summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/complex/Complex.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/complex/Complex.java')
-rw-r--r--src/main/java/org/apache/commons/math/complex/Complex.java1007
1 files changed, 1007 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/complex/Complex.java b/src/main/java/org/apache/commons/math/complex/Complex.java
new file mode 100644
index 0000000..ad2bc96
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/complex/Complex.java
@@ -0,0 +1,1007 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.complex;
+
+import java.io.Serializable;
+import java.util.ArrayList;
+import java.util.List;
+
+import org.apache.commons.math.FieldElement;
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.MathUtils;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * Representation of a Complex number - a number which has both a
+ * real and imaginary part.
+ * <p>
+ * Implementations of arithmetic operations handle <code>NaN</code> and
+ * infinite values according to the rules for {@link java.lang.Double}
+ * arithmetic, applying definitional formulas and returning <code>NaN</code> or
+ * infinite values in real or imaginary parts as these arise in computation.
+ * See individual method javadocs for details.</p>
+ * <p>
+ * {@link #equals} identifies all values with <code>NaN</code> in either real
+ * or imaginary part - e.g., <pre>
+ * <code>1 + NaNi == NaN + i == NaN + NaNi.</code></pre></p>
+ *
+ * implements Serializable since 2.0
+ *
+ * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
+ */
+public class Complex implements FieldElement<Complex>, Serializable {
+
+ /** The square root of -1. A number representing "0.0 + 1.0i" */
+ public static final Complex I = new Complex(0.0, 1.0);
+
+ // CHECKSTYLE: stop ConstantName
+ /** A complex number representing "NaN + NaNi" */
+ public static final Complex NaN = new Complex(Double.NaN, Double.NaN);
+ // CHECKSTYLE: resume ConstantName
+
+ /** A complex number representing "+INF + INFi" */
+ public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
+
+ /** A complex number representing "1.0 + 0.0i" */
+ public static final Complex ONE = new Complex(1.0, 0.0);
+
+ /** A complex number representing "0.0 + 0.0i" */
+ public static final Complex ZERO = new Complex(0.0, 0.0);
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -6195664516687396620L;
+
+ /** The imaginary part. */
+ private final double imaginary;
+
+ /** The real part. */
+ private final double real;
+
+ /** Record whether this complex number is equal to NaN. */
+ private final transient boolean isNaN;
+
+ /** Record whether this complex number is infinite. */
+ private final transient boolean isInfinite;
+
+ /**
+ * Create a complex number given the real and imaginary parts.
+ *
+ * @param real the real part
+ * @param imaginary the imaginary part
+ */
+ public Complex(double real, double imaginary) {
+ super();
+ this.real = real;
+ this.imaginary = imaginary;
+
+ isNaN = Double.isNaN(real) || Double.isNaN(imaginary);
+ isInfinite = !isNaN &&
+ (Double.isInfinite(real) || Double.isInfinite(imaginary));
+ }
+
+ /**
+ * Return the absolute value of this complex number.
+ * <p>
+ * Returns <code>NaN</code> if either real or imaginary part is
+ * <code>NaN</code> and <code>Double.POSITIVE_INFINITY</code> if
+ * neither part is <code>NaN</code>, but at least one part takes an infinite
+ * value.</p>
+ *
+ * @return the absolute value
+ */
+ public double abs() {
+ if (isNaN()) {
+ return Double.NaN;
+ }
+
+ if (isInfinite()) {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ if (FastMath.abs(real) < FastMath.abs(imaginary)) {
+ if (imaginary == 0.0) {
+ return FastMath.abs(real);
+ }
+ double q = real / imaginary;
+ return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q);
+ } else {
+ if (real == 0.0) {
+ return FastMath.abs(imaginary);
+ }
+ double q = imaginary / real;
+ return FastMath.abs(real) * FastMath.sqrt(1 + q * q);
+ }
+ }
+
+ /**
+ * Return the sum of this complex number and the given complex number.
+ * <p>
+ * Uses the definitional formula
+ * <pre>
+ * (a + bi) + (c + di) = (a+c) + (b+d)i
+ * </pre></p>
+ * <p>
+ * If either this or <code>rhs</code> has a NaN value in either part,
+ * {@link #NaN} is returned; otherwise Inifinite and NaN values are
+ * returned in the parts of the result according to the rules for
+ * {@link java.lang.Double} arithmetic.</p>
+ *
+ * @param rhs the other complex number
+ * @return the complex number sum
+ * @throws NullPointerException if <code>rhs</code> is null
+ */
+ public Complex add(Complex rhs) {
+ return createComplex(real + rhs.getReal(),
+ imaginary + rhs.getImaginary());
+ }
+
+ /**
+ * Return the conjugate of this complex number. The conjugate of
+ * "A + Bi" is "A - Bi".
+ * <p>
+ * {@link #NaN} is returned if either the real or imaginary
+ * part of this Complex number equals <code>Double.NaN</code>.</p>
+ * <p>
+ * If the imaginary part is infinite, and the real part is not NaN,
+ * the returned value has infinite imaginary part of the opposite
+ * sign - e.g. the conjugate of <code>1 + POSITIVE_INFINITY i</code>
+ * is <code>1 - NEGATIVE_INFINITY i</code></p>
+ *
+ * @return the conjugate of this Complex object
+ */
+ public Complex conjugate() {
+ if (isNaN()) {
+ return NaN;
+ }
+ return createComplex(real, -imaginary);
+ }
+
+ /**
+ * Return the quotient of this complex number and the given complex number.
+ * <p>
+ * Implements the definitional formula
+ * <pre><code>
+ * a + bi ac + bd + (bc - ad)i
+ * ----------- = -------------------------
+ * c + di c<sup>2</sup> + d<sup>2</sup>
+ * </code></pre>
+ * but uses
+ * <a href="http://doi.acm.org/10.1145/1039813.1039814">
+ * prescaling of operands</a> to limit the effects of overflows and
+ * underflows in the computation.</p>
+ * <p>
+ * Infinite and NaN values are handled / returned according to the
+ * following rules, applied in the order presented:
+ * <ul>
+ * <li>If either this or <code>rhs</code> has a NaN value in either part,
+ * {@link #NaN} is returned.</li>
+ * <li>If <code>rhs</code> equals {@link #ZERO}, {@link #NaN} is returned.
+ * </li>
+ * <li>If this and <code>rhs</code> are both infinite,
+ * {@link #NaN} is returned.</li>
+ * <li>If this is finite (i.e., has no infinite or NaN parts) and
+ * <code>rhs</code> is infinite (one or both parts infinite),
+ * {@link #ZERO} is returned.</li>
+ * <li>If this is infinite and <code>rhs</code> is finite, NaN values are
+ * returned in the parts of the result if the {@link java.lang.Double}
+ * rules applied to the definitional formula force NaN results.</li>
+ * </ul></p>
+ *
+ * @param rhs the other complex number
+ * @return the complex number quotient
+ * @throws NullPointerException if <code>rhs</code> is null
+ */
+ public Complex divide(Complex rhs) {
+ if (isNaN() || rhs.isNaN()) {
+ return NaN;
+ }
+
+ double c = rhs.getReal();
+ double d = rhs.getImaginary();
+ if (c == 0.0 && d == 0.0) {
+ return NaN;
+ }
+
+ if (rhs.isInfinite() && !isInfinite()) {
+ return ZERO;
+ }
+
+ if (FastMath.abs(c) < FastMath.abs(d)) {
+ double q = c / d;
+ double denominator = c * q + d;
+ return createComplex((real * q + imaginary) / denominator,
+ (imaginary * q - real) / denominator);
+ } else {
+ double q = d / c;
+ double denominator = d * q + c;
+ return createComplex((imaginary * q + real) / denominator,
+ (imaginary - real * q) / denominator);
+ }
+ }
+
+ /**
+ * Test for the equality of two Complex objects.
+ * <p>
+ * If both the real and imaginary parts of two Complex numbers
+ * are exactly the same, and neither is <code>Double.NaN</code>, the two
+ * Complex objects are considered to be equal.</p>
+ * <p>
+ * All <code>NaN</code> values are considered to be equal - i.e, if either
+ * (or both) real and imaginary parts of the complex number are equal
+ * to <code>Double.NaN</code>, the complex number is equal to
+ * <code>Complex.NaN</code>.</p>
+ *
+ * @param other Object to test for equality to this
+ * @return true if two Complex objects are equal, false if
+ * object is null, not an instance of Complex, or
+ * not equal to this Complex instance
+ *
+ */
+ @Override
+ public boolean equals(Object other) {
+ if (this == other) {
+ return true;
+ }
+ if (other instanceof Complex){
+ Complex rhs = (Complex)other;
+ if (rhs.isNaN()) {
+ return this.isNaN();
+ } else {
+ return (real == rhs.real) && (imaginary == rhs.imaginary);
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Get a hashCode for the complex number.
+ * <p>
+ * All NaN values have the same hash code.</p>
+ *
+ * @return a hash code value for this object
+ */
+ @Override
+ public int hashCode() {
+ if (isNaN()) {
+ return 7;
+ }
+ return 37 * (17 * MathUtils.hash(imaginary) +
+ MathUtils.hash(real));
+ }
+
+ /**
+ * Access the imaginary part.
+ *
+ * @return the imaginary part
+ */
+ public double getImaginary() {
+ return imaginary;
+ }
+
+ /**
+ * Access the real part.
+ *
+ * @return the real part
+ */
+ public double getReal() {
+ return real;
+ }
+
+ /**
+ * Returns true if either or both parts of this complex number is NaN;
+ * false otherwise
+ *
+ * @return true if either or both parts of this complex number is NaN;
+ * false otherwise
+ */
+ public boolean isNaN() {
+ return isNaN;
+ }
+
+ /**
+ * Returns true if either the real or imaginary part of this complex number
+ * takes an infinite value (either <code>Double.POSITIVE_INFINITY</code> or
+ * <code>Double.NEGATIVE_INFINITY</code>) and neither part
+ * is <code>NaN</code>.
+ *
+ * @return true if one or both parts of this complex number are infinite
+ * and neither part is <code>NaN</code>
+ */
+ public boolean isInfinite() {
+ return isInfinite;
+ }
+
+ /**
+ * Return the product of this complex number and the given complex number.
+ * <p>
+ * Implements preliminary checks for NaN and infinity followed by
+ * the definitional formula:
+ * <pre><code>
+ * (a + bi)(c + di) = (ac - bd) + (ad + bc)i
+ * </code></pre>
+ * </p>
+ * <p>
+ * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
+ * NaN parts.
+ * </p>
+ * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
+ * NaN parts and if either this or <code>rhs</code> has one or more
+ * infinite parts (same result is returned regardless of the sign of the
+ * components).
+ * </p>
+ * <p>
+ * Returns finite values in components of the result per the
+ * definitional formula in all remaining cases.
+ * </p>
+ *
+ * @param rhs the other complex number
+ * @return the complex number product
+ * @throws NullPointerException if <code>rhs</code> is null
+ */
+ public Complex multiply(Complex rhs) {
+ if (isNaN() || rhs.isNaN()) {
+ return NaN;
+ }
+ if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
+ Double.isInfinite(rhs.real)|| Double.isInfinite(rhs.imaginary)) {
+ // we don't use Complex.isInfinite() to avoid testing for NaN again
+ return INF;
+ }
+ return createComplex(real * rhs.real - imaginary * rhs.imaginary,
+ real * rhs.imaginary + imaginary * rhs.real);
+ }
+
+ /**
+ * Return the product of this complex number and the given scalar number.
+ * <p>
+ * Implements preliminary checks for NaN and infinity followed by
+ * the definitional formula:
+ * <pre><code>
+ * c(a + bi) = (ca) + (cb)i
+ * </code></pre>
+ * </p>
+ * <p>
+ * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
+ * NaN parts.
+ * </p>
+ * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
+ * NaN parts and if either this or <code>rhs</code> has one or more
+ * infinite parts (same result is returned regardless of the sign of the
+ * components).
+ * </p>
+ * <p>
+ * Returns finite values in components of the result per the
+ * definitional formula in all remaining cases.
+ * </p>
+ *
+ * @param rhs the scalar number
+ * @return the complex number product
+ */
+ public Complex multiply(double rhs) {
+ if (isNaN() || Double.isNaN(rhs)) {
+ return NaN;
+ }
+ if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
+ Double.isInfinite(rhs)) {
+ // we don't use Complex.isInfinite() to avoid testing for NaN again
+ return INF;
+ }
+ return createComplex(real * rhs, imaginary * rhs);
+ }
+
+ /**
+ * Return the additive inverse of this complex number.
+ * <p>
+ * Returns <code>Complex.NaN</code> if either real or imaginary
+ * part of this Complex number equals <code>Double.NaN</code>.</p>
+ *
+ * @return the negation of this complex number
+ */
+ public Complex negate() {
+ if (isNaN()) {
+ return NaN;
+ }
+
+ return createComplex(-real, -imaginary);
+ }
+
+ /**
+ * Return the difference between this complex number and the given complex
+ * number.
+ * <p>
+ * Uses the definitional formula
+ * <pre>
+ * (a + bi) - (c + di) = (a-c) + (b-d)i
+ * </pre></p>
+ * <p>
+ * If either this or <code>rhs</code> has a NaN value in either part,
+ * {@link #NaN} is returned; otherwise inifinite and NaN values are
+ * returned in the parts of the result according to the rules for
+ * {@link java.lang.Double} arithmetic. </p>
+ *
+ * @param rhs the other complex number
+ * @return the complex number difference
+ * @throws NullPointerException if <code>rhs</code> is null
+ */
+ public Complex subtract(Complex rhs) {
+ if (isNaN() || rhs.isNaN()) {
+ return NaN;
+ }
+
+ return createComplex(real - rhs.getReal(),
+ imaginary - rhs.getImaginary());
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top">
+ * inverse cosine</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))</code></pre></p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code> or infinite.</p>
+ *
+ * @return the inverse cosine of this complex number
+ * @since 1.2
+ */
+ public Complex acos() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return this.add(this.sqrt1z().multiply(Complex.I)).log()
+ .multiply(Complex.I.negate());
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top">
+ * inverse sine</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz)) </code></pre></p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code> or infinite.</p>
+ *
+ * @return the inverse sine of this complex number.
+ * @since 1.2
+ */
+ public Complex asin() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return sqrt1z().add(this.multiply(Complex.I)).log()
+ .multiply(Complex.I.negate());
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top">
+ * inverse tangent</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> atan(z) = (i/2) log((i + z)/(i - z)) </code></pre></p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code> or infinite.</p>
+ *
+ * @return the inverse tangent of this complex number
+ * @since 1.2
+ */
+ public Complex atan() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return this.add(Complex.I).divide(Complex.I.subtract(this)).log()
+ .multiply(Complex.I.divide(createComplex(2.0, 0.0)));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
+ * cosine</a>
+ * of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * cos(1 &plusmn; INFINITY i) = 1 &#x2213; INFINITY i
+ * cos(&plusmn;INFINITY + i) = NaN + NaN i
+ * cos(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
+ *
+ * @return the cosine of this complex number
+ * @since 1.2
+ */
+ public Complex cos() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return createComplex(FastMath.cos(real) * MathUtils.cosh(imaginary),
+ -FastMath.sin(real) * MathUtils.sinh(imaginary));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
+ * hyperbolic cosine</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * cosh(1 &plusmn; INFINITY i) = NaN + NaN i
+ * cosh(&plusmn;INFINITY + i) = INFINITY &plusmn; INFINITY i
+ * cosh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
+ *
+ * @return the hyperbolic cosine of this complex number.
+ * @since 1.2
+ */
+ public Complex cosh() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return createComplex(MathUtils.cosh(real) * FastMath.cos(imaginary),
+ MathUtils.sinh(real) * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
+ * exponential function</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and
+ * {@link java.lang.Math#sin}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * exp(1 &plusmn; INFINITY i) = NaN + NaN i
+ * exp(INFINITY + i) = INFINITY + INFINITY i
+ * exp(-INFINITY + i) = 0 + 0i
+ * exp(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
+ *
+ * @return <i>e</i><sup><code>this</code></sup>
+ * @since 1.2
+ */
+ public Complex exp() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ double expReal = FastMath.exp(real);
+ return createComplex(expReal * FastMath.cos(imaginary), expReal * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
+ * natural logarithm</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> log(a + bi) = ln(|a + bi|) + arg(a + bi)i</code></pre>
+ * where ln on the right hand side is {@link java.lang.Math#log},
+ * <code>|a + bi|</code> is the modulus, {@link Complex#abs}, and
+ * <code>arg(a + bi) = {@link java.lang.Math#atan2}(b, a)</code></p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite (or critical) values in real or imaginary parts of the input may
+ * result in infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * log(1 &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/2)i
+ * log(INFINITY + i) = INFINITY + 0i
+ * log(-INFINITY + i) = INFINITY + &pi;i
+ * log(INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/4)i
+ * log(-INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (3&pi;/4)i
+ * log(0 + 0i) = -INFINITY + 0i
+ * </code></pre></p>
+ *
+ * @return ln of this complex number.
+ * @since 1.2
+ */
+ public Complex log() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return createComplex(FastMath.log(abs()),
+ FastMath.atan2(imaginary, real));
+ }
+
+ /**
+ * Returns of value of this complex number raised to the power of <code>x</code>.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> y<sup>x</sup> = exp(x&middot;log(y))</code></pre>
+ * where <code>exp</code> and <code>log</code> are {@link #exp} and
+ * {@link #log}, respectively.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code> or infinite, or if <code>y</code>
+ * equals {@link Complex#ZERO}.</p>
+ *
+ * @param x the exponent.
+ * @return <code>this</code><sup><code>x</code></sup>
+ * @throws NullPointerException if x is null
+ * @since 1.2
+ */
+ public Complex pow(Complex x) {
+ if (x == null) {
+ throw new NullPointerException();
+ }
+ return this.log().multiply(x).exp();
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top">
+ * sine</a>
+ * of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * sin(1 &plusmn; INFINITY i) = 1 &plusmn; INFINITY i
+ * sin(&plusmn;INFINITY + i) = NaN + NaN i
+ * sin(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
+ *
+ * @return the sine of this complex number.
+ * @since 1.2
+ */
+ public Complex sin() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return createComplex(FastMath.sin(real) * MathUtils.cosh(imaginary),
+ FastMath.cos(real) * MathUtils.sinh(imaginary));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
+ * hyperbolic sine</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code> sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * sinh(1 &plusmn; INFINITY i) = NaN + NaN i
+ * sinh(&plusmn;INFINITY + i) = &plusmn; INFINITY + INFINITY i
+ * sinh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i</code></pre></p>
+ *
+ * @return the hyperbolic sine of this complex number
+ * @since 1.2
+ */
+ public Complex sinh() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ return createComplex(MathUtils.sinh(real) * FastMath.cos(imaginary),
+ MathUtils.cosh(real) * FastMath.sin(imaginary));
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
+ * square root</a> of this complex number.
+ * <p>
+ * Implements the following algorithm to compute <code>sqrt(a + bi)</code>:
+ * <ol><li>Let <code>t = sqrt((|a| + |a + bi|) / 2)</code></li>
+ * <li><pre>if <code> a &#8805; 0</code> return <code>t + (b/2t)i</code>
+ * else return <code>|b|/2t + sign(b)t i </code></pre></li>
+ * </ol>
+ * where <ul>
+ * <li><code>|a| = {@link Math#abs}(a)</code></li>
+ * <li><code>|a + bi| = {@link Complex#abs}(a + bi) </code></li>
+ * <li><code>sign(b) = {@link MathUtils#indicator}(b) </code>
+ * </ul></p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * sqrt(1 &plusmn; INFINITY i) = INFINITY + NaN i
+ * sqrt(INFINITY + i) = INFINITY + 0i
+ * sqrt(-INFINITY + i) = 0 + INFINITY i
+ * sqrt(INFINITY &plusmn; INFINITY i) = INFINITY + NaN i
+ * sqrt(-INFINITY &plusmn; INFINITY i) = NaN &plusmn; INFINITY i
+ * </code></pre></p>
+ *
+ * @return the square root of this complex number
+ * @since 1.2
+ */
+ public Complex sqrt() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ if (real == 0.0 && imaginary == 0.0) {
+ return createComplex(0.0, 0.0);
+ }
+
+ double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0);
+ if (real >= 0.0) {
+ return createComplex(t, imaginary / (2.0 * t));
+ } else {
+ return createComplex(FastMath.abs(imaginary) / (2.0 * t),
+ MathUtils.indicator(imaginary) * t);
+ }
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
+ * square root</a> of 1 - <code>this</code><sup>2</sup> for this complex
+ * number.
+ * <p>
+ * Computes the result directly as
+ * <code>sqrt(Complex.ONE.subtract(z.multiply(z)))</code>.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.</p>
+ *
+ * @return the square root of 1 - <code>this</code><sup>2</sup>
+ * @since 1.2
+ */
+ public Complex sqrt1z() {
+ return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
+ * tangent</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code>tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite (or critical) values in real or imaginary parts of the input may
+ * result in infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * tan(1 &plusmn; INFINITY i) = 0 + NaN i
+ * tan(&plusmn;INFINITY + i) = NaN + NaN i
+ * tan(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * tan(&plusmn;&pi;/2 + 0 i) = &plusmn;INFINITY + NaN i</code></pre></p>
+ *
+ * @return the tangent of this complex number
+ * @since 1.2
+ */
+ public Complex tan() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ double real2 = 2.0 * real;
+ double imaginary2 = 2.0 * imaginary;
+ double d = FastMath.cos(real2) + MathUtils.cosh(imaginary2);
+
+ return createComplex(FastMath.sin(real2) / d, MathUtils.sinh(imaginary2) / d);
+ }
+
+ /**
+ * Compute the
+ * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
+ * hyperbolic tangent</a> of this complex number.
+ * <p>
+ * Implements the formula: <pre>
+ * <code>tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i</code></pre>
+ * where the (real) functions on the right-hand side are
+ * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
+ * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
+ * <p>
+ * Returns {@link Complex#NaN} if either real or imaginary part of the
+ * input argument is <code>NaN</code>.</p>
+ * <p>
+ * Infinite values in real or imaginary parts of the input may result in
+ * infinite or NaN values returned in parts of the result.<pre>
+ * Examples:
+ * <code>
+ * tanh(1 &plusmn; INFINITY i) = NaN + NaN i
+ * tanh(&plusmn;INFINITY + i) = NaN + 0 i
+ * tanh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+ * tanh(0 + (&pi;/2)i) = NaN + INFINITY i</code></pre></p>
+ *
+ * @return the hyperbolic tangent of this complex number
+ * @since 1.2
+ */
+ public Complex tanh() {
+ if (isNaN()) {
+ return Complex.NaN;
+ }
+
+ double real2 = 2.0 * real;
+ double imaginary2 = 2.0 * imaginary;
+ double d = MathUtils.cosh(real2) + FastMath.cos(imaginary2);
+
+ return createComplex(MathUtils.sinh(real2) / d, FastMath.sin(imaginary2) / d);
+ }
+
+
+
+ /**
+ * <p>Compute the argument of this complex number.
+ * </p>
+ * <p>The argument is the angle phi between the positive real axis and the point
+ * representing this number in the complex plane. The value returned is between -PI (not inclusive)
+ * and PI (inclusive), with negative values returned for numbers with negative imaginary parts.
+ * </p>
+ * <p>If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled
+ * as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of
+ * an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite
+ * parts. See the javadoc for java.Math.atan2 for full details.</p>
+ *
+ * @return the argument of this complex number
+ */
+ public double getArgument() {
+ return FastMath.atan2(getImaginary(), getReal());
+ }
+
+ /**
+ * <p>Computes the n-th roots of this complex number.
+ * </p>
+ * <p>The nth roots are defined by the formula: <pre>
+ * <code> z<sub>k</sub> = abs<sup> 1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 2&pi;k/n))</code></pre>
+ * for <i><code>k=0, 1, ..., n-1</code></i>, where <code>abs</code> and <code>phi</code> are
+ * respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
+ * </p>
+ * <p>If one or both parts of this complex number is NaN, a list with just one element,
+ * {@link #NaN} is returned.</p>
+ * <p>if neither part is NaN, but at least one part is infinite, the result is a one-element
+ * list containing {@link #INF}.</p>
+ *
+ * @param n degree of root
+ * @return List<Complex> all nth roots of this complex number
+ * @throws IllegalArgumentException if parameter n is less than or equal to 0
+ * @since 2.0
+ */
+ public List<Complex> nthRoot(int n) throws IllegalArgumentException {
+
+ if (n <= 0) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
+ n);
+ }
+
+ List<Complex> result = new ArrayList<Complex>();
+
+ if (isNaN()) {
+ result.add(Complex.NaN);
+ return result;
+ }
+
+ if (isInfinite()) {
+ result.add(Complex.INF);
+ return result;
+ }
+
+ // nth root of abs -- faster / more accurate to use a solver here?
+ final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
+
+ // Compute nth roots of complex number with k = 0, 1, ... n-1
+ final double nthPhi = getArgument()/n;
+ final double slice = 2 * FastMath.PI / n;
+ double innerPart = nthPhi;
+ for (int k = 0; k < n ; k++) {
+ // inner part
+ final double realPart = nthRootOfAbs * FastMath.cos(innerPart);
+ final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart);
+ result.add(createComplex(realPart, imaginaryPart));
+ innerPart += slice;
+ }
+
+ return result;
+ }
+
+ /**
+ * Create a complex number given the real and imaginary parts.
+ *
+ * @param realPart the real part
+ * @param imaginaryPart the imaginary part
+ * @return a new complex number instance
+ * @since 1.2
+ */
+ protected Complex createComplex(double realPart, double imaginaryPart) {
+ return new Complex(realPart, imaginaryPart);
+ }
+
+ /**
+ * <p>Resolve the transient fields in a deserialized Complex Object.</p>
+ * <p>Subclasses will need to override {@link #createComplex} to deserialize properly</p>
+ * @return A Complex instance with all fields resolved.
+ * @since 2.0
+ */
+ protected final Object readResolve() {
+ return createComplex(real, imaginary);
+ }
+
+ /** {@inheritDoc} */
+ public ComplexField getField() {
+ return ComplexField.getInstance();
+ }
+
+}