summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/geometry
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/geometry')
-rw-r--r--src/main/java/org/apache/commons/math/geometry/CardanEulerSingularityException.java45
-rw-r--r--src/main/java/org/apache/commons/math/geometry/NotARotationMatrixException.java60
-rw-r--r--src/main/java/org/apache/commons/math/geometry/Rotation.java1072
-rw-r--r--src/main/java/org/apache/commons/math/geometry/RotationOrder.java175
-rw-r--r--src/main/java/org/apache/commons/math/geometry/Vector3D.java534
-rw-r--r--src/main/java/org/apache/commons/math/geometry/Vector3DFormat.java343
-rw-r--r--src/main/java/org/apache/commons/math/geometry/package.html24
7 files changed, 2253 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/geometry/CardanEulerSingularityException.java b/src/main/java/org/apache/commons/math/geometry/CardanEulerSingularityException.java
new file mode 100644
index 0000000..61d349e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/CardanEulerSingularityException.java
@@ -0,0 +1,45 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+
+/** This class represents exceptions thrown while extractiong Cardan
+ * or Euler angles from a rotation.
+
+ * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 août 2010) $
+ * @since 1.2
+ */
+public class CardanEulerSingularityException
+ extends MathException {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -1360952845582206770L;
+
+ /**
+ * Simple constructor.
+ * build an exception with a default message.
+ * @param isCardan if true, the rotation is related to Cardan angles,
+ * if false it is related to EulerAngles
+ */
+ public CardanEulerSingularityException(boolean isCardan) {
+ super(isCardan ? LocalizedFormats.CARDAN_ANGLES_SINGULARITY : LocalizedFormats.EULER_ANGLES_SINGULARITY);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/NotARotationMatrixException.java b/src/main/java/org/apache/commons/math/geometry/NotARotationMatrixException.java
new file mode 100644
index 0000000..0b6ff8d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/NotARotationMatrixException.java
@@ -0,0 +1,60 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.exception.util.Localizable;
+
+/**
+ * This class represents exceptions thrown while building rotations
+ * from matrices.
+ *
+ * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 août 2010) $
+ * @since 1.2
+ */
+
+public class NotARotationMatrixException
+ extends MathException {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 5647178478658937642L;
+
+ /**
+ * Simple constructor.
+ * Build an exception by translating and formating a message
+ * @param specifier format specifier (to be translated)
+ * @param parts to insert in the format (no translation)
+ * @deprecated as of 2.2 replaced by {@link #NotARotationMatrixException(Localizable, Object...)}
+ */
+ @Deprecated
+ public NotARotationMatrixException(String specifier, Object ... parts) {
+ super(specifier, parts);
+ }
+
+ /**
+ * Simple constructor.
+ * Build an exception by translating and formating a message
+ * @param specifier format specifier (to be translated)
+ * @param parts to insert in the format (no translation)
+ * @since 2.2
+ */
+ public NotARotationMatrixException(Localizable specifier, Object ... parts) {
+ super(specifier, parts);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/Rotation.java b/src/main/java/org/apache/commons/math/geometry/Rotation.java
new file mode 100644
index 0000000..ee3f4b7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/Rotation.java
@@ -0,0 +1,1072 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * This class implements rotations in a three-dimensional space.
+ *
+ * <p>Rotations can be represented by several different mathematical
+ * entities (matrices, axe and angle, Cardan or Euler angles,
+ * quaternions). This class presents an higher level abstraction, more
+ * user-oriented and hiding this implementation details. Well, for the
+ * curious, we use quaternions for the internal representation. The
+ * user can build a rotation from any of these representations, and
+ * any of these representations can be retrieved from a
+ * <code>Rotation</code> instance (see the various constructors and
+ * getters). In addition, a rotation can also be built implicitly
+ * from a set of vectors and their image.</p>
+ * <p>This implies that this class can be used to convert from one
+ * representation to another one. For example, converting a rotation
+ * matrix into a set of Cardan angles from can be done using the
+ * following single line of code:</p>
+ * <pre>
+ * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
+ * </pre>
+ * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
+ * underlying representation. Once it has been built, and regardless of its
+ * internal representation, a rotation is an <em>operator</em> which basically
+ * transforms three dimensional {@link Vector3D vectors} into other three
+ * dimensional {@link Vector3D vectors}. Depending on the application, the
+ * meaning of these vectors may vary and the semantics of the rotation also.</p>
+ * <p>For example in an spacecraft attitude simulation tool, users will often
+ * consider the vectors are fixed (say the Earth direction for example) and the
+ * frames change. The rotation transforms the coordinates of the vector in inertial
+ * frame into the coordinates of the same vector in satellite frame. In this
+ * case, the rotation implicitly defines the relation between the two frames.</p>
+ * <p>Another example could be a telescope control application, where the rotation
+ * would transform the sighting direction at rest into the desired observing
+ * direction when the telescope is pointed towards an object of interest. In this
+ * case the rotation transforms the direction at rest in a topocentric frame
+ * into the sighting direction in the same topocentric frame. This implies in this
+ * case the frame is fixed and the vector moves.</p>
+ * <p>In many case, both approaches will be combined. In our telescope example,
+ * we will probably also need to transform the observing direction in the topocentric
+ * frame into the observing direction in inertial frame taking into account the observatory
+ * location and the Earth rotation, which would essentially be an application of the
+ * first approach.</p>
+ *
+ * <p>These examples show that a rotation is what the user wants it to be. This
+ * class does not push the user towards one specific definition and hence does not
+ * provide methods like <code>projectVectorIntoDestinationFrame</code> or
+ * <code>computeTransformedDirection</code>. It provides simpler and more generic
+ * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
+ * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
+ *
+ * <p>Since a rotation is basically a vectorial operator, several rotations can be
+ * composed together and the composite operation <code>r = r<sub>1</sub> o
+ * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
+ * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
+ * we can consider that in addition to vectors, a rotation can be applied to other
+ * rotations as well (or to itself). With our previous notations, we would say we
+ * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
+ * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
+ * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
+ * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
+ *
+ * <p>Rotations are guaranteed to be immutable objects.</p>
+ *
+ * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
+ * @see Vector3D
+ * @see RotationOrder
+ * @since 1.2
+ */
+
+public class Rotation implements Serializable {
+
+ /** Identity rotation. */
+ public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -2153622329907944313L;
+
+ /** Scalar coordinate of the quaternion. */
+ private final double q0;
+
+ /** First coordinate of the vectorial part of the quaternion. */
+ private final double q1;
+
+ /** Second coordinate of the vectorial part of the quaternion. */
+ private final double q2;
+
+ /** Third coordinate of the vectorial part of the quaternion. */
+ private final double q3;
+
+ /** Build a rotation from the quaternion coordinates.
+ * <p>A rotation can be built from a <em>normalized</em> quaternion,
+ * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
+ * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
+ * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
+ * the constructor can normalize it in a preprocessing step.</p>
+ * <p>Note that some conventions put the scalar part of the quaternion
+ * as the 4<sup>th</sup> component and the vector part as the first three
+ * components. This is <em>not</em> our convention. We put the scalar part
+ * as the first component.</p>
+ * @param q0 scalar part of the quaternion
+ * @param q1 first coordinate of the vectorial part of the quaternion
+ * @param q2 second coordinate of the vectorial part of the quaternion
+ * @param q3 third coordinate of the vectorial part of the quaternion
+ * @param needsNormalization if true, the coordinates are considered
+ * not to be normalized, a normalization preprocessing step is performed
+ * before using them
+ */
+ public Rotation(double q0, double q1, double q2, double q3,
+ boolean needsNormalization) {
+
+ if (needsNormalization) {
+ // normalization preprocessing
+ double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+ q0 *= inv;
+ q1 *= inv;
+ q2 *= inv;
+ q3 *= inv;
+ }
+
+ this.q0 = q0;
+ this.q1 = q1;
+ this.q2 = q2;
+ this.q3 = q3;
+
+ }
+
+ /** Build a rotation from an axis and an angle.
+ * <p>We use the convention that angles are oriented according to
+ * the effect of the rotation on vectors around the axis. That means
+ * that if (i, j, k) is a direct frame and if we first provide +k as
+ * the axis and &pi;/2 as the angle to this constructor, and then
+ * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
+ * +j.</p>
+ * <p>Another way to represent our convention is to say that a rotation
+ * of angle &theta; about the unit vector (x, y, z) is the same as the
+ * rotation build from quaternion components { cos(-&theta;/2),
+ * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
+ * Note the minus sign on the angle!</p>
+ * <p>On the one hand this convention is consistent with a vectorial
+ * perspective (moving vectors in fixed frames), on the other hand it
+ * is different from conventions with a frame perspective (fixed vectors
+ * viewed from different frames) like the ones used for example in spacecraft
+ * attitude community or in the graphics community.</p>
+ * @param axis axis around which to rotate
+ * @param angle rotation angle.
+ * @exception ArithmeticException if the axis norm is zero
+ */
+ public Rotation(Vector3D axis, double angle) {
+
+ double norm = axis.getNorm();
+ if (norm == 0) {
+ throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
+ }
+
+ double halfAngle = -0.5 * angle;
+ double coeff = FastMath.sin(halfAngle) / norm;
+
+ q0 = FastMath.cos (halfAngle);
+ q1 = coeff * axis.getX();
+ q2 = coeff * axis.getY();
+ q3 = coeff * axis.getZ();
+
+ }
+
+ /** Build a rotation from a 3X3 matrix.
+
+ * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
+ * (which are matrices for which m.m<sup>T</sup> = I) with real
+ * coefficients. The module of the determinant of unit matrices is
+ * 1, among the orthogonal 3X3 matrices, only the ones having a
+ * positive determinant (+1) are rotation matrices.</p>
+ *
+ * <p>When a rotation is defined by a matrix with truncated values
+ * (typically when it is extracted from a technical sheet where only
+ * four to five significant digits are available), the matrix is not
+ * orthogonal anymore. This constructor handles this case
+ * transparently by using a copy of the given matrix and applying a
+ * correction to the copy in order to perfect its orthogonality. If
+ * the Frobenius norm of the correction needed is above the given
+ * threshold, then the matrix is considered to be too far from a
+ * true rotation matrix and an exception is thrown.<p>
+ *
+ * @param m rotation matrix
+ * @param threshold convergence threshold for the iterative
+ * orthogonality correction (convergence is reached when the
+ * difference between two steps of the Frobenius norm of the
+ * correction is below this threshold)
+ *
+ * @exception NotARotationMatrixException if the matrix is not a 3X3
+ * matrix, or if it cannot be transformed into an orthogonal matrix
+ * with the given threshold, or if the determinant of the resulting
+ * orthogonal matrix is negative
+ *
+ */
+ public Rotation(double[][] m, double threshold)
+ throws NotARotationMatrixException {
+
+ // dimension check
+ if ((m.length != 3) || (m[0].length != 3) ||
+ (m[1].length != 3) || (m[2].length != 3)) {
+ throw new NotARotationMatrixException(
+ LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
+ m.length, m[0].length);
+ }
+
+ // compute a "close" orthogonal matrix
+ double[][] ort = orthogonalizeMatrix(m, threshold);
+
+ // check the sign of the determinant
+ double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
+ ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
+ ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
+ if (det < 0.0) {
+ throw new NotARotationMatrixException(
+ LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
+ det);
+ }
+
+ // There are different ways to compute the quaternions elements
+ // from the matrix. They all involve computing one element from
+ // the diagonal of the matrix, and computing the three other ones
+ // using a formula involving a division by the first element,
+ // which unfortunately can be zero. Since the norm of the
+ // quaternion is 1, we know at least one element has an absolute
+ // value greater or equal to 0.5, so it is always possible to
+ // select the right formula and avoid division by zero and even
+ // numerical inaccuracy. Checking the elements in turn and using
+ // the first one greater than 0.45 is safe (this leads to a simple
+ // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
+ double s = ort[0][0] + ort[1][1] + ort[2][2];
+ if (s > -0.19) {
+ // compute q0 and deduce q1, q2 and q3
+ q0 = 0.5 * FastMath.sqrt(s + 1.0);
+ double inv = 0.25 / q0;
+ q1 = inv * (ort[1][2] - ort[2][1]);
+ q2 = inv * (ort[2][0] - ort[0][2]);
+ q3 = inv * (ort[0][1] - ort[1][0]);
+ } else {
+ s = ort[0][0] - ort[1][1] - ort[2][2];
+ if (s > -0.19) {
+ // compute q1 and deduce q0, q2 and q3
+ q1 = 0.5 * FastMath.sqrt(s + 1.0);
+ double inv = 0.25 / q1;
+ q0 = inv * (ort[1][2] - ort[2][1]);
+ q2 = inv * (ort[0][1] + ort[1][0]);
+ q3 = inv * (ort[0][2] + ort[2][0]);
+ } else {
+ s = ort[1][1] - ort[0][0] - ort[2][2];
+ if (s > -0.19) {
+ // compute q2 and deduce q0, q1 and q3
+ q2 = 0.5 * FastMath.sqrt(s + 1.0);
+ double inv = 0.25 / q2;
+ q0 = inv * (ort[2][0] - ort[0][2]);
+ q1 = inv * (ort[0][1] + ort[1][0]);
+ q3 = inv * (ort[2][1] + ort[1][2]);
+ } else {
+ // compute q3 and deduce q0, q1 and q2
+ s = ort[2][2] - ort[0][0] - ort[1][1];
+ q3 = 0.5 * FastMath.sqrt(s + 1.0);
+ double inv = 0.25 / q3;
+ q0 = inv * (ort[0][1] - ort[1][0]);
+ q1 = inv * (ort[0][2] + ort[2][0]);
+ q2 = inv * (ort[2][1] + ort[1][2]);
+ }
+ }
+ }
+
+ }
+
+ /** Build the rotation that transforms a pair of vector into another pair.
+
+ * <p>Except for possible scale factors, if the instance were applied to
+ * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
+ * (v<sub>1</sub>, v<sub>2</sub>).</p>
+ *
+ * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
+ * not the same as the angular separation between v<sub>1</sub> and
+ * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
+ * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
+ * v<sub>2</sub>) plane.</p>
+ *
+ * @param u1 first vector of the origin pair
+ * @param u2 second vector of the origin pair
+ * @param v1 desired image of u1 by the rotation
+ * @param v2 desired image of u2 by the rotation
+ * @exception IllegalArgumentException if the norm of one of the vectors is zero
+ */
+ public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
+
+ // norms computation
+ double u1u1 = Vector3D.dotProduct(u1, u1);
+ double u2u2 = Vector3D.dotProduct(u2, u2);
+ double v1v1 = Vector3D.dotProduct(v1, v1);
+ double v2v2 = Vector3D.dotProduct(v2, v2);
+ if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
+ throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
+ }
+
+ double u1x = u1.getX();
+ double u1y = u1.getY();
+ double u1z = u1.getZ();
+
+ double u2x = u2.getX();
+ double u2y = u2.getY();
+ double u2z = u2.getZ();
+
+ // normalize v1 in order to have (v1'|v1') = (u1|u1)
+ double coeff = FastMath.sqrt (u1u1 / v1v1);
+ double v1x = coeff * v1.getX();
+ double v1y = coeff * v1.getY();
+ double v1z = coeff * v1.getZ();
+ v1 = new Vector3D(v1x, v1y, v1z);
+
+ // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
+ double u1u2 = Vector3D.dotProduct(u1, u2);
+ double v1v2 = Vector3D.dotProduct(v1, v2);
+ double coeffU = u1u2 / u1u1;
+ double coeffV = v1v2 / u1u1;
+ double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
+ double alpha = coeffU - beta * coeffV;
+ double v2x = alpha * v1x + beta * v2.getX();
+ double v2y = alpha * v1y + beta * v2.getY();
+ double v2z = alpha * v1z + beta * v2.getZ();
+ v2 = new Vector3D(v2x, v2y, v2z);
+
+ // preliminary computation (we use explicit formulation instead
+ // of relying on the Vector3D class in order to avoid building lots
+ // of temporary objects)
+ Vector3D uRef = u1;
+ Vector3D vRef = v1;
+ double dx1 = v1x - u1.getX();
+ double dy1 = v1y - u1.getY();
+ double dz1 = v1z - u1.getZ();
+ double dx2 = v2x - u2.getX();
+ double dy2 = v2y - u2.getY();
+ double dz2 = v2z - u2.getZ();
+ Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
+ dz1 * dx2 - dx1 * dz2,
+ dx1 * dy2 - dy1 * dx2);
+ double c = k.getX() * (u1y * u2z - u1z * u2y) +
+ k.getY() * (u1z * u2x - u1x * u2z) +
+ k.getZ() * (u1x * u2y - u1y * u2x);
+
+ if (c == 0) {
+ // the (q1, q2, q3) vector is in the (u1, u2) plane
+ // we try other vectors
+ Vector3D u3 = Vector3D.crossProduct(u1, u2);
+ Vector3D v3 = Vector3D.crossProduct(v1, v2);
+ double u3x = u3.getX();
+ double u3y = u3.getY();
+ double u3z = u3.getZ();
+ double v3x = v3.getX();
+ double v3y = v3.getY();
+ double v3z = v3.getZ();
+
+ double dx3 = v3x - u3x;
+ double dy3 = v3y - u3y;
+ double dz3 = v3z - u3z;
+ k = new Vector3D(dy1 * dz3 - dz1 * dy3,
+ dz1 * dx3 - dx1 * dz3,
+ dx1 * dy3 - dy1 * dx3);
+ c = k.getX() * (u1y * u3z - u1z * u3y) +
+ k.getY() * (u1z * u3x - u1x * u3z) +
+ k.getZ() * (u1x * u3y - u1y * u3x);
+
+ if (c == 0) {
+ // the (q1, q2, q3) vector is aligned with u1:
+ // we try (u2, u3) and (v2, v3)
+ k = new Vector3D(dy2 * dz3 - dz2 * dy3,
+ dz2 * dx3 - dx2 * dz3,
+ dx2 * dy3 - dy2 * dx3);
+ c = k.getX() * (u2y * u3z - u2z * u3y) +
+ k.getY() * (u2z * u3x - u2x * u3z) +
+ k.getZ() * (u2x * u3y - u2y * u3x);
+
+ if (c == 0) {
+ // the (q1, q2, q3) vector is aligned with everything
+ // this is really the identity rotation
+ q0 = 1.0;
+ q1 = 0.0;
+ q2 = 0.0;
+ q3 = 0.0;
+ return;
+ }
+
+ // we will have to use u2 and v2 to compute the scalar part
+ uRef = u2;
+ vRef = v2;
+
+ }
+
+ }
+
+ // compute the vectorial part
+ c = FastMath.sqrt(c);
+ double inv = 1.0 / (c + c);
+ q1 = inv * k.getX();
+ q2 = inv * k.getY();
+ q3 = inv * k.getZ();
+
+ // compute the scalar part
+ k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
+ uRef.getZ() * q1 - uRef.getX() * q3,
+ uRef.getX() * q2 - uRef.getY() * q1);
+ c = Vector3D.dotProduct(k, k);
+ q0 = Vector3D.dotProduct(vRef, k) / (c + c);
+
+ }
+
+ /** Build one of the rotations that transform one vector into another one.
+
+ * <p>Except for a possible scale factor, if the instance were
+ * applied to the vector u it will produce the vector v. There is an
+ * infinite number of such rotations, this constructor choose the
+ * one with the smallest associated angle (i.e. the one whose axis
+ * is orthogonal to the (u, v) plane). If u and v are colinear, an
+ * arbitrary rotation axis is chosen.</p>
+ *
+ * @param u origin vector
+ * @param v desired image of u by the rotation
+ * @exception IllegalArgumentException if the norm of one of the vectors is zero
+ */
+ public Rotation(Vector3D u, Vector3D v) {
+
+ double normProduct = u.getNorm() * v.getNorm();
+ if (normProduct == 0) {
+ throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
+ }
+
+ double dot = Vector3D.dotProduct(u, v);
+
+ if (dot < ((2.0e-15 - 1.0) * normProduct)) {
+ // special case u = -v: we select a PI angle rotation around
+ // an arbitrary vector orthogonal to u
+ Vector3D w = u.orthogonal();
+ q0 = 0.0;
+ q1 = -w.getX();
+ q2 = -w.getY();
+ q3 = -w.getZ();
+ } else {
+ // general case: (u, v) defines a plane, we select
+ // the shortest possible rotation: axis orthogonal to this plane
+ q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
+ double coeff = 1.0 / (2.0 * q0 * normProduct);
+ q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
+ q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
+ q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
+ }
+
+ }
+
+ /** Build a rotation from three Cardan or Euler elementary rotations.
+
+ * <p>Cardan rotations are three successive rotations around the
+ * canonical axes X, Y and Z, each axis being used once. There are
+ * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
+ * rotations are three successive rotations around the canonical
+ * axes X, Y and Z, the first and last rotations being around the
+ * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
+ * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
+ * <p>Beware that many people routinely use the term Euler angles even
+ * for what really are Cardan angles (this confusion is especially
+ * widespread in the aerospace business where Roll, Pitch and Yaw angles
+ * are often wrongly tagged as Euler angles).</p>
+ *
+ * @param order order of rotations to use
+ * @param alpha1 angle of the first elementary rotation
+ * @param alpha2 angle of the second elementary rotation
+ * @param alpha3 angle of the third elementary rotation
+ */
+ public Rotation(RotationOrder order,
+ double alpha1, double alpha2, double alpha3) {
+ Rotation r1 = new Rotation(order.getA1(), alpha1);
+ Rotation r2 = new Rotation(order.getA2(), alpha2);
+ Rotation r3 = new Rotation(order.getA3(), alpha3);
+ Rotation composed = r1.applyTo(r2.applyTo(r3));
+ q0 = composed.q0;
+ q1 = composed.q1;
+ q2 = composed.q2;
+ q3 = composed.q3;
+ }
+
+ /** Revert a rotation.
+ * Build a rotation which reverse the effect of another
+ * rotation. This means that if r(u) = v, then r.revert(v) = u. The
+ * instance is not changed.
+ * @return a new rotation whose effect is the reverse of the effect
+ * of the instance
+ */
+ public Rotation revert() {
+ return new Rotation(-q0, q1, q2, q3, false);
+ }
+
+ /** Get the scalar coordinate of the quaternion.
+ * @return scalar coordinate of the quaternion
+ */
+ public double getQ0() {
+ return q0;
+ }
+
+ /** Get the first coordinate of the vectorial part of the quaternion.
+ * @return first coordinate of the vectorial part of the quaternion
+ */
+ public double getQ1() {
+ return q1;
+ }
+
+ /** Get the second coordinate of the vectorial part of the quaternion.
+ * @return second coordinate of the vectorial part of the quaternion
+ */
+ public double getQ2() {
+ return q2;
+ }
+
+ /** Get the third coordinate of the vectorial part of the quaternion.
+ * @return third coordinate of the vectorial part of the quaternion
+ */
+ public double getQ3() {
+ return q3;
+ }
+
+ /** Get the normalized axis of the rotation.
+ * @return normalized axis of the rotation
+ * @see #Rotation(Vector3D, double)
+ */
+ public Vector3D getAxis() {
+ double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
+ if (squaredSine == 0) {
+ return new Vector3D(1, 0, 0);
+ } else if (q0 < 0) {
+ double inverse = 1 / FastMath.sqrt(squaredSine);
+ return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
+ }
+ double inverse = -1 / FastMath.sqrt(squaredSine);
+ return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
+ }
+
+ /** Get the angle of the rotation.
+ * @return angle of the rotation (between 0 and &pi;)
+ * @see #Rotation(Vector3D, double)
+ */
+ public double getAngle() {
+ if ((q0 < -0.1) || (q0 > 0.1)) {
+ return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
+ } else if (q0 < 0) {
+ return 2 * FastMath.acos(-q0);
+ }
+ return 2 * FastMath.acos(q0);
+ }
+
+ /** Get the Cardan or Euler angles corresponding to the instance.
+
+ * <p>The equations show that each rotation can be defined by two
+ * different values of the Cardan or Euler angles set. For example
+ * if Cardan angles are used, the rotation defined by the angles
+ * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
+ * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
+ * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
+ * the following arbitrary choices:</p>
+ * <ul>
+ * <li>for Cardan angles, the chosen set is the one for which the
+ * second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
+ * positive),</li>
+ * <li>for Euler angles, the chosen set is the one for which the
+ * second angle is between 0 and &pi; (i.e its sine is positive).</li>
+ * </ul>
+ *
+ * <p>Cardan and Euler angle have a very disappointing drawback: all
+ * of them have singularities. This means that if the instance is
+ * too close to the singularities corresponding to the given
+ * rotation order, it will be impossible to retrieve the angles. For
+ * Cardan angles, this is often called gimbal lock. There is
+ * <em>nothing</em> to do to prevent this, it is an intrinsic problem
+ * with Cardan and Euler representation (but not a problem with the
+ * rotation itself, which is perfectly well defined). For Cardan
+ * angles, singularities occur when the second angle is close to
+ * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
+ * second angle is close to 0 or &pi;, this implies that the identity
+ * rotation is always singular for Euler angles!</p>
+ *
+ * @param order rotation order to use
+ * @return an array of three angles, in the order specified by the set
+ * @exception CardanEulerSingularityException if the rotation is
+ * singular with respect to the angles set specified
+ */
+ public double[] getAngles(RotationOrder order)
+ throws CardanEulerSingularityException {
+
+ if (order == RotationOrder.XYZ) {
+
+ // r (Vector3D.plusK) coordinates are :
+ // sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
+ // (-r) (Vector3D.plusI) coordinates are :
+ // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
+ // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_K);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
+ if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(-(v1.getY()), v1.getZ()),
+ FastMath.asin(v2.getZ()),
+ FastMath.atan2(-(v2.getY()), v2.getX())
+ };
+
+ } else if (order == RotationOrder.XZY) {
+
+ // r (Vector3D.plusJ) coordinates are :
+ // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
+ // (-r) (Vector3D.plusI) coordinates are :
+ // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
+ // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_J);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
+ if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getZ(), v1.getY()),
+ -FastMath.asin(v2.getY()),
+ FastMath.atan2(v2.getZ(), v2.getX())
+ };
+
+ } else if (order == RotationOrder.YXZ) {
+
+ // r (Vector3D.plusK) coordinates are :
+ // cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
+ // (-r) (Vector3D.plusJ) coordinates are :
+ // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
+ // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_K);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
+ if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getX(), v1.getZ()),
+ -FastMath.asin(v2.getZ()),
+ FastMath.atan2(v2.getX(), v2.getY())
+ };
+
+ } else if (order == RotationOrder.YZX) {
+
+ // r (Vector3D.plusI) coordinates are :
+ // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
+ // (-r) (Vector3D.plusJ) coordinates are :
+ // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
+ // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_I);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
+ if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(-(v1.getZ()), v1.getX()),
+ FastMath.asin(v2.getX()),
+ FastMath.atan2(-(v2.getZ()), v2.getY())
+ };
+
+ } else if (order == RotationOrder.ZXY) {
+
+ // r (Vector3D.plusJ) coordinates are :
+ // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
+ // (-r) (Vector3D.plusK) coordinates are :
+ // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
+ // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_J);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
+ if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(-(v1.getX()), v1.getY()),
+ FastMath.asin(v2.getY()),
+ FastMath.atan2(-(v2.getX()), v2.getZ())
+ };
+
+ } else if (order == RotationOrder.ZYX) {
+
+ // r (Vector3D.plusI) coordinates are :
+ // cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
+ // (-r) (Vector3D.plusK) coordinates are :
+ // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
+ // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
+ Vector3D v1 = applyTo(Vector3D.PLUS_I);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
+ if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(true);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getY(), v1.getX()),
+ -FastMath.asin(v2.getX()),
+ FastMath.atan2(v2.getY(), v2.getZ())
+ };
+
+ } else if (order == RotationOrder.XYX) {
+
+ // r (Vector3D.plusI) coordinates are :
+ // cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
+ // (-r) (Vector3D.plusI) coordinates are :
+ // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
+ // and we can choose to have theta in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_I);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
+ if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getY(), -v1.getZ()),
+ FastMath.acos(v2.getX()),
+ FastMath.atan2(v2.getY(), v2.getZ())
+ };
+
+ } else if (order == RotationOrder.XZX) {
+
+ // r (Vector3D.plusI) coordinates are :
+ // cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
+ // (-r) (Vector3D.plusI) coordinates are :
+ // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
+ // and we can choose to have psi in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_I);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
+ if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getZ(), v1.getY()),
+ FastMath.acos(v2.getX()),
+ FastMath.atan2(v2.getZ(), -v2.getY())
+ };
+
+ } else if (order == RotationOrder.YXY) {
+
+ // r (Vector3D.plusJ) coordinates are :
+ // sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
+ // (-r) (Vector3D.plusJ) coordinates are :
+ // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
+ // and we can choose to have phi in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_J);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
+ if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getX(), v1.getZ()),
+ FastMath.acos(v2.getY()),
+ FastMath.atan2(v2.getX(), -v2.getZ())
+ };
+
+ } else if (order == RotationOrder.YZY) {
+
+ // r (Vector3D.plusJ) coordinates are :
+ // -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
+ // (-r) (Vector3D.plusJ) coordinates are :
+ // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
+ // and we can choose to have psi in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_J);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
+ if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getZ(), -v1.getX()),
+ FastMath.acos(v2.getY()),
+ FastMath.atan2(v2.getZ(), v2.getX())
+ };
+
+ } else if (order == RotationOrder.ZXZ) {
+
+ // r (Vector3D.plusK) coordinates are :
+ // sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
+ // (-r) (Vector3D.plusK) coordinates are :
+ // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
+ // and we can choose to have phi in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_K);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
+ if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getX(), -v1.getY()),
+ FastMath.acos(v2.getZ()),
+ FastMath.atan2(v2.getX(), v2.getY())
+ };
+
+ } else { // last possibility is ZYZ
+
+ // r (Vector3D.plusK) coordinates are :
+ // cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
+ // (-r) (Vector3D.plusK) coordinates are :
+ // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
+ // and we can choose to have theta in the interval [0 ; PI]
+ Vector3D v1 = applyTo(Vector3D.PLUS_K);
+ Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
+ if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
+ throw new CardanEulerSingularityException(false);
+ }
+ return new double[] {
+ FastMath.atan2(v1.getY(), v1.getX()),
+ FastMath.acos(v2.getZ()),
+ FastMath.atan2(v2.getY(), -v2.getX())
+ };
+
+ }
+
+ }
+
+ /** Get the 3X3 matrix corresponding to the instance
+ * @return the matrix corresponding to the instance
+ */
+ public double[][] getMatrix() {
+
+ // products
+ double q0q0 = q0 * q0;
+ double q0q1 = q0 * q1;
+ double q0q2 = q0 * q2;
+ double q0q3 = q0 * q3;
+ double q1q1 = q1 * q1;
+ double q1q2 = q1 * q2;
+ double q1q3 = q1 * q3;
+ double q2q2 = q2 * q2;
+ double q2q3 = q2 * q3;
+ double q3q3 = q3 * q3;
+
+ // create the matrix
+ double[][] m = new double[3][];
+ m[0] = new double[3];
+ m[1] = new double[3];
+ m[2] = new double[3];
+
+ m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
+ m [1][0] = 2.0 * (q1q2 - q0q3);
+ m [2][0] = 2.0 * (q1q3 + q0q2);
+
+ m [0][1] = 2.0 * (q1q2 + q0q3);
+ m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
+ m [2][1] = 2.0 * (q2q3 - q0q1);
+
+ m [0][2] = 2.0 * (q1q3 - q0q2);
+ m [1][2] = 2.0 * (q2q3 + q0q1);
+ m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
+
+ return m;
+
+ }
+
+ /** Apply the rotation to a vector.
+ * @param u vector to apply the rotation to
+ * @return a new vector which is the image of u by the rotation
+ */
+ public Vector3D applyTo(Vector3D u) {
+
+ double x = u.getX();
+ double y = u.getY();
+ double z = u.getZ();
+
+ double s = q1 * x + q2 * y + q3 * z;
+
+ return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
+ 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
+ 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
+
+ }
+
+ /** Apply the inverse of the rotation to a vector.
+ * @param u vector to apply the inverse of the rotation to
+ * @return a new vector which such that u is its image by the rotation
+ */
+ public Vector3D applyInverseTo(Vector3D u) {
+
+ double x = u.getX();
+ double y = u.getY();
+ double z = u.getZ();
+
+ double s = q1 * x + q2 * y + q3 * z;
+ double m0 = -q0;
+
+ return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
+ 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
+ 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
+
+ }
+
+ /** Apply the instance to another rotation.
+ * Applying the instance to a rotation is computing the composition
+ * in an order compliant with the following rule : let u be any
+ * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
+ * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
+ * where comp = applyTo(r).
+ * @param r rotation to apply the rotation to
+ * @return a new rotation which is the composition of r by the instance
+ */
+ public Rotation applyTo(Rotation r) {
+ return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
+ r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
+ r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
+ r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
+ false);
+ }
+
+ /** Apply the inverse of the instance to another rotation.
+ * Applying the inverse of the instance to a rotation is computing
+ * the composition in an order compliant with the following rule :
+ * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
+ * let w be the inverse image of v by the instance
+ * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
+ * comp = applyInverseTo(r).
+ * @param r rotation to apply the rotation to
+ * @return a new rotation which is the composition of r by the inverse
+ * of the instance
+ */
+ public Rotation applyInverseTo(Rotation r) {
+ return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
+ -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
+ -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
+ -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
+ false);
+ }
+
+ /** Perfect orthogonality on a 3X3 matrix.
+ * @param m initial matrix (not exactly orthogonal)
+ * @param threshold convergence threshold for the iterative
+ * orthogonality correction (convergence is reached when the
+ * difference between two steps of the Frobenius norm of the
+ * correction is below this threshold)
+ * @return an orthogonal matrix close to m
+ * @exception NotARotationMatrixException if the matrix cannot be
+ * orthogonalized with the given threshold after 10 iterations
+ */
+ private double[][] orthogonalizeMatrix(double[][] m, double threshold)
+ throws NotARotationMatrixException {
+ double[] m0 = m[0];
+ double[] m1 = m[1];
+ double[] m2 = m[2];
+ double x00 = m0[0];
+ double x01 = m0[1];
+ double x02 = m0[2];
+ double x10 = m1[0];
+ double x11 = m1[1];
+ double x12 = m1[2];
+ double x20 = m2[0];
+ double x21 = m2[1];
+ double x22 = m2[2];
+ double fn = 0;
+ double fn1;
+
+ double[][] o = new double[3][3];
+ double[] o0 = o[0];
+ double[] o1 = o[1];
+ double[] o2 = o[2];
+
+ // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
+ int i = 0;
+ while (++i < 11) {
+
+ // Mt.Xn
+ double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
+ double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
+ double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
+ double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
+ double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
+ double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
+ double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
+ double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
+ double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
+
+ // Xn+1
+ o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
+ o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
+ o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
+ o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
+ o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
+ o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
+ o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
+ o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
+ o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
+
+ // correction on each elements
+ double corr00 = o0[0] - m0[0];
+ double corr01 = o0[1] - m0[1];
+ double corr02 = o0[2] - m0[2];
+ double corr10 = o1[0] - m1[0];
+ double corr11 = o1[1] - m1[1];
+ double corr12 = o1[2] - m1[2];
+ double corr20 = o2[0] - m2[0];
+ double corr21 = o2[1] - m2[1];
+ double corr22 = o2[2] - m2[2];
+
+ // Frobenius norm of the correction
+ fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
+ corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
+ corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
+
+ // convergence test
+ if (FastMath.abs(fn1 - fn) <= threshold)
+ return o;
+
+ // prepare next iteration
+ x00 = o0[0];
+ x01 = o0[1];
+ x02 = o0[2];
+ x10 = o1[0];
+ x11 = o1[1];
+ x12 = o1[2];
+ x20 = o2[0];
+ x21 = o2[1];
+ x22 = o2[2];
+ fn = fn1;
+
+ }
+
+ // the algorithm did not converge after 10 iterations
+ throw new NotARotationMatrixException(
+ LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
+ i - 1);
+ }
+
+ /** Compute the <i>distance</i> between two rotations.
+ * <p>The <i>distance</i> is intended here as a way to check if two
+ * rotations are almost similar (i.e. they transform vectors the same way)
+ * or very different. It is mathematically defined as the angle of
+ * the rotation r that prepended to one of the rotations gives the other
+ * one:</p>
+ * <pre>
+ * r<sub>1</sub>(r) = r<sub>2</sub>
+ * </pre>
+ * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
+ * possible upper bound of the angle in radians between r<sub>1</sub>(v)
+ * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
+ * reached for some v. The distance is equal to 0 if and only if the two
+ * rotations are identical.</p>
+ * <p>Comparing two rotations should always be done using this value rather
+ * than for example comparing the components of the quaternions. It is much
+ * more stable, and has a geometric meaning. Also comparing quaternions
+ * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
+ * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
+ * their components are different (they are exact opposites).</p>
+ * @param r1 first rotation
+ * @param r2 second rotation
+ * @return <i>distance</i> between r1 and r2
+ */
+ public static double distance(Rotation r1, Rotation r2) {
+ return r1.applyInverseTo(r2).getAngle();
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/RotationOrder.java b/src/main/java/org/apache/commons/math/geometry/RotationOrder.java
new file mode 100644
index 0000000..9292b14
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/RotationOrder.java
@@ -0,0 +1,175 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+/**
+ * This class is a utility representing a rotation order specification
+ * for Cardan or Euler angles specification.
+ *
+ * This class cannot be instanciated by the user. He can only use one
+ * of the twelve predefined supported orders as an argument to either
+ * the {@link Rotation#Rotation(RotationOrder,double,double,double)}
+ * constructor or the {@link Rotation#getAngles} method.
+ *
+ * @version $Revision: 811827 $ $Date: 2009-09-06 17:32:50 +0200 (dim. 06 sept. 2009) $
+ * @since 1.2
+ */
+public final class RotationOrder {
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around X, then around Y, then
+ * around Z
+ */
+ public static final RotationOrder XYZ =
+ new RotationOrder("XYZ", Vector3D.PLUS_I, Vector3D.PLUS_J, Vector3D.PLUS_K);
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around X, then around Z, then
+ * around Y
+ */
+ public static final RotationOrder XZY =
+ new RotationOrder("XZY", Vector3D.PLUS_I, Vector3D.PLUS_K, Vector3D.PLUS_J);
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around Y, then around X, then
+ * around Z
+ */
+ public static final RotationOrder YXZ =
+ new RotationOrder("YXZ", Vector3D.PLUS_J, Vector3D.PLUS_I, Vector3D.PLUS_K);
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around Y, then around Z, then
+ * around X
+ */
+ public static final RotationOrder YZX =
+ new RotationOrder("YZX", Vector3D.PLUS_J, Vector3D.PLUS_K, Vector3D.PLUS_I);
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around Z, then around X, then
+ * around Y
+ */
+ public static final RotationOrder ZXY =
+ new RotationOrder("ZXY", Vector3D.PLUS_K, Vector3D.PLUS_I, Vector3D.PLUS_J);
+
+ /** Set of Cardan angles.
+ * this ordered set of rotations is around Z, then around Y, then
+ * around X
+ */
+ public static final RotationOrder ZYX =
+ new RotationOrder("ZYX", Vector3D.PLUS_K, Vector3D.PLUS_J, Vector3D.PLUS_I);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around X, then around Y, then
+ * around X
+ */
+ public static final RotationOrder XYX =
+ new RotationOrder("XYX", Vector3D.PLUS_I, Vector3D.PLUS_J, Vector3D.PLUS_I);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around X, then around Z, then
+ * around X
+ */
+ public static final RotationOrder XZX =
+ new RotationOrder("XZX", Vector3D.PLUS_I, Vector3D.PLUS_K, Vector3D.PLUS_I);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around Y, then around X, then
+ * around Y
+ */
+ public static final RotationOrder YXY =
+ new RotationOrder("YXY", Vector3D.PLUS_J, Vector3D.PLUS_I, Vector3D.PLUS_J);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around Y, then around Z, then
+ * around Y
+ */
+ public static final RotationOrder YZY =
+ new RotationOrder("YZY", Vector3D.PLUS_J, Vector3D.PLUS_K, Vector3D.PLUS_J);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around Z, then around X, then
+ * around Z
+ */
+ public static final RotationOrder ZXZ =
+ new RotationOrder("ZXZ", Vector3D.PLUS_K, Vector3D.PLUS_I, Vector3D.PLUS_K);
+
+ /** Set of Euler angles.
+ * this ordered set of rotations is around Z, then around Y, then
+ * around Z
+ */
+ public static final RotationOrder ZYZ =
+ new RotationOrder("ZYZ", Vector3D.PLUS_K, Vector3D.PLUS_J, Vector3D.PLUS_K);
+
+ /** Name of the rotations order. */
+ private final String name;
+
+ /** Axis of the first rotation. */
+ private final Vector3D a1;
+
+ /** Axis of the second rotation. */
+ private final Vector3D a2;
+
+ /** Axis of the third rotation. */
+ private final Vector3D a3;
+
+ /** Private constructor.
+ * This is a utility class that cannot be instantiated by the user,
+ * so its only constructor is private.
+ * @param name name of the rotation order
+ * @param a1 axis of the first rotation
+ * @param a2 axis of the second rotation
+ * @param a3 axis of the third rotation
+ */
+ private RotationOrder(final String name,
+ final Vector3D a1, final Vector3D a2, final Vector3D a3) {
+ this.name = name;
+ this.a1 = a1;
+ this.a2 = a2;
+ this.a3 = a3;
+ }
+
+ /** Get a string representation of the instance.
+ * @return a string representation of the instance (in fact, its name)
+ */
+ @Override
+ public String toString() {
+ return name;
+ }
+
+ /** Get the axis of the first rotation.
+ * @return axis of the first rotation
+ */
+ public Vector3D getA1() {
+ return a1;
+ }
+
+ /** Get the axis of the second rotation.
+ * @return axis of the second rotation
+ */
+ public Vector3D getA2() {
+ return a2;
+ }
+
+ /** Get the axis of the second rotation.
+ * @return axis of the second rotation
+ */
+ public Vector3D getA3() {
+ return a3;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/Vector3D.java b/src/main/java/org/apache/commons/math/geometry/Vector3D.java
new file mode 100644
index 0000000..db18795
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/Vector3D.java
@@ -0,0 +1,534 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+import java.io.Serializable;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.MathUtils;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * This class implements vectors in a three-dimensional space.
+ * <p>Instance of this class are guaranteed to be immutable.</p>
+ * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
+ * @since 1.2
+ */
+
+public class Vector3D
+ implements Serializable {
+
+ /** Null vector (coordinates: 0, 0, 0). */
+ public static final Vector3D ZERO = new Vector3D(0, 0, 0);
+
+ /** First canonical vector (coordinates: 1, 0, 0). */
+ public static final Vector3D PLUS_I = new Vector3D(1, 0, 0);
+
+ /** Opposite of the first canonical vector (coordinates: -1, 0, 0). */
+ public static final Vector3D MINUS_I = new Vector3D(-1, 0, 0);
+
+ /** Second canonical vector (coordinates: 0, 1, 0). */
+ public static final Vector3D PLUS_J = new Vector3D(0, 1, 0);
+
+ /** Opposite of the second canonical vector (coordinates: 0, -1, 0). */
+ public static final Vector3D MINUS_J = new Vector3D(0, -1, 0);
+
+ /** Third canonical vector (coordinates: 0, 0, 1). */
+ public static final Vector3D PLUS_K = new Vector3D(0, 0, 1);
+
+ /** Opposite of the third canonical vector (coordinates: 0, 0, -1). */
+ public static final Vector3D MINUS_K = new Vector3D(0, 0, -1);
+
+ // CHECKSTYLE: stop ConstantName
+ /** A vector with all coordinates set to NaN. */
+ public static final Vector3D NaN = new Vector3D(Double.NaN, Double.NaN, Double.NaN);
+ // CHECKSTYLE: resume ConstantName
+
+ /** A vector with all coordinates set to positive infinity. */
+ public static final Vector3D POSITIVE_INFINITY =
+ new Vector3D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
+
+ /** A vector with all coordinates set to negative infinity. */
+ public static final Vector3D NEGATIVE_INFINITY =
+ new Vector3D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY);
+
+ /** Default format. */
+ private static final Vector3DFormat DEFAULT_FORMAT =
+ Vector3DFormat.getInstance();
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 5133268763396045979L;
+
+ /** Abscissa. */
+ private final double x;
+
+ /** Ordinate. */
+ private final double y;
+
+ /** Height. */
+ private final double z;
+
+ /** Simple constructor.
+ * Build a vector from its coordinates
+ * @param x abscissa
+ * @param y ordinate
+ * @param z height
+ * @see #getX()
+ * @see #getY()
+ * @see #getZ()
+ */
+ public Vector3D(double x, double y, double z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ /** Simple constructor.
+ * Build a vector from its azimuthal coordinates
+ * @param alpha azimuth (&alpha;) around Z
+ * (0 is +X, &pi;/2 is +Y, &pi; is -X and 3&pi;/2 is -Y)
+ * @param delta elevation (&delta;) above (XY) plane, from -&pi;/2 to +&pi;/2
+ * @see #getAlpha()
+ * @see #getDelta()
+ */
+ public Vector3D(double alpha, double delta) {
+ double cosDelta = FastMath.cos(delta);
+ this.x = FastMath.cos(alpha) * cosDelta;
+ this.y = FastMath.sin(alpha) * cosDelta;
+ this.z = FastMath.sin(delta);
+ }
+
+ /** Multiplicative constructor
+ * Build a vector from another one and a scale factor.
+ * The vector built will be a * u
+ * @param a scale factor
+ * @param u base (unscaled) vector
+ */
+ public Vector3D(double a, Vector3D u) {
+ this.x = a * u.x;
+ this.y = a * u.y;
+ this.z = a * u.z;
+ }
+
+ /** Linear constructor
+ * Build a vector from two other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) {
+ this.x = a1 * u1.x + a2 * u2.x;
+ this.y = a1 * u1.y + a2 * u2.y;
+ this.z = a1 * u1.z + a2 * u2.z;
+ }
+
+ /** Linear constructor
+ * Build a vector from three other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
+ double a3, Vector3D u3) {
+ this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x;
+ this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y;
+ this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z;
+ }
+
+ /** Linear constructor
+ * Build a vector from four other ones and corresponding scale factors.
+ * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
+ * @param a1 first scale factor
+ * @param u1 first base (unscaled) vector
+ * @param a2 second scale factor
+ * @param u2 second base (unscaled) vector
+ * @param a3 third scale factor
+ * @param u3 third base (unscaled) vector
+ * @param a4 fourth scale factor
+ * @param u4 fourth base (unscaled) vector
+ */
+ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
+ double a3, Vector3D u3, double a4, Vector3D u4) {
+ this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x;
+ this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y;
+ this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z + a4 * u4.z;
+ }
+
+ /** Get the abscissa of the vector.
+ * @return abscissa of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getX() {
+ return x;
+ }
+
+ /** Get the ordinate of the vector.
+ * @return ordinate of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getY() {
+ return y;
+ }
+
+ /** Get the height of the vector.
+ * @return height of the vector
+ * @see #Vector3D(double, double, double)
+ */
+ public double getZ() {
+ return z;
+ }
+
+ /** Get the L<sub>1</sub> norm for the vector.
+ * @return L<sub>1</sub> norm for the vector
+ */
+ public double getNorm1() {
+ return FastMath.abs(x) + FastMath.abs(y) + FastMath.abs(z);
+ }
+
+ /** Get the L<sub>2</sub> norm for the vector.
+ * @return euclidian norm for the vector
+ */
+ public double getNorm() {
+ return FastMath.sqrt (x * x + y * y + z * z);
+ }
+
+ /** Get the square of the norm for the vector.
+ * @return square of the euclidian norm for the vector
+ */
+ public double getNormSq() {
+ return x * x + y * y + z * z;
+ }
+
+ /** Get the L<sub>&infin;</sub> norm for the vector.
+ * @return L<sub>&infin;</sub> norm for the vector
+ */
+ public double getNormInf() {
+ return FastMath.max(FastMath.max(FastMath.abs(x), FastMath.abs(y)), FastMath.abs(z));
+ }
+
+ /** Get the azimuth of the vector.
+ * @return azimuth (&alpha;) of the vector, between -&pi; and +&pi;
+ * @see #Vector3D(double, double)
+ */
+ public double getAlpha() {
+ return FastMath.atan2(y, x);
+ }
+
+ /** Get the elevation of the vector.
+ * @return elevation (&delta;) of the vector, between -&pi;/2 and +&pi;/2
+ * @see #Vector3D(double, double)
+ */
+ public double getDelta() {
+ return FastMath.asin(z / getNorm());
+ }
+
+ /** Add a vector to the instance.
+ * @param v vector to add
+ * @return a new vector
+ */
+ public Vector3D add(Vector3D v) {
+ return new Vector3D(x + v.x, y + v.y, z + v.z);
+ }
+
+ /** Add a scaled vector to the instance.
+ * @param factor scale factor to apply to v before adding it
+ * @param v vector to add
+ * @return a new vector
+ */
+ public Vector3D add(double factor, Vector3D v) {
+ return new Vector3D(x + factor * v.x, y + factor * v.y, z + factor * v.z);
+ }
+
+ /** Subtract a vector from the instance.
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public Vector3D subtract(Vector3D v) {
+ return new Vector3D(x - v.x, y - v.y, z - v.z);
+ }
+
+ /** Subtract a scaled vector from the instance.
+ * @param factor scale factor to apply to v before subtracting it
+ * @param v vector to subtract
+ * @return a new vector
+ */
+ public Vector3D subtract(double factor, Vector3D v) {
+ return new Vector3D(x - factor * v.x, y - factor * v.y, z - factor * v.z);
+ }
+
+ /** Get a normalized vector aligned with the instance.
+ * @return a new normalized vector
+ * @exception ArithmeticException if the norm is zero
+ */
+ public Vector3D normalize() {
+ double s = getNorm();
+ if (s == 0) {
+ throw MathRuntimeException.createArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
+ }
+ return scalarMultiply(1 / s);
+ }
+
+ /** Get a vector orthogonal to the instance.
+ * <p>There are an infinite number of normalized vectors orthogonal
+ * to the instance. This method picks up one of them almost
+ * arbitrarily. It is useful when one needs to compute a reference
+ * frame with one of the axes in a predefined direction. The
+ * following example shows how to build a frame having the k axis
+ * aligned with the known vector u :
+ * <pre><code>
+ * Vector3D k = u.normalize();
+ * Vector3D i = k.orthogonal();
+ * Vector3D j = Vector3D.crossProduct(k, i);
+ * </code></pre></p>
+ * @return a new normalized vector orthogonal to the instance
+ * @exception ArithmeticException if the norm of the instance is null
+ */
+ public Vector3D orthogonal() {
+
+ double threshold = 0.6 * getNorm();
+ if (threshold == 0) {
+ throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ if ((x >= -threshold) && (x <= threshold)) {
+ double inverse = 1 / FastMath.sqrt(y * y + z * z);
+ return new Vector3D(0, inverse * z, -inverse * y);
+ } else if ((y >= -threshold) && (y <= threshold)) {
+ double inverse = 1 / FastMath.sqrt(x * x + z * z);
+ return new Vector3D(-inverse * z, 0, inverse * x);
+ }
+ double inverse = 1 / FastMath.sqrt(x * x + y * y);
+ return new Vector3D(inverse * y, -inverse * x, 0);
+
+ }
+
+ /** Compute the angular separation between two vectors.
+ * <p>This method computes the angular separation between two
+ * vectors using the dot product for well separated vectors and the
+ * cross product for almost aligned vectors. This allows to have a
+ * good accuracy in all cases, even for vectors very close to each
+ * other.</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return angular separation between v1 and v2
+ * @exception ArithmeticException if either vector has a null norm
+ */
+ public static double angle(Vector3D v1, Vector3D v2) {
+
+ double normProduct = v1.getNorm() * v2.getNorm();
+ if (normProduct == 0) {
+ throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM);
+ }
+
+ double dot = dotProduct(v1, v2);
+ double threshold = normProduct * 0.9999;
+ if ((dot < -threshold) || (dot > threshold)) {
+ // the vectors are almost aligned, compute using the sine
+ Vector3D v3 = crossProduct(v1, v2);
+ if (dot >= 0) {
+ return FastMath.asin(v3.getNorm() / normProduct);
+ }
+ return FastMath.PI - FastMath.asin(v3.getNorm() / normProduct);
+ }
+
+ // the vectors are sufficiently separated to use the cosine
+ return FastMath.acos(dot / normProduct);
+
+ }
+
+ /** Get the opposite of the instance.
+ * @return a new vector which is opposite to the instance
+ */
+ public Vector3D negate() {
+ return new Vector3D(-x, -y, -z);
+ }
+
+ /** Multiply the instance by a scalar
+ * @param a scalar
+ * @return a new vector
+ */
+ public Vector3D scalarMultiply(double a) {
+ return new Vector3D(a * x, a * y, a * z);
+ }
+
+ /**
+ * Returns true if any coordinate of this vector is NaN; false otherwise
+ * @return true if any coordinate of this vector is NaN; false otherwise
+ */
+ public boolean isNaN() {
+ return Double.isNaN(x) || Double.isNaN(y) || Double.isNaN(z);
+ }
+
+ /**
+ * Returns true if any coordinate of this vector is infinite and none are NaN;
+ * false otherwise
+ * @return true if any coordinate of this vector is infinite and none are NaN;
+ * false otherwise
+ */
+ public boolean isInfinite() {
+ return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y) || Double.isInfinite(z));
+ }
+
+ /**
+ * Test for the equality of two 3D vectors.
+ * <p>
+ * If all coordinates of two 3D vectors are exactly the same, and none are
+ * <code>Double.NaN</code>, the two 3D vectors are considered to be equal.
+ * </p>
+ * <p>
+ * <code>NaN</code> coordinates are considered to affect globally the vector
+ * and be equals to each other - i.e, if either (or all) coordinates of the
+ * 3D vector are equal to <code>Double.NaN</code>, the 3D vector is equal to
+ * {@link #NaN}.
+ * </p>
+ *
+ * @param other Object to test for equality to this
+ * @return true if two 3D vector objects are equal, false if
+ * object is null, not an instance of Vector3D, or
+ * not equal to this Vector3D instance
+ *
+ */
+ @Override
+ public boolean equals(Object other) {
+
+ if (this == other) {
+ return true;
+ }
+
+ if (other instanceof Vector3D) {
+ final Vector3D rhs = (Vector3D)other;
+ if (rhs.isNaN()) {
+ return this.isNaN();
+ }
+
+ return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
+ }
+ return false;
+ }
+
+ /**
+ * Get a hashCode for the 3D vector.
+ * <p>
+ * All NaN values have the same hash code.</p>
+ *
+ * @return a hash code value for this object
+ */
+ @Override
+ public int hashCode() {
+ if (isNaN()) {
+ return 8;
+ }
+ return 31 * (23 * MathUtils.hash(x) + 19 * MathUtils.hash(y) + MathUtils.hash(z));
+ }
+
+ /** Compute the dot-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the dot product v1.v2
+ */
+ public static double dotProduct(Vector3D v1, Vector3D v2) {
+ return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
+ }
+
+ /** Compute the cross-product of two vectors.
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the cross product v1 ^ v2 as a new Vector
+ */
+ public static Vector3D crossProduct(Vector3D v1, Vector3D v2) {
+ return new Vector3D(v1.y * v2.z - v1.z * v2.y,
+ v1.z * v2.x - v1.x * v2.z,
+ v1.x * v2.y - v1.y * v2.x);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
+ */
+ public static double distance1(Vector3D v1, Vector3D v2) {
+ final double dx = FastMath.abs(v2.x - v1.x);
+ final double dy = FastMath.abs(v2.y - v1.y);
+ final double dz = FastMath.abs(v2.z - v1.z);
+ return dx + dy + dz;
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
+ */
+ public static double distance(Vector3D v1, Vector3D v2) {
+ final double dx = v2.x - v1.x;
+ final double dy = v2.y - v1.y;
+ final double dz = v2.z - v1.z;
+ return FastMath.sqrt(dx * dx + dy * dy + dz * dz);
+ }
+
+ /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
+ */
+ public static double distanceInf(Vector3D v1, Vector3D v2) {
+ final double dx = FastMath.abs(v2.x - v1.x);
+ final double dy = FastMath.abs(v2.y - v1.y);
+ final double dz = FastMath.abs(v2.z - v1.z);
+ return FastMath.max(FastMath.max(dx, dy), dz);
+ }
+
+ /** Compute the square of the distance between two vectors.
+ * <p>Calling this method is equivalent to calling:
+ * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
+ * vector is built</p>
+ * @param v1 first vector
+ * @param v2 second vector
+ * @return the square of the distance between v1 and v2
+ */
+ public static double distanceSq(Vector3D v1, Vector3D v2) {
+ final double dx = v2.x - v1.x;
+ final double dy = v2.y - v1.y;
+ final double dz = v2.z - v1.z;
+ return dx * dx + dy * dy + dz * dz;
+ }
+
+ /** Get a string representation of this vector.
+ * @return a string representation of this vector
+ */
+ @Override
+ public String toString() {
+ return DEFAULT_FORMAT.format(this);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/Vector3DFormat.java b/src/main/java/org/apache/commons/math/geometry/Vector3DFormat.java
new file mode 100644
index 0000000..7400e20
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/Vector3DFormat.java
@@ -0,0 +1,343 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.geometry;
+
+import java.text.FieldPosition;
+import java.text.NumberFormat;
+import java.text.ParseException;
+import java.text.ParsePosition;
+import java.util.Locale;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.CompositeFormat;
+
+/**
+ * Formats a 3D vector in components list format "{x; y; z}".
+ * <p>The prefix and suffix "{" and "}" and the separator "; " can be replaced by
+ * any user-defined strings. The number format for components can be configured.</p>
+ * <p>White space is ignored at parse time, even if it is in the prefix, suffix
+ * or separator specifications. So even if the default separator does include a space
+ * character that is used at format time, both input string "{1;1;1}" and
+ * " { 1 ; 1 ; 1 } " will be parsed without error and the same vector will be
+ * returned. In the second case, however, the parse position after parsing will be
+ * just after the closing curly brace, i.e. just before the trailing space.</p>
+ *
+ * @version $Revision: 1003886 $ $Date: 2010-10-02 23:04:44 +0200 (sam. 02 oct. 2010) $
+ */
+public class Vector3DFormat extends CompositeFormat {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -5447606608652576301L;
+
+ /** The default prefix: "{". */
+ private static final String DEFAULT_PREFIX = "{";
+
+ /** The default suffix: "}". */
+ private static final String DEFAULT_SUFFIX = "}";
+
+ /** The default separator: ", ". */
+ private static final String DEFAULT_SEPARATOR = "; ";
+
+ /** Prefix. */
+ private final String prefix;
+
+ /** Suffix. */
+ private final String suffix;
+
+ /** Separator. */
+ private final String separator;
+
+ /** Trimmed prefix. */
+ private final String trimmedPrefix;
+
+ /** Trimmed suffix. */
+ private final String trimmedSuffix;
+
+ /** Trimmed separator. */
+ private final String trimmedSeparator;
+
+ /** The format used for components. */
+ private final NumberFormat format;
+
+ /**
+ * Create an instance with default settings.
+ * <p>The instance uses the default prefix, suffix and separator:
+ * "{", "}", and "; " and the default number format for components.</p>
+ */
+ public Vector3DFormat() {
+ this(DEFAULT_PREFIX, DEFAULT_SUFFIX, DEFAULT_SEPARATOR, getDefaultNumberFormat());
+ }
+
+ /**
+ * Create an instance with a custom number format for components.
+ * @param format the custom format for components.
+ */
+ public Vector3DFormat(final NumberFormat format) {
+ this(DEFAULT_PREFIX, DEFAULT_SUFFIX, DEFAULT_SEPARATOR, format);
+ }
+
+ /**
+ * Create an instance with custom prefix, suffix and separator.
+ * @param prefix prefix to use instead of the default "{"
+ * @param suffix suffix to use instead of the default "}"
+ * @param separator separator to use instead of the default "; "
+ */
+ public Vector3DFormat(final String prefix, final String suffix,
+ final String separator) {
+ this(prefix, suffix, separator, getDefaultNumberFormat());
+ }
+
+ /**
+ * Create an instance with custom prefix, suffix, separator and format
+ * for components.
+ * @param prefix prefix to use instead of the default "{"
+ * @param suffix suffix to use instead of the default "}"
+ * @param separator separator to use instead of the default "; "
+ * @param format the custom format for components.
+ */
+ public Vector3DFormat(final String prefix, final String suffix,
+ final String separator, final NumberFormat format) {
+ this.prefix = prefix;
+ this.suffix = suffix;
+ this.separator = separator;
+ trimmedPrefix = prefix.trim();
+ trimmedSuffix = suffix.trim();
+ trimmedSeparator = separator.trim();
+ this.format = format;
+ }
+
+ /**
+ * Get the set of locales for which 3D vectors formats are available.
+ * <p>This is the same set as the {@link NumberFormat} set.</p>
+ * @return available 3D vector format locales.
+ */
+ public static Locale[] getAvailableLocales() {
+ return NumberFormat.getAvailableLocales();
+ }
+
+ /**
+ * Get the format prefix.
+ * @return format prefix.
+ */
+ public String getPrefix() {
+ return prefix;
+ }
+
+ /**
+ * Get the format suffix.
+ * @return format suffix.
+ */
+ public String getSuffix() {
+ return suffix;
+ }
+
+ /**
+ * Get the format separator between components.
+ * @return format separator.
+ */
+ public String getSeparator() {
+ return separator;
+ }
+
+ /**
+ * Get the components format.
+ * @return components format.
+ */
+ public NumberFormat getFormat() {
+ return format;
+ }
+
+ /**
+ * Returns the default 3D vector format for the current locale.
+ * @return the default 3D vector format.
+ */
+ public static Vector3DFormat getInstance() {
+ return getInstance(Locale.getDefault());
+ }
+
+ /**
+ * Returns the default 3D vector format for the given locale.
+ * @param locale the specific locale used by the format.
+ * @return the 3D vector format specific to the given locale.
+ */
+ public static Vector3DFormat getInstance(final Locale locale) {
+ return new Vector3DFormat(getDefaultNumberFormat(locale));
+ }
+
+ /**
+ * This static method calls {@link #format(Object)} on a default instance of
+ * Vector3DFormat.
+ *
+ * @param v Vector3D object to format
+ * @return A formatted vector
+ */
+ public static String formatVector3D(Vector3D v) {
+ return getInstance().format(v);
+ }
+
+ /**
+ * Formats a {@link Vector3D} object to produce a string.
+ * @param vector the object to format.
+ * @param toAppendTo where the text is to be appended
+ * @param pos On input: an alignment field, if desired. On output: the
+ * offsets of the alignment field
+ * @return the value passed in as toAppendTo.
+ */
+ public StringBuffer format(Vector3D vector, StringBuffer toAppendTo,
+ FieldPosition pos) {
+
+ pos.setBeginIndex(0);
+ pos.setEndIndex(0);
+
+ // format prefix
+ toAppendTo.append(prefix);
+
+ // format components
+ formatDouble(vector.getX(), format, toAppendTo, pos);
+ toAppendTo.append(separator);
+ formatDouble(vector.getY(), format, toAppendTo, pos);
+ toAppendTo.append(separator);
+ formatDouble(vector.getZ(), format, toAppendTo, pos);
+
+ // format suffix
+ toAppendTo.append(suffix);
+
+ return toAppendTo;
+
+ }
+
+ /**
+ * Formats a object to produce a string.
+ * <p><code>obj</code> must be a {@link Vector3D} object. Any other type of
+ * object will result in an {@link IllegalArgumentException} being thrown.</p>
+ * @param obj the object to format.
+ * @param toAppendTo where the text is to be appended
+ * @param pos On input: an alignment field, if desired. On output: the
+ * offsets of the alignment field
+ * @return the value passed in as toAppendTo.
+ * @see java.text.Format#format(java.lang.Object, java.lang.StringBuffer, java.text.FieldPosition)
+ * @throws IllegalArgumentException is <code>obj</code> is not a valid type.
+ */
+ @Override
+ public StringBuffer format(Object obj, StringBuffer toAppendTo,
+ FieldPosition pos) {
+
+ if (obj instanceof Vector3D) {
+ return format( (Vector3D)obj, toAppendTo, pos);
+ }
+
+ throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.CANNOT_FORMAT_INSTANCE_AS_3D_VECTOR,
+ obj.getClass().getName());
+
+ }
+
+ /**
+ * Parses a string to produce a {@link Vector3D} object.
+ * @param source the string to parse
+ * @return the parsed {@link Vector3D} object.
+ * @exception ParseException if the beginning of the specified string
+ * cannot be parsed.
+ */
+ public Vector3D parse(String source) throws ParseException {
+ ParsePosition parsePosition = new ParsePosition(0);
+ Vector3D result = parse(source, parsePosition);
+ if (parsePosition.getIndex() == 0) {
+ throw MathRuntimeException.createParseException(
+ parsePosition.getErrorIndex(),
+ LocalizedFormats.UNPARSEABLE_3D_VECTOR, source);
+ }
+ return result;
+ }
+
+ /**
+ * Parses a string to produce a {@link Vector3D} object.
+ * @param source the string to parse
+ * @param pos input/ouput parsing parameter.
+ * @return the parsed {@link Vector3D} object.
+ */
+ public Vector3D parse(String source, ParsePosition pos) {
+ int initialIndex = pos.getIndex();
+
+ // parse prefix
+ parseAndIgnoreWhitespace(source, pos);
+ if (!parseFixedstring(source, trimmedPrefix, pos)) {
+ return null;
+ }
+
+ // parse X component
+ parseAndIgnoreWhitespace(source, pos);
+ Number x = parseNumber(source, format, pos);
+ if (x == null) {
+ // invalid abscissa
+ // set index back to initial, error index should already be set
+ pos.setIndex(initialIndex);
+ return null;
+ }
+
+ // parse Y component
+ parseAndIgnoreWhitespace(source, pos);
+ if (!parseFixedstring(source, trimmedSeparator, pos)) {
+ return null;
+ }
+ parseAndIgnoreWhitespace(source, pos);
+ Number y = parseNumber(source, format, pos);
+ if (y == null) {
+ // invalid ordinate
+ // set index back to initial, error index should already be set
+ pos.setIndex(initialIndex);
+ return null;
+ }
+
+ // parse Z component
+ parseAndIgnoreWhitespace(source, pos);
+ if (!parseFixedstring(source, trimmedSeparator, pos)) {
+ return null;
+ }
+ parseAndIgnoreWhitespace(source, pos);
+ Number z = parseNumber(source, format, pos);
+ if (z == null) {
+ // invalid height
+ // set index back to initial, error index should already be set
+ pos.setIndex(initialIndex);
+ return null;
+ }
+
+ // parse suffix
+ parseAndIgnoreWhitespace(source, pos);
+ if (!parseFixedstring(source, trimmedSuffix, pos)) {
+ return null;
+ }
+
+ return new Vector3D(x.doubleValue(), y.doubleValue(), z.doubleValue());
+
+ }
+
+ /**
+ * Parses a string to produce a object.
+ * @param source the string to parse
+ * @param pos input/ouput parsing parameter.
+ * @return the parsed object.
+ * @see java.text.Format#parseObject(java.lang.String, java.text.ParsePosition)
+ */
+ @Override
+ public Object parseObject(String source, ParsePosition pos) {
+ return parse(source, pos);
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math/geometry/package.html b/src/main/java/org/apache/commons/math/geometry/package.html
new file mode 100644
index 0000000..d528d4a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/geometry/package.html
@@ -0,0 +1,24 @@
+<html>
+<!--
+ Licensed to the Apache Software Foundation (ASF) under one or more
+ contributor license agreements. See the NOTICE file distributed with
+ this work for additional information regarding copyright ownership.
+ The ASF licenses this file to You under the Apache License, Version 2.0
+ (the "License"); you may not use this file except in compliance with
+ the License. You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+ -->
+ <!-- $Revision: 613610 $ -->
+<body>
+<p>
+This package provides basic 3D geometry components.
+</p>
+</body>
+</html>