSubTasks, &mSubTaskWaitableEvents);

        // Schedule post-link subtasks
        mState.mExecutable->mPostLinkSubTasks = std::move(postLinkSubTasks);
        ScheduleSubTasks(mSubTaskWorkerPool, mState.mExecutable->mPostLinkSubTasks,
                         &mState.mExecutable->mPostLinkSubTaskWaitableEvents);

        // No further use for worker pool.  Release it earlier than the destructor (to avoid
        // situations such as http://anglebug.com/8661)
        mSubTaskWorkerPool.reset();
    }

    std::shared_ptr<angle::WorkerThreadPool> mSubTaskWorkerPool;
    ProgramState &mState;
    std::shared_ptr<rx::LinkTask> mLinkTask;

    // Subtask and wait events
    std::vector<std::shared_ptr<rx::LinkSubTask>> mSubTasks;
    std::vector<std::shared_ptr<angle::WaitableEvent>> mSubTaskWaitableEvents;

    // The result of the front-end portion of the link.  The backend's result is retrieved via
    // mLinkTask->getResult().  The subtask results are retrieved via mSubTasks similarly.
    angle::Result mResult;
};

class Program::MainLinkTask final : public Program::MainLinkLoadTask
{
  public:
    MainLinkTask(const std::shared_ptr<angle::WorkerThreadPool> &subTaskWorkerPool,
                 const Caps &caps,
                 const Limitations &limitations,
                 const Version &clientVersion,
                 bool isWebGL,
                 Program *program,
                 ProgramState *state,
                 LinkingVariables *linkingVariables,
                 ProgramLinkedResources *resources,
                 std::shared_ptr<rx::LinkTask> &&linkTask)
        : MainLinkLoadTask(subTaskWorkerPool, state, std::move(linkTask)),
          mCaps(caps),
          mLimitations(limitations),
          mClientVersion(clientVersion),
          mIsWebGL(isWebGL),
          mProgram(program),
          mLinkingVariables(linkingVariables),
          mResources(resources)
    {}
    ~MainLinkTask() override = default;

    void operator()() override { mResult = linkImpl(); }

  private:
    angle::Result linkImpl();

    // State needed for link
    const Caps &mCaps;
    const Limitations &mLimitations;
    const Version mClientVersion;
    const bool mIsWebGL;
    Program *mProgram;
    LinkingVariables *mLinkingVariables;
    ProgramLinkedResources *mResources;
};

class Program::MainLoadTask final : public Program::MainLinkLoadTask
{
  public:
    MainLoadTask(const std::shared_ptr<angle::WorkerThreadPool> &subTaskWorkerPool,
                 Program *program,
                 ProgramState *state,
                 std::shared_ptr<rx::LinkTask> &&loadTask)
        : MainLinkLoadTask(subTaskWorkerPool, state, std::move(loadTask))
    {}
    ~MainLoadTask() override = default;

    void operator()() override { mResult = loadImpl(); }

  private:
    angle::Result loadImpl();
};

class Program::MainLinkLoadEvent final : public LinkEvent
{
  public:
    MainLinkLoadEvent(const std::shared_ptr<MainLinkLoadTask> &linkTask,
                      const std::shared_ptr<angle::WaitableEvent> &waitEvent)
        : mLinkTask(linkTask), mWaitableEvent(waitEvent)
    {}
    ~MainLinkLoadEvent() override {}

    angle::Result wait(const Context *context) override
    {
        ANGLE_TRACE_EVENT0("gpu.angle", "Program::MainLinkLoadEvent::wait");

        mWaitableEvent->wait();
        mLinkTask->waitSubTasks();

        return mLinkTask->getResult(context);
    }
    bool isLinking() override
    {
        return !mWaitableEvent->isReady() || mLinkTask->areSubTasksLinking();
    }

  private:
    std::shared_ptr<MainLinkLoadTask> mLinkTask;
    std::shared_ptr<angle::WaitableEvent> mWaitableEvent;
};

angle::Result Program::MainLinkTask::linkImpl()
{
    ProgramMergedVaryings mergedVaryings;

    // Do the front-end portion of the link.
    ANGLE_TRY(mProgram->linkJobImpl(mCaps, mLimitations, mClientVersion, mIsWebGL,
                                    mLinkingVariables, mResources, &mergedVaryings));

    // Next, do the backend portion of the link.  If there are any subtasks to be scheduled, they
    // are collected now.
    std::vector<std::shared_ptr<rx::LinkSubTask>> linkSubTasks;
    std::vector<std::shared_ptr<rx::LinkSubTask>> postLinkSubTasks;
    mLinkTask->link(*mResources, mergedVaryings, &linkSubTasks, &postLinkSubTasks);

    // Must be after backend's link to avoid misleading the linker about input/output variables.
    mState.updateProgramInterfaceInputs();
    mState.updateProgramInterfaceOutputs();

    // Schedule the subtasks
    scheduleSubTasks(std::move(linkSubTasks), std::move(postLinkSubTasks));

    return angle::Result::Continue;
}

angle::Result Program::MainLoadTask::loadImpl()
{
    std::vector<std::shared_ptr<rx::LinkSubTask>> linkSubTasks;
    std::vector<std::shared_ptr<rx::LinkSubTask>> postLinkSubTasks;
    mLinkTask->load(&linkSubTasks, &postLinkSubTasks);

    // Schedule the subtasks
    scheduleSubTasks(std::move(linkSubTasks), std::move(postLinkSubTasks));

    return angle::Result::Continue;
}

Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, ShaderProgramID handle)
    : mSerial(factory->generateSerial()),
      mState(factory),
      mProgram(factory->createProgram(mState)),
      mValidated(false),
      mDeleteStatus(false),
      mIsBinaryCached(true),
      mLinked(false),
      mProgramHash{0},
      mRefCount(0),
      mResourceManager(manager),
      mHandle(handle),
      mAttachedShaders{}
{
    ASSERT(mProgram);

    unlink();
}

Program::~Program()
{
    ASSERT(!mProgram);
}

void Program::onDestroy(const Context *context)
{
    resolveLink(context);
    waitForPostLinkTasks(context);

    for (ShaderType shaderType : AllShaderTypes())
    {
        Shader *shader = getAttachedShader(shaderType);
        if (shader != nullptr)
        {
            shader->release(context);
        }
        mState.mShaderCompileJobs[shaderType].reset();
        mState.mAttachedShaders[shaderType].reset();
        mAttachedShaders[shaderType] = nullptr;
    }

    mProgram->destroy(context);
    UninstallExecutable(context, &mState.mExecutable);

    ASSERT(!mState.hasAnyAttachedShader());
    SafeDelete(mProgram);

    delete this;
}
ShaderProgramID Program::id() const
{
    return mHandle;
}

angle::Result Program::setLabel(const Context *context, const std::string &label)
{
    ASSERT(!mLinkingState);
    mState.mLabel = label;

    if (mProgram)
    {
        return mProgram->onLabelUpdate(context);
    }
    return angle::Result::Continue;
}

const std::string &Program::getLabel() const
{
    ASSERT(!mLinkingState);
    return mState.mLabel;
}

void Program::attachShader(const Context *context, Shader *shader)
{
    resolveLink(context);

    ShaderType shaderType = shader->getType();
    ASSERT(shaderType != ShaderType::InvalidEnum);

    shader->addRef();
    mAttachedShaders[shaderType] = shader;
}

void Program::detachShader(const Context *context, Shader *shader)
{
    resolveLink(context);

    ShaderType shaderType = shader->getType();
    ASSERT(shaderType != ShaderType::InvalidEnum);

    ASSERT(mAttachedShaders[shaderType] == shader);
    shader->release(context);
    mAttachedShaders[shaderType] = nullptr;
    mState.mShaderCompileJobs[shaderType].reset();
    mState.mAttachedShaders[shaderType].reset();
}

int Program::getAttachedShadersCount() const
{
    ASSERT(!mLinkingState);
    int numAttachedShaders = 0;
    for (const Shader *shader : mAttachedShaders)
    {
        if (shader != nullptr)
        {
            ++numAttachedShaders;
        }
    }

    return numAttachedShaders;
}

Shader *Program::getAttachedShader(ShaderType shaderType) const
{
    return mAttachedShaders[shaderType];
}

void Program::bindAttributeLocation(const Context *context, GLuint index, const char *name)
{
    ASSERT(!mLinkingState);
    mState.mAttributeBindings.bindLocation(index, name);
}

void Program::bindUniformLocation(const Context *context,
                                  UniformLocation location,
                                  const char *name)
{
    ASSERT(!mLinkingState);
    mState.mUniformLocationBindings.bindLocation(location.value, name);
}

void Program::bindFragmentOutputLocation(const Context *context, GLuint index, const char *name)
{
    ASSERT(!mLinkingState);
    mState.mFragmentOutputLocations.bindLocation(index, name);
}

void Program::bindFragmentOutputIndex(const Context *context, GLuint index, const char *name)
{
    ASSERT(!mLinkingState);
    mState.mFragmentOutputIndexes.bindLocation(index, name);
}

void Program::makeNewExecutable(const Context *context)
{
    ASSERT(!mLinkingState);
    waitForPostLinkTasks(context);

    // Unlink the program, but do not clear the validation-related caching yet, since we can still
    // use the previously linked program if linking the shaders fails.
    mLinked = false;

    mLinkingState = std::make_unique<LinkingState>();

    // By default, set the link event as failing.  If link succeeds, it will be replaced by the
    // appropriate event.
    mLinkingState->linkEvent = std::make_unique<LinkEventDone>(angle::Result::Stop);

    InstallExecutable(
        context,
        std::make_shared<ProgramExecutable>(context->getImplementation(), &mState.mInfoLog),
        &mState.mExecutable);
    onStateChange(angle::SubjectMessage::ProgramUnlinked);

    // If caching is disabled, consider it cached!
    mIsBinaryCached = context->getFrontendFeatures().disableProgramCaching.enabled;
}

void Program::setupExecutableForLink(const Context *context)
{
    // Create a new executable to hold the result of the link.  The previous executable may still be
    // referenced by the contexts the program is current on, and any program pipelines it may be
    // used in.  Once link succeeds, the users of the program are notified to update their
    // executables.
    makeNewExecutable(context);

    // For every attached shader, get the compile job and compiled state.  This is done at link time
    // (instead of earlier, such as attachShader time), because the shader could get recompiled
    // between attach and link.
    //
    // Additionally, make sure the backend is also able to cache the compiled state of its own
    // ShaderImpl objects.
    ShaderMap<rx::ShaderImpl *> shaderImpls = {};
    for (ShaderType shaderType : AllShaderTypes())
    {
        Shader *shader = mAttachedShaders[shaderType];
        SharedCompileJob compileJob;
        SharedCompiledShaderState shaderCompiledState;
        if (shader != nullptr)
        {
            compileJob              = shader->getCompileJob(&shaderCompiledState);
            shaderImpls[shaderType] = shader->getImplementation();
        }
        mState.mShaderCompileJobs[shaderType] = std::move(compileJob);
        mState.mAttachedShaders[shaderType]   = std::move(shaderCompiledState);
    }
    mProgram->prepareForLink(shaderImpls);

    const angle::FrontendFeatures &frontendFeatures = context->getFrontendFeatures();
    if (frontendFeatures.dumpShaderSource.enabled)
    {
        dumpProgramInfo(context);
    }

    // Make sure the executable state is in sync with the program.
    //
    // The transform feedback buffer mode is duplicated in the executable as is the only link-input
    // that is also needed at draw time.
    //
    // The transform feedback varying names are duplicated because the program pipeline link is not
    // currently able to use the link result of the program directly (and redoes the link, using
    // these names).
    //
    // The isSeparable state is duplicated for convenience; it is used when setting sampler/image
    // uniforms.
    mState.mExecutable->mPod.transformFeedbackBufferMode = mState.mTransformFeedbackBufferMode;
    mState.mExecutable->mTransformFeedbackVaryingNames   = mState.mTransformFeedbackVaryingNames;
    mState.mExecutable->mPod.isSeparable                 = mState.mSeparable;

    mState.mInfoLog.reset();
}

angle::Result Program::link(const Context *context, angle::JobResultExpectancy resultExpectancy)
{
    auto *platform   = ANGLEPlatformCurrent();
    double startTime = platform->currentTime(platform);

    setupExecutableForLink(context);

    mProgramHash              = {0};
    MemoryProgramCache *cache = (context->getFrontendFeatures().disableProgramCaching.enabled)
                                    ? nullptr
                                    : context->getMemoryProgramCache();

    // TODO: http://anglebug.com/4530: Enable program caching for separable programs
    if (cache && !isSeparable())
    {
        std::lock_guard<std::mutex> cacheLock(context->getProgramCacheMutex());
        egl::CacheGetResult result = egl::CacheGetResult::NotFound;
        ANGLE_TRY(cache->getProgram(context, this, &mProgramHash, &result));

        switch (result)
        {
            case egl::CacheGetResult::Success:
            {
                // No need to care about the compile jobs any more.
                mState.mShaderCompileJobs = {};

                std::scoped_lock lock(mHistogramMutex);
                // Succeeded in loading the binaries in the front-end, back end may still be loading
                // asynchronously
                double delta = platform->currentTime(platform) - startTime;
                int us       = static_cast<int>(delta * 1000'000.0);
                ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us);
                return angle::Result::Continue;
            }
            case egl::CacheGetResult::Rejected:
                // If the program binary was found but rejected, the program executable may be in an
                // inconsistent half-loaded state.  In that case, start over.
                mLinkingState.reset();
                setupExecutableForLink(context);
                break;
            case egl::CacheGetResult::NotFound:
            default:
                break;
        }
    }

    const Caps &caps               = context->getCaps();
    const Limitations &limitations = context->getLimitations();
    const Version &clientVersion   = context->getClientVersion();
    const bool isWebGL             = context->isWebGL();

    // Ask the backend to prepare the link task.
    std::shared_ptr<rx::LinkTask> linkTask;
    ANGLE_TRY(mProgram->link(context, &linkTask));

    std::unique_ptr<LinkingState> linkingState = std::make_unique<LinkingState>();

    // Prepare the main link job
    std::shared_ptr<MainLinkLoadTask> mainLinkTask(new MainLinkTask(
        context->getLinkSubTaskThreadPool(), caps, limitations, clientVersion, isWebGL, this,
        &mState, &linkingState->linkingVariables, &linkingState->resources, std::move(linkTask)));

    // While the subtasks are currently always thread-safe, the main task is not safe on all
    // backends.  A front-end feature selects whether the single-threaded pool must be used.
    const angle::JobThreadSafety threadSafety =
        context->getFrontendFeatures().linkJobIsThreadSafe.enabled ? angle::JobThreadSafety::Safe
                                                                   : angle::JobThreadSafety::Unsafe;
    std::shared_ptr<angle::WaitableEvent> mainLinkEvent =
        context->postCompileLinkTask(mainLinkTask, threadSafety, resultExpectancy);

    mLinkingState                    = std::move(linkingState);
    mLinkingState->linkingFromBinary = false;
    mLinkingState->linkEvent = std::make_unique<MainLinkLoadEvent>(mainLinkTask, mainLinkEvent);

    return angle::Result::Continue;
}

angle::Result Program::linkJobImpl(const Caps &caps,
                                   const Limitations &limitations,
                                   const Version &clientVersion,
                                   bool isWebGL,
                                   LinkingVariables *linkingVariables,
                                   ProgramLinkedResources *resources,
                                   ProgramMergedVaryings *mergedVaryingsOut)
{
    // Cache load failed, fall through to normal linking.
    unlink();

    // Validate we have properly attached shaders after checking the cache.  Since the input to the
    // shaders is part of the cache key, if there was a cache hit, the shaders would have linked
    // correctly.
    if (!linkValidateShaders())
    {
        return angle::Result::Stop;
    }

    linkShaders();

    linkingVariables->initForProgram(mState);
    resources->init(&mState.mExecutable->mUniformBlocks, &mState.mExecutable->mUniforms,
                    &mState.mExecutable->mUniformNames, &mState.mExecutable->mUniformMappedNames,
                    &mState.mExecutable->mShaderStorageBlocks,
                    &mState.mExecutable->mBufferVariables,
                    &mState.mExecutable->mAtomicCounterBuffers);

    updateLinkedShaderStages();

    InitUniformBlockLinker(mState, &resources->uniformBlockLinker);
    InitShaderStorageBlockLinker(mState, &resources->shaderStorageBlockLinker);

    if (mState.mAttachedShaders[ShaderType::Compute])
    {
        GLuint combinedImageUniforms = 0;
        if (!linkUniforms(caps, clientVersion, &resources->unusedUniforms, &combinedImageUniforms))
        {
            return angle::Result::Stop;
        }

        GLuint combinedShaderStorageBlocks = 0u;
        if (!LinkValidateProgramInterfaceBlocks(
                caps, clientVersion, isWebGL, mState.mExecutable->getLinkedShaderStages(),
                *resources, mState.mInfoLog, &combinedShaderStorageBlocks))
        {
            return angle::Result::Stop;
        }

        // [OpenGL ES 3.1] Chapter 8.22 Page 203:
        // A link error will be generated if the sum of the number of active image uniforms used in
        // all shaders, the number of active shader storage blocks, and the number of active
        // fragment shader outputs exceeds the implementation-dependent value of
        // MAX_COMBINED_SHADER_OUTPUT_RESOURCES.
        if (combinedImageUniforms + combinedShaderStorageBlocks >
            static_cast<GLuint>(caps.maxCombinedShaderOutputResources))
        {
            mState.mInfoLog
                << "The sum of the number of active image uniforms, active shader storage blocks "
                   "and active fragment shader outputs exceeds "
                   "MAX_COMBINED_SHADER_OUTPUT_RESOURCES ("
                << caps.maxCombinedShaderOutputResources << ")";
            return angle::Result::Stop;
        }
    }
    else
    {
        if (!linkAttributes(caps, limitations, isWebGL))
        {
            return angle::Result::Stop;
        }

        if (!linkVaryings())
        {
            return angle::Result::Stop;
        }

        GLuint combinedImageUniforms = 0;
        if (!linkUniforms(caps, clientVersion, &resources->unusedUniforms, &combinedImageUniforms))
        {
            return angle::Result::Stop;
        }

        GLuint combinedShaderStorageBlocks = 0u;
        if (!LinkValidateProgramInterfaceBlocks(
                caps, clientVersion, isWebGL, mState.mExecutable->getLinkedShaderStages(),
                *resources, mState.mInfoLog, &combinedShaderStorageBlocks))
        {
            return angle::Result::Stop;
        }

        if (!LinkValidateProgramGlobalNames(mState.mInfoLog, getExecutable(), *linkingVariables))
        {
            return angle::Result::Stop;
        }

        const SharedCompiledShaderState &vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
        if (vertexShader)
        {
            mState.mExecutable->mPod.numViews = vertexShader->numViews;
            mState.mExecutable->mPod.hasClipDistance =
                vertexShader->metadataFlags.test(sh::MetadataFlags::HasClipDistance);
            mState.mExecutable->mPod.specConstUsageBits |= vertexShader->specConstUsageBits;
        }

        const SharedCompiledShaderState &fragmentShader =
            mState.mAttachedShaders[ShaderType::Fragment];
        if (fragmentShader)
        {
            ASSERT(mState.mExecutable->mOutputVariables.empty());
            mState.mExecutable->mOutputVariables.reserve(
                fragmentShader->activeOutputVariables.size());
            for (const sh::ShaderVariable &shaderVariable : fragmentShader->activeOutputVariables)
            {
                mState.mExecutable->mOutputVariables.emplace_back(shaderVariable);
            }
            if (!mState.mExecutable->linkValidateOutputVariables(
                    caps, clientVersion, combinedImageUniforms, combinedShaderStorageBlocks,
                    fragmentShader->shaderVersion, mState.mFragmentOutputLocations,
                    mState.mFragmentOutputIndexes))
            {
                return angle::Result::Stop;
            }

            mState.mExecutable->mPod.hasDiscard =
                fragmentShader->metadataFlags.test(sh::MetadataFlags::HasDiscard);
            mState.mExecutable->mPod.enablesPerSampleShading =
                fragmentShader->metadataFlags.test(sh::MetadataFlags::EnablesPerSampleShading);
            mState.mExecutable->mPod.advancedBlendEquations =
                fragmentShader->advancedBlendEquations;
            mState.mExecutable->mPod.specConstUsageBits |= fragmentShader->specConstUsageBits;

            for (uint32_t index = 0; index < IMPLEMENTATION_MAX_DRAW_BUFFERS; ++index)
            {
                const sh::MetadataFlags flag = static_cast<sh::MetadataFlags>(
                    static_cast<uint32_t>(sh::MetadataFlags::HasInputAttachment0) + index);
                if (fragmentShader->metadataFlags.test(flag))
                {
                    mState.mExecutable->mPod.fragmentInoutIndices.set(index);
                }
            }
        }

        *mergedVaryingsOut = GetMergedVaryingsFromLinkingVariables(*linkingVariables);
        if (!mState.mExecutable->linkMergedVaryings(caps, limitations, clientVersion, isWebGL,
                                                    *mergedVaryingsOut, *linkingVariables,
                                                    &resources->varyingPacking))
        {
            return angle::Result::Stop;
        }
    }

    mState.mExecutable->saveLinkedStateInfo(mState);

    return angle::Result::Continue;
}

bool Program::isLinking() const
{
    return mLinkingState.get() && mLinkingState->linkEvent && mLinkingState->linkEvent->isLinking();
}

bool Program::isBinaryReady(const Context *context)
{
    if (mState.mExecutable->mPostLinkSubTasks.empty())
    {
        return true;
    }

    const bool allPostLinkTasksComplete =
        angle::WaitableEvent::AllReady(&mState.mExecutable->getPostLinkSubTaskWaitableEvents());

    // Once the binary is ready, the |glGetProgramBinary| call will result in
    // |waitForPostLinkTasks| which in turn may internally cache the binary.  However, for the sake
    // of blob cache tests, call |waitForPostLinkTasks| anyway if tasks are already complete.
    if (allPostLinkTasksComplete)
    {
        waitForPostLinkTasks(context);
    }

    return allPostLinkTasksComplete;
}

void Program::resolveLinkImpl(const Context *context)
{
    ASSERT(mLinkingState.get());

    angle::Result result                       = mLinkingState->linkEvent->wait(context);
    mLinked                                    = result == angle::Result::Continue;
    std::unique_ptr<LinkingState> linkingState = std::move(mLinkingState);
    if (!mLinked)
    {
        // If the link fails, the spec allows program queries to either return empty results (all
        // zeros) or whatever parts of the link happened to have been done before the failure:
        //
        // > Implementations may return information on variables and interface blocks that would
        // > have been active had the program been linked successfully.  In cases where the link
        // > failed because the program required too many resources, these commands may help
        // > applications determine why limits were exceeded. However, the information returned in
        // > this case is implementation-dependent and may be incomplete.
        //
        // The above means that it's ok for ANGLE to reset the executable here, but it *may* be
        // helpful to applications if it doesn't.  We do reset it however, the info log should
        // already have enough debug information for the application.
        mState.mExecutable->reset();
        return;
    }

    // According to GLES 3.0/3.1 spec for LinkProgram and UseProgram,
    // Only successfully linked program can replace the executables.
    ASSERT(mLinked);

    // Mark implementation-specific unreferenced uniforms as ignored.
    std::vector<ImageBinding> *imageBindings = getExecutable().getImageBindings();
    mProgram->markUnusedUniformLocations(&mState.mExecutable->mUniformLocations,
                                         &mState.mExecutable->mSamplerBindings, imageBindings);

    // Must be called after markUnusedUniformLocations.
    postResolveLink(context);

    // Notify observers that a new linked executable is available.  If this program is current on a
    // context, the executable is reinstalled.  If it is attached to a PPO, it is installed there
    // and the PPO is marked as needing to be linked again.
    onStateChange(angle::SubjectMessage::ProgramRelinked);

    // Cache the program if:
    //
    // - Not loading from binary, in which case the program is already in the cache.
    // - There are no post link tasks. If there are any, waitForPostLinkTasks will do this
    //   instead.
    //   * Note that serialize() calls waitForPostLinkTasks, so caching the binary here
    //     effectively forces a wait for the post-link tasks.
    //
    if (!linkingState->linkingFromBinary && mState.mExecutable->mPostLinkSubTasks.empty())
    {
        cacheProgramBinary(context);
    }
}

void Program::waitForPostLinkTasks(const Context *context)
{
    if (!mState.mExecutable->mPostLinkSubTasks.empty())
    {
        mState.mExecutable->waitForPostLinkTasks(context);
    }

    // Now that the subtasks are done, cache the binary (this was deferred in resolveLinkImpl).
    cacheProgramBinary(context);
}

void Program::updateLinkedShaderStages()
{
    mState.mExecutable->resetLinkedShaderStages();

    for (ShaderType shaderType : AllShaderTypes())
    {
        if (mState.mAttachedShaders[shaderType])
        {
            mState.mExecutable->setLinkedShaderStages(shaderType);
        }
    }
}

void ProgramState::updateActiveSamplers()
{
    mExecutable->mActiveSamplerRefCounts.fill(0);
    mExecutable->updateActiveSamplers(*mExecutable);
}

void ProgramState::updateProgramInterfaceInputs()
{
    const ShaderType firstAttachedShaderType = mExecutable->getFirstLinkedShaderStageType();

    if (firstAttachedShaderType == ShaderType::Vertex)
    {
        // Vertex attributes are already what we need, so nothing to do
        return;
    }

    const SharedCompiledShaderState &shader = getAttachedShader(firstAttachedShaderType);
    ASSERT(shader);

    // Copy over each input varying, since the Shader could go away
    if (shader->shaderType == ShaderType::Compute)
    {
        for (const sh::ShaderVariable &attribute : shader->allAttributes)
        {
            // Compute Shaders have the following built-in input variables.
            //
            // in uvec3 gl_NumWorkGroups;
            // in uvec3 gl_WorkGroupID;
            // in uvec3 gl_LocalInvocationID;
            // in uvec3 gl_GlobalInvocationID;
            // in uint  gl_LocalInvocationIndex;
            // They are all vecs or uints, so no special handling is required.
            mExecutable->mProgramInputs.emplace_back(attribute);
        }
    }
    else
    {
        for (const sh::ShaderVariable &varying : shader->inputVaryings)
        {
            UpdateInterfaceVariable(&mExecutable->mProgramInputs, varying);
        }
    }
}

void ProgramState::updateProgramInterfaceOutputs()
{
    const ShaderType lastAttachedShaderType = mExecutable->getLastLinkedShaderStageType();

    if (lastAttachedShaderType == ShaderType::Fragment)
    {
        // Fragment outputs are already what we need, so nothing to do
        return;
    }
    if (lastAttachedShaderType == ShaderType::Compute)
    {
        // If the program only contains a Compute Shader, then there are no user-defined outputs.
        return;
    }

    const SharedCompiledShaderState &shader = getAttachedShader(lastAttachedShaderType);
    ASSERT(shader);

    // Copy over each output varying, since the Shader could go away
    for (const sh::ShaderVariable &varying : shader->outputVaryings)
    {
        UpdateInterfaceVariable(&mExecutable->mOutputVariables, varying);
    }
}

// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
    // There is always a new executable created on link, so the executable is already in a clean
    // state.

    mValidated = false;
}

angle::Result Program::setBinary(const Context *context,
                                 GLenum binaryFormat,
                                 const void *binary,
                                 GLsizei length)
{
    ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);

    makeNewExecutable(context);

    egl::CacheGetResult result = egl::CacheGetResult::NotFound;
    return loadBinary(context, binary, length, &result);
}

angle::Result Program::loadBinary(const Context *context,
                                  const void *binary,
                                  GLsizei length,
                                  egl::CacheGetResult *resultOut)
{
    *resultOut = egl::CacheGetResult::Rejected;

    ASSERT(mLinkingState);
    unlink();

    BinaryInputStream stream(binary, length);
    if (!deserialize(context, stream))
    {
        return angle::Result::Continue;
    }
    // Currently we require the full shader text to compute the program hash.
    // We could also store the binary in the internal program cache.

    // Initialize the uniform block -> buffer index map based on serialized data.
    mState.mExecutable->initInterfaceBlockBindings();

    // If load does not succeed, we know for sure that the binary is not compatible with the
    // backend.  The loaded binary could have been read from the on-disk shader cache and be
    // corrupted or serialized with different revision and subsystem id than the currently loaded
    // backend.  Returning to the caller results in link happening using the original shader
    // sources.
    std::shared_ptr<rx::LinkTask> loadTask;
    ANGLE_TRY(mProgram->load(context, &stream, &loadTask, resultOut));
    if (*resultOut == egl::CacheGetResult::Rejected)
    {
        return angle::Result::Continue;
    }

    std::unique_ptr<LinkEvent> loadEvent;
    if (loadTask)
    {
        std::shared_ptr<MainLinkLoadTask> mainLoadTask(new MainLoadTask(
            context->getLinkSubTaskThreadPool(), this, &mState, std::move(loadTask)));

        std::shared_ptr<angle::WaitableEvent> mainLoadEvent =
            context->getShaderCompileThreadPool()->postWorkerTask(mainLoadTask);
        loadEvent = std::make_unique<MainLinkLoadEvent>(mainLoadTask, mainLoadEvent);
    }
    else
    {
        loadEvent = std::make_unique<LinkEventDone>(angle::Result::Continue);
    }

    mLinkingState->linkingFromBinary = true;
    mLinkingState->linkEvent         = std::move(loadEvent);

    // Don't attempt to cache the binary that's just loaded
    mIsBinaryCached = true;

    *resultOut = egl::CacheGetResult::Success;

    return angle::Result::Continue;
}

angle::Result Program::getBinary(Context *context,
                                 GLenum *binaryFormat,
                                 void *binary,
                                 GLsizei bufSize,
                                 GLsizei *length)
{
    ASSERT(!mLinkingState);
    if (binaryFormat)
    {
        *binaryFormat = GL_PROGRAM_BINARY_ANGLE;
    }

    angle::MemoryBuffer memoryBuf;
    ANGLE_TRY(serialize(context, &memoryBuf));

    GLsizei streamLength       = static_cast<GLsizei>(memoryBuf.size());
    const uint8_t *streamState = memoryBuf.data();

    if (streamLength > bufSize)
    {
        if (length)
        {
            *length = 0;
        }

        // TODO: This should be moved to the validation layer but computing the size of the binary
        // before saving it causes the save to happen twice.  It may be possible to write the binary
        // to a separate buffer, validate sizes and then copy it.
        ANGLE_CHECK(context, false, "Insufficient buffer size", GL_INVALID_OPERATION);
    }

    if (binary)
    {
        char *ptr = reinterpret_cast<char *>(binary);

        memcpy(ptr, streamState, streamLength);
        ptr += streamLength;

        ASSERT(ptr - streamLength == binary);
    }

    if (length)
    {
        *length = streamLength;
    }

    return angle::Result::Continue;
}

GLint Program::getBinaryLength(Context *context)
{
    ASSERT(!mLinkingState);
    if (!mLinked)
    {
        return 0;
    }

    GLint length;
    angle::Result result =
        getBinary(context, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
    if (result != angle::Result::Continue)
    {
        return 0;
    }

    return length;
}

void Program::setBinaryRetrievableHint(bool retrievable)
{
    ASSERT(!mLinkingState);
    // TODO(jmadill) : replace with dirty bits
    mProgram->setBinaryRetrievableHint(retrievable);
    mState.mBinaryRetrieveableHint = retrievable;
}

bool Program::getBinaryRetrievableHint() const
{
    ASSERT(!mLinkingState);
    return mState.mBinaryRetrieveableHint;
}

int Program::getInfoLogLength() const
{
    return static_cast<int>(mState.mInfoLog.getLength());
}

void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
    return mState.mInfoLog.getLog(bufSize, length, infoLog);
}

void Program::setSeparable(const Context *context, bool separable)
{
    ASSERT(!mLinkingState);

    if (isSeparable() != separable)
    {
        mProgram->setSeparable(separable);
        mState.mSeparable = separable;
    }
}

void Program::deleteSelf(const Context *context)
{
    ASSERT(mRefCount == 0 && mDeleteStatus);
    mResourceManager->deleteProgram(context, mHandle);
}

unsigned int Program::getRefCount() const
{
    return mRefCount;
}

void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, ShaderProgramID *shaders) const
{
    int total = 0;

    for (const Shader *shader : mAttachedShaders)
    {
        if (shader != nullptr && total < maxCount)
        {
            shaders[total] = shader->getHandle();
            ++total;
        }
    }

    if (count)
    {
        *count = total;
    }
}

void Program::flagForDeletion()
{
    ASSERT(!mLinkingState);
    mDeleteStatus = true;
}

bool Program::isFlaggedForDeletion() const
{
    ASSERT(!mLinkingState);
    return mDeleteStatus;
}

void Program::validate(const Caps &caps)
{
    ASSERT(!mLinkingState);
    mState.mInfoLog.reset();

    if (mLinked)
    {
        mValidated = ConvertToBool(mProgram->validate(caps));
    }
    else
    {
        mState.mInfoLog << "Program has not been successfully linked.";
    }
}

bool Program::isValidated() const
{
    ASSERT(!mLinkingState);
    return mValidated;
}

void Program::bindUniformBlock(UniformBlockIndex uniformBlockIndex, GLuint uniformBlockBinding)
{
    ASSERT(!mLinkingState);

    mState.mExecutable->remapUniformBlockBinding(uniformBlockIndex, uniformBlockBinding);

    mProgram->onUniformBlockBinding(uniformBlockIndex);

    onStateChange(
        angle::ProgramUniformBlockBindingUpdatedMessageFromIndex(uniformBlockIndex.value));
}

void Program::setTransformFeedbackVaryings(const Context *context,
                                           GLsizei count,
                                           const GLchar *const *varyings,
                                           GLenum bufferMode)
{
    ASSERT(!mLinkingState);

    mState.mTransformFeedbackVaryingNames.resize(count);
    for (GLsizei i = 0; i < count; i++)
    {
        mState.mTransformFeedbackVaryingNames[i] = varyings[i];
    }

    mState.mTransformFeedbackBufferMode = bufferMode;
}

bool Program::linkValidateShaders()
{
    // Wait for attached shaders to finish compilation.  At this point, they need to be checked
    // whether they successfully compiled.  This information is cached so that all compile jobs can
    // be waited on and their corresponding objects released before the actual check.
    //
    // Note that this function is called from the link job, and is therefore not protected by any
    // locks.
    ShaderBitSet successfullyCompiledShaders;
    for (ShaderType shaderType : AllShaderTypes())
    {
        const SharedCompileJob &compileJob = mState.mShaderCompileJobs[shaderType];
        if (compileJob)
        {
            const bool success = WaitCompileJobUnlocked(compileJob);
            successfullyCompiledShaders.set(shaderType, success);
        }
    }
    mState.mShaderCompileJobs = {};

    const ShaderMap<SharedCompiledShaderState> &shaders = mState.mAttachedShaders;

    bool isComputeShaderAttached  = shaders[ShaderType::Compute].get() != nullptr;
    bool isGraphicsShaderAttached = shaders[ShaderType::Vertex].get() != nullptr ||
                                    shaders[ShaderType::TessControl].get() != nullptr ||
                                    shaders[ShaderType::TessEvaluation].get() != nullptr ||
                                    shaders[ShaderType::Geometry].get() != nullptr ||
                                    shaders[ShaderType::Fragment].get() != nullptr;
    // Check whether we both have a compute and non-compute shaders attached.
    // If there are of both types attached, then linking should fail.
    // OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
    if (isComputeShaderAttached && isGraphicsShaderAttached)
    {
        mState.mInfoLog << "Both compute and graphics shaders are attached to the same program.";
        return false;
    }

    Optional<int> version;
    for (ShaderType shaderType : kAllGraphicsShaderTypes)
    {
        const SharedCompiledShaderState &shader = shaders[shaderType];
        ASSERT(!shader || shader->shaderType == shaderType);

        if (!shader)
        {
            continue;
        }

        if (!successfullyCompiledShaders.test(shaderType))
        {
            mState.mInfoLog << ShaderTypeToString(shaderType) << " shader is not compiled.";
            return false;
        }

        if (!version.valid())
        {
            version = shader->shaderVersion;
        }
        else if (version != shader->shaderVersion)
        {
            mState.mInfoLog << ShaderTypeToString(shaderType)
                            << " shader version does not match other shader versions.";
            return false;
        }
    }

    if (isComputeShaderAttached)
    {
        ASSERT(shaders[ShaderType::Compute]->shaderType == ShaderType::Compute);

        // GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
        // If the work group size is not specified, a link time error should occur.
        if (!shaders[ShaderType::Compute]->localSize.isDeclared())
        {
            mState.mInfoLog << "Work group size is not specified.";
            return false;
        }
    }
    else
    {
        if (!isGraphicsShaderAttached)
        {
            mState.mInfoLog << "No compiled shaders.";
            return false;
        }

        bool hasVertex   = shaders[ShaderType::Vertex].get() != nullptr;
        bool hasFragment = shaders[ShaderType::Fragment].get() != nullptr;
        if (!isSeparable() && (!hasVertex || !hasFragment))
        {
            mState.mInfoLog
                << "The program must contain objects to form both a vertex and fragment shader.";
            return false;
        }

        bool hasTessControl    = shaders[ShaderType::TessControl].get() != nullptr;
        bool hasTessEvaluation = shaders[ShaderType::TessEvaluation].get() != nullptr;
        if (!isSeparable() && (hasTessControl != hasTessEvaluation))
        {
            mState.mInfoLog
                << "Tessellation control and evaluation shaders must be specified together.";
            return false;
        }

        const SharedCompiledShaderState &geometryShader = shaders[ShaderType::Geometry];
        if (geometryShader)
        {
            // [GL_EXT_geometry_shader] Chapter 7
            // Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
            // Language Specification, as well as any of the following reasons:
            // * One or more of the shader objects attached to <program> are not compiled
            //   successfully.
            // * The shaders do not use the same shader language version.
            // * <program> contains objects to form a geometry shader, and
            //   - <program> is not separable and contains no objects to form a vertex shader; or
            //   - the input primitive type, output primitive type, or maximum output vertex count
            //     is not specified in the compiled geometry shader object.
            if (!geometryShader->hasValidGeometryShaderInputPrimitiveType())
            {
                mState.mInfoLog << "Input primitive type is not specified in the geometry shader.";
                return false;
            }

            if (!geometryShader->hasValidGeometryShaderOutputPrimitiveType())
            {
                mState.mInfoLog << "Output primitive type is not specified in the geometry shader.";
                return false;
            }

            if (!geometryShader->hasValidGeometryShaderMaxVertices())
            {
                mState.mInfoLog << "'max_vertices' is not specified in the geometry shader.";
                return false;
            }
        }

        const SharedCompiledShaderState &tessControlShader = shaders[ShaderType::TessControl];
        if (tessControlShader)
        {
            int tcsShaderVertices = tessControlShader->tessControlShaderVertices;
            if (tcsShaderVertices == 0)
            {
                // In tessellation control shader, output vertices should be specified at least
                // once.
                // > GLSL ES Version 3.20.6 spec:
                // > 4.4.2. Output Layout Qualifiers
                // > Tessellation Control Outputs
                // > ...
                // > There must be at least one layout qualifier specifying an output patch vertex
                // > count in any program containing a tessellation control shader.
                mState.mInfoLog << "In Tessellation Control Shader, at least one layout qualifier "
                                   "specifying an output patch vertex count must exist.";
                return false;
            }
        }

        const SharedCompiledShaderState &tessEvaluationShader = shaders[ShaderType::TessEvaluation];
        if (tessEvaluationShader)
        {
            GLenum tesPrimitiveMode = tessEvaluationShader->tessGenMode;
            if (tesPrimitiveMode == 0)
            {
                // In tessellation evaluation shader, a primitive mode should be specified at least
                // once.
                // > GLSL ES Version 3.20.6 spec:
                // > 4.4.1. Input Layout Qualifiers
                // > Tessellation Evaluation Inputs
                // > ...
                // > The tessellation evaluation shader object in a program must declare a primitive
                // > mode in its input layout. Declaring vertex spacing, ordering, or point mode
                // > identifiers is optional.
                mState.mInfoLog
                    << "The Tessellation Evaluation Shader object in a program must declare a "
                       "primitive mode in its input layout.";
                return false;
            }
        }
    }

    return true;
}

// Assumes linkValidateShaders() has validated the shaders and caches some values from the shaders.
void Program::linkShaders()
{
    const ShaderMap<SharedCompiledShaderState> &shaders = mState.mAttachedShaders;

    const bool isComputeShaderAttached = shaders[ShaderType::Compute].get() != nullptr;

    if (isComputeShaderAttached)
    {
        mState.mExecutable->mPod.computeShaderLocalSize = shaders[ShaderType::Compute]->localSize;
    }
    else
    {
        const SharedCompiledShaderState &geometryShader = shaders[ShaderType::Geometry];
        if (geometryShader)
        {
            mState.mExecutable->mPod.geometryShaderInputPrimitiveType =
                geometryShader->geometryShaderInputPrimitiveType;
            mState.mExecutable->mPod.geometryShaderOutputPrimitiveType =
                geometryShader->geometryShaderOutputPrimitiveType;
            mState.mExecutable->mPod.geometryShaderMaxVertices =
                geometryShader->geometryShaderMaxVertices;
            mState.mExecutable->mPod.geometryShaderInvocations =
                geometryShader->geometryShaderInvocations;
        }

        const SharedCompiledShaderState &tessControlShader = shaders[ShaderType::TessControl];
        if (tessControlShader)
        {
            int tcsShaderVertices = tessControlShader->tessControlShaderVertices;
            mState.mExecutable->mPod.tessControlShaderVertices = tcsShaderVertices;
        }

        const SharedCompiledShaderState &tessEvaluationShader = shaders[ShaderType::TessEvaluation];
        if (tessEvaluationShader)
        {
            GLenum tesPrimitiveMode = tessEvaluationShader->tessGenMode;

            mState.mExecutable->mPod.tessGenMode        = tesPrimitiveMode;
            mState.mExecutable->mPod.tessGenSpacing     = tessEvaluationShader->tessGenSpacing;
            mState.mExecutable->mPod.tessGenVertexOrder = tessEvaluationShader->tessGenVertexOrder;
            mState.mExecutable->mPod.tessGenPointMode   = tessEvaluationShader->tessGenPointMode;
        }
    }
}

bool Program::linkVaryings()
{
    ShaderType previousShaderType = ShaderType::InvalidEnum;
    for (ShaderType shaderType : kAllGraphicsShaderTypes)
    {
        const SharedCompiledShaderState &currentShader = mState.mAttachedShaders[shaderType];
        if (!currentShader)
        {
            continue;
        }

        if (previousShaderType != ShaderType::InvalidEnum)
        {
            const SharedCompiledShaderState &previousShader =
                mState.mAttachedShaders[previousShaderType];
            const std::vector<sh::ShaderVariable> &outputVaryings = previousShader->outputVaryings;

            if (!LinkValidateShaderInterfaceMatching(
                    outputVaryings, currentShader->inputVaryings, previousShaderType,
                    currentShader->shaderType, previousShader->shaderVersion,
                    currentShader->shaderVersion, isSeparable(), mState.mInfoLog))
            {
                return false;
            }
        }
        previousShaderType = currentShader->shaderType;
    }

    // TODO: http://anglebug.com/3571 and http://anglebug.com/3572
    // Need to move logic of validating builtin varyings inside the for-loop above.
    // This is because the built-in symbols `gl_ClipDistance` and `gl_CullDistance`
    // can be redeclared in Geometry or Tessellation shaders as well.
    const SharedCompiledShaderState &vertexShader   = mState.mAttachedShaders[ShaderType::Vertex];
    const SharedCompiledShaderState &fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
    if (vertexShader && fragmentShader &&
        !LinkValidateBuiltInVaryings(vertexShader->outputVaryings, fragmentShader->inputVaryings,
                                     vertexShader->shaderType, fragmentShader->shaderType,
                                     vertexShader->shaderVersion, fragmentShader->shaderVersion,
                                     mState.mInfoLog))
    {
        return false;
    }

    return true;
}

bool Program::linkUniforms(const Caps &caps,
                           const Version &clientVersion,
                           std::vector<UnusedUniform> *unusedUniformsOutOrNull,
                           GLuint *combinedImageUniformsOut)
{
    // Initialize executable shader map.
    ShaderMap<std::vector<sh::ShaderVariable>> shaderUniforms;
    for (const SharedCompiledShaderState &shader : mState.mAttachedShaders)
    {
        if (shader)
        {
            shaderUniforms[shader->shaderType] = shader->uniforms;
        }
    }

    if (!mState.mExecutable->linkUniforms(caps, shaderUniforms, mState.mUniformLocationBindings,
                                          combinedImageUniformsOut, unusedUniformsOutOrNull))
    {
        return false;
    }

    if (clientVersion >= Version(3, 1))
    {
        GLint locationSize = static_cast<GLint>(mState.mExecutable->getUniformLocations().size());

        if (locationSize > caps.maxUniformLocations)
        {
            mState.mInfoLog << "Exceeded maximum uniform location size";
            return false;
        }
    }

    return true;
}

// Assigns locations to all attributes (except built-ins) from the bindings and program locations.
bool Program::linkAttributes(const Caps &caps,
                             const Limitations &limitations,
                             bool webglCompatibility)
{
    int shaderVersion          = -1;
    unsigned int usedLocations = 0;

    const SharedCompiledShaderState &vertexShader = mState.getAttachedShader(ShaderType::Vertex);

    if (!vertexShader)
    {
        // No vertex shader, so no attributes, so nothing to do
        return true;
    }

    // In GLSL ES 3.00.6, aliasing checks should be done with all declared attributes -
    // see GLSL ES 3.00.6 section 12.46. Inactive attributes will be pruned after
    // aliasing checks.
    // In GLSL ES 1.00.17 we only do aliasing checks for active attributes.
    shaderVersion = vertexShader->shaderVersion;
    const std::vector<sh::ShaderVariable> &shaderAttributes =
        shaderVersion >= 300 ? vertexShader->allAttributes : vertexShader->activeAttributes;

    ASSERT(mState.mExecutable->mProgramInputs.empty());
    mState.mExecutable->mProgramInputs.reserve(shaderAttributes.size());

    GLuint maxAttribs = static_cast<GLuint>(caps.maxVertexAttributes);
    std::vector<ProgramInput *> usedAttribMap(maxAttribs, nullptr);

    for (const sh::ShaderVariable &shaderAttribute : shaderAttributes)
    {
        // GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or
        // structures, so we don't need to worry about adjusting their names or generating entries
        // for each member/element (unlike uniforms for example).
        ASSERT(!shaderAttribute.isArray() && !shaderAttribute.isStruct());

        mState.mExecutable->mProgramInputs.emplace_back(shaderAttribute);

        // Assign locations to attributes that have a binding location and check for attribute
        // aliasing.
        ProgramInput &attribute = mState.mExecutable->mProgramInputs.back();
        int bindingLocation     = mState.mAttributeBindings.getBinding(attribute);
        if (attribute.getLocation() == -1 && bindingLocation != -1)
        {
            attribute.setLocation(bindingLocation);
        }

        if (attribute.getLocation() != -1)
        {
            // Location is set by glBindAttribLocation or by location layout qualifier
            const int regs = VariableRegisterCount(attribute.getType());

            if (static_cast<GLuint>(regs + attribute.getLocation()) > maxAttribs)
            {
                mState.mInfoLog << "Attribute (" << attribute.name << ") at location "
                                << attribute.getLocation() << " is too big to fit";

                return false;
            }

            for (int reg = 0; reg < regs; reg++)
            {
                const int regLocation         = attribute.getLocation() + reg;
                ProgramInput *linkedAttribute = usedAttribMap[regLocation];

                // In GLSL ES 3.00.6 and in WebGL, attribute aliasing produces a link error.
                // In non-WebGL GLSL ES 1.00.17, attribute aliasing is allowed with some
                // restrictions - see GLSL ES 1.00.17 section 2.10.4, but ANGLE currently has a bug.
                // In D3D 9 and 11, aliasing is not supported, so check a limitation.
                if (linkedAttribute)
                {
                    if (shaderVersion >= 300 || webglCompatibility ||
                        limitations.noVertexAttributeAliasing)
                    {
                        mState.mInfoLog << "Attribute '" << attribute.name
                                        << "' aliases attribute '" << linkedAttribute->name
                                        << "' at location " << regLocation;
                        return false;
                    }
                }
                else
                {
                    usedAttribMap[regLocation] = &attribute;
                }

                usedLocations |= 1 << regLocation;
            }
        }
    }

    // Assign locations to attributes that don't have a binding location.
    for (ProgramInput &attribute : mState.mExecutable->mProgramInputs)
    {
        // Not set by glBindAttribLocation or by location layout qualifier
        if (attribute.getLocation() == -1)
        {
            int regs           = VariableRegisterCount(attribute.getType());
            int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);

            if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
            {
                mState.mInfoLog << "Too many attributes (" << attribute.name << ")";
                return false;
            }

            attribute.setLocation(availableIndex);
        }
    }

    ASSERT(mState.mExecutable->mPod.attributesTypeMask.none());
    ASSERT(mState.mExecutable->mPod.attributesMask.none());

    // Prune inactive attributes. This step is only needed on shaderVersion >= 300 since on earlier
    // shader versions we're only processing active attributes to begin with.
    if (shaderVersion >= 300)
    {
        for (auto attributeIter = mState.mExecutable->getProgramInputs().begin();
             attributeIter != mState.mExecutable->getProgramInputs().end();)
        {
            if (attributeIter->isActive())
            {
                ++attributeIter;
            }
            else
            {
                attributeIter = mState.mExecutable->mProgramInputs.erase(attributeIter);
            }
        }
    }

    for (const ProgramInput &attribute : mState.mExecutable->getProgramInputs())
    {
        ASSERT(attribute.isActive());
        ASSERT(attribute.getLocation() != -1);
        unsigned int regs = static_cast<unsigned int>(VariableRegisterCount(attribute.getType()));

        unsigned int location = static_cast<unsigned int>(attribute.getLocation());
        for (unsigned int r = 0; r < regs; r++)
        {
            // Built-in active program inputs don't have a bound attribute.
            if (!attribute.isBuiltIn())
            {
                mState.mExecutable->mPod.activeAttribLocationsMask.set(location);
                mState.mExecutable->mPod.maxActiveAttribLocation =
                    std::max(mState.mExecutable->mPod.maxActiveAttribLocation, location + 1);

                ComponentType componentType =
                    GLenumToComponentType(VariableComponentType(attribute.getType()));

                SetComponentTypeMask(componentType, location,
                                     &mState.mExecutable->mPod.attributesTypeMask);
                mState.mExecutable->mPod.attributesMask.set(location);

                location++;
            }
        }
    }

    return true;
}

angle::Result Program::serialize(const Context *context, angle::MemoryBuffer *binaryOut)
{
    BinaryOutputStream stream;

    stream.writeBytes(
        reinterpret_cast<const unsigned char *>(angle::GetANGLEShaderProgramVersion()),
        angle::GetANGLEShaderProgramVersionHashSize());

    stream.writeBool(angle::Is64Bit());

    stream.writeInt(angle::GetANGLESHVersion());

    stream.writeString(context->getRendererString());

    // nullptr context is supported when computing binary length.
    if (context)
    {
        stream.writeInt(context->getClientVersion().major);
        stream.writeInt(context->getClientVersion().minor);
    }
    else
    {
        stream.writeInt(2);
        stream.writeInt(0);
    }

    // mSeparable must be before mExecutable->save(), since it uses the value.
    stream.writeBool(mState.mSeparable);
    stream.writeInt(mState.mTransformFeedbackBufferMode);

    stream.writeInt(mState.mTransformFeedbackVaryingNames.size());
    for (const std::string &name : mState.mTransformFeedbackVaryingNames)
    {
        stream.writeString(name);
    }

    mState.mExecutable->save(&stream);

    // Warn the app layer if saving a binary with unsupported transform feedback.
    if (!mState.mExecutable->getLinkedTransformFeedbackVaryings().empty() &&
        context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled)
    {
        ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW,
                           "Saving program binary with transform feedback, which is not supported "
                           "on this driver.");
    }

    if (context->getShareGroup()->getFrameCaptureShared()->enabled())
    {
        // Serialize the source for each stage for re-use during capture
        for (ShaderType shaderType : mState.mExecutable->getLinkedShaderStages())
        {
            Shader *shader = getAttachedShader(shaderType);
            if (shader)
            {
                stream.writeString(shader->getSourceString());
            }
            else
            {
                // If we don't have an attached shader, which would occur if this program was
                // created via glProgramBinary, pull from our cached copy
                const angle::ProgramSources &cachedLinkedSources =
                    context->getShareGroup()->getFrameCaptureShared()->getProgramSources(id());
                const std::string &cachedSourceString = cachedLinkedSources[shaderType];
                ASSERT(!cachedSourceString.empty());
                stream.writeString(cachedSourceString.c_str());
            }
        }
    }

    mProgram->save(context, &stream);
    ASSERT(mState.mExecutable->mPostLinkSubTasks.empty());

    ASSERT(binaryOut);
    if (!binaryOut->resize(stream.length()))
    {
        ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW,
                           "Failed to allocate enough memory to serialize a program. (%zu bytes)",
                           stream.length());
        return angle::Result::Stop;
    }
    memcpy(binaryOut->data(), stream.data(), stream.length());
    return angle::Result::Continue;
}

bool Program::deserialize(const Context *context, BinaryInputStream &stream)
{
    std::vector<uint8_t> angleShaderProgramVersionString(
        angle::GetANGLEShaderProgramVersionHashSize(), 0);
    stream.readBytes(angleShaderProgramVersionString.data(),
                     angleShaderProgramVersionString.size());
    if (memcmp(angleShaderProgramVersionString.data(), angle::GetANGLEShaderProgramVersion(),
               angleShaderProgramVersionString.size()) != 0)
    {
        mState.mInfoLog << "Invalid program binary version.";
        return false;
    }

    bool binaryIs64Bit = stream.readBool();
    if (binaryIs64Bit != angle::Is64Bit())
    {
        mState.mInfoLog << "cannot load program binaries across CPU architectures.";
        return false;
    }

    int angleSHVersion = stream.readInt<int>();
    if (angleSHVersion != angle::GetANGLESHVersion())
    {
        mState.mInfoLog << "cannot load program binaries across different angle sh version.";
        return false;
    }

    std::string rendererString = stream.readString();
    if (rendererString != context->getRendererString())
    {
        mState.mInfoLog << "Cannot load program binary due to changed renderer string.";
        return false;
    }

    int majorVersion = stream.readInt<int>();
    int minorVersion = stream.readInt<int>();
    if (majorVersion != context->getClientMajorVersion() ||
        minorVersion != context->getClientMinorVersion())
    {
        mState.mInfoLog << "Cannot load program binaries across different ES context versions.";
        return false;
    }

    mState.mSeparable                   = stream.readBool();
    mState.mTransformFeedbackBufferMode = stream.readInt<GLenum>();

    mState.mTransformFeedbackVaryingNames.resize(stream.readInt<size_t>());
    for (std::string &name : mState.mTransformFeedbackVaryingNames)
    {
        name = stream.readString();
    }

    // mSeparable must be before mExecutable->load(), since it uses the value.  This state is
    // duplicated in the executable for convenience.
    mState.mExecutable->mPod.isSeparable = mState.mSeparable;
    mState.mExecutable->load(&stream);

    static_assert(static_cast<unsigned long>(ShaderType::EnumCount) <= sizeof(unsigned long) * 8,
                  "Too many shader types");

    // Reject programs that use transform feedback varyings if the hardware cannot support them.
    if (mState.mExecutable->getLinkedTransformFeedbackVaryings().size() > 0 &&
        context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled)
    {
        mState.mInfoLog << "Current driver does not support transform feedback in binary programs.";
        return false;
    }

    if (!mState.mAttachedShaders[ShaderType::Compute])
    {
        mState.mExecutable->updateTransformFeedbackStrides();
        mState.mExecutable->mTransformFeedbackVaryingNames = mState.mTransformFeedbackVaryingNames;
    }

    if (context->getShareGroup()->getFrameCaptureShared()->enabled())
    {
        // Extract the source for each stage from the program binary
        angle::ProgramSources sources;

        for (ShaderType shaderType : mState.mExecutable->getLinkedShaderStages())
        {
            std::string shaderSource = stream.readString();
            ASSERT(shaderSource.length() > 0);
            sources[shaderType] = std::move(shaderSource);
        }

        // Store it for use during mid-execution capture
        context->getShareGroup()->getFrameCaptureShared()->setProgramSources(id(),
                                                                             std::move(sources));
    }

    return true;
}

void Program::postResolveLink(const Context *context)
{
    mState.updateActiveSamplers();
    mState.mExecutable->mActiveImageShaderBits.fill({});
    mState.mExecutable->updateActiveImages(getExecutable());

    mState.mExecutable->initInterfaceBlockBindings();
    mState.mExecutable->setUniformValuesFromBindingQualifiers();

    if (context->getExtensions().multiDrawANGLE)
    {
        mState.mExecutable->mPod.drawIDLocation =
            mState.mExecutable->getUniformLocation("gl_DrawID").value;
    }

    if (context->getExtensions().baseVertexBaseInstanceShaderBuiltinANGLE)
    {
        mState.mExecutable->mPod.baseVertexLocation =
            mState.mExecutable->getUniformLocation("gl_BaseVertex").value;
        mState.mExecutable->mPod.baseInstanceLocation =
            mState.mExecutable->getUniformLocation("gl_BaseInstance").value;
    }
}

void Program::cacheProgramBinary(const Context *context)
{
    // If program caching is disabled, we already consider the binary cached.
    ASSERT(!context->getFrontendFeatures().disableProgramCaching.enabled || mIsBinaryCached);
    if (!mLinked || mIsBinaryCached)
    {
        // Program caching is disabled, the program is yet to be linked or it's already cached,
        // nothing to do.
        return;
    }

    // No post-link tasks should be pending.
    ASSERT(mState.mExecutable->mPostLinkSubTasks.empty());

    // Save to the program cache.
    std::lock_guard<std::mutex> cacheLock(context->getProgramCacheMutex());
    MemoryProgramCache *cache = context->getMemoryProgramCache();
    // TODO: http://anglebug.com/4530: Enable program caching for separable programs
    if (cache && !isSeparable() &&
        (mState.mExecutable->mLinkedTransformFeedbackVaryings.empty() ||
         !context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled))
    {
        if (cache->putProgram(mProgramHash, context, this) == angle::Result::Stop)
        {
            // Don't fail linking if putting the program binary into the cache fails, the program is
            // still usable.
            ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW,
                               "Failed to save linked program to memory program cache.");
        }
    }

    mIsBinaryCached = true;
}

void Program::dumpProgramInfo(const Context *context) const
{
    std::stringstream dumpStream;
    for (ShaderType shaderType : angle::AllEnums<ShaderType>())
    {
        Shader *shader = getAttachedShader(shaderType);
        if (shader)
        {
            dumpStream << shader->getType() << ": "
                       << GetShaderDumpFileName(shader->getSourceHash()) << std::endl;
        }
    }

    std::string dump = dumpStream.str();
    size_t dumpHash  = std::hash<std::string>{}(dump);

    std::stringstream pathStream;
    std::string shaderDumpDir = GetShaderDumpFileDirectory();
    if (!shaderDumpDir.empty())
    {
        pathStream << shaderDumpDir << "/";
    }
    pathStream << dumpHash << ".program";
    std::string path = pathStream.str();

    writeFile(path.c_str(), dump.c_str(), dump.length());
    INFO() << "Dumped program: " << path;
}
}  // namespace gl