summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java')
-rw-r--r--src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java453
1 files changed, 453 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java b/src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java
new file mode 100644
index 0000000..7356a8a
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/linear/QRDecompositionImpl.java
@@ -0,0 +1,453 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.linear;
+
+import java.util.Arrays;
+
+import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.FastMath;
+
+
+/**
+ * Calculates the QR-decomposition of a matrix.
+ * <p>The QR-decomposition of a matrix A consists of two matrices Q and R
+ * that satisfy: A = QR, Q is orthogonal (Q<sup>T</sup>Q = I), and R is
+ * upper triangular. If A is m&times;n, Q is m&times;m and R m&times;n.</p>
+ * <p>This class compute the decomposition using Householder reflectors.</p>
+ * <p>For efficiency purposes, the decomposition in packed form is transposed.
+ * This allows inner loop to iterate inside rows, which is much more cache-efficient
+ * in Java.</p>
+ *
+ * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
+ * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
+ *
+ * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
+ * @since 1.2
+ */
+public class QRDecompositionImpl implements QRDecomposition {
+
+ /**
+ * A packed TRANSPOSED representation of the QR decomposition.
+ * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
+ * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
+ * from which an explicit form of Q can be recomputed if desired.</p>
+ */
+ private double[][] qrt;
+
+ /** The diagonal elements of R. */
+ private double[] rDiag;
+
+ /** Cached value of Q. */
+ private RealMatrix cachedQ;
+
+ /** Cached value of QT. */
+ private RealMatrix cachedQT;
+
+ /** Cached value of R. */
+ private RealMatrix cachedR;
+
+ /** Cached value of H. */
+ private RealMatrix cachedH;
+
+ /**
+ * Calculates the QR-decomposition of the given matrix.
+ * @param matrix The matrix to decompose.
+ */
+ public QRDecompositionImpl(RealMatrix matrix) {
+
+ final int m = matrix.getRowDimension();
+ final int n = matrix.getColumnDimension();
+ qrt = matrix.transpose().getData();
+ rDiag = new double[FastMath.min(m, n)];
+ cachedQ = null;
+ cachedQT = null;
+ cachedR = null;
+ cachedH = null;
+
+ /*
+ * The QR decomposition of a matrix A is calculated using Householder
+ * reflectors by repeating the following operations to each minor
+ * A(minor,minor) of A:
+ */
+ for (int minor = 0; minor < FastMath.min(m, n); minor++) {
+
+ final double[] qrtMinor = qrt[minor];
+
+ /*
+ * Let x be the first column of the minor, and a^2 = |x|^2.
+ * x will be in the positions qr[minor][minor] through qr[m][minor].
+ * The first column of the transformed minor will be (a,0,0,..)'
+ * The sign of a is chosen to be opposite to the sign of the first
+ * component of x. Let's find a:
+ */
+ double xNormSqr = 0;
+ for (int row = minor; row < m; row++) {
+ final double c = qrtMinor[row];
+ xNormSqr += c * c;
+ }
+ final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
+ rDiag[minor] = a;
+
+ if (a != 0.0) {
+
+ /*
+ * Calculate the normalized reflection vector v and transform
+ * the first column. We know the norm of v beforehand: v = x-ae
+ * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
+ * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
+ * Here <x, e> is now qr[minor][minor].
+ * v = x-ae is stored in the column at qr:
+ */
+ qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
+
+ /*
+ * Transform the rest of the columns of the minor:
+ * They will be transformed by the matrix H = I-2vv'/|v|^2.
+ * If x is a column vector of the minor, then
+ * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
+ * Therefore the transformation is easily calculated by
+ * subtracting the column vector (2<x,v>/|v|^2)v from x.
+ *
+ * Let 2<x,v>/|v|^2 = alpha. From above we have
+ * |v|^2 = -2a*(qr[minor][minor]), so
+ * alpha = -<x,v>/(a*qr[minor][minor])
+ */
+ for (int col = minor+1; col < n; col++) {
+ final double[] qrtCol = qrt[col];
+ double alpha = 0;
+ for (int row = minor; row < m; row++) {
+ alpha -= qrtCol[row] * qrtMinor[row];
+ }
+ alpha /= a * qrtMinor[minor];
+
+ // Subtract the column vector alpha*v from x.
+ for (int row = minor; row < m; row++) {
+ qrtCol[row] -= alpha * qrtMinor[row];
+ }
+ }
+ }
+ }
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix getR() {
+
+ if (cachedR == null) {
+
+ // R is supposed to be m x n
+ final int n = qrt.length;
+ final int m = qrt[0].length;
+ cachedR = MatrixUtils.createRealMatrix(m, n);
+
+ // copy the diagonal from rDiag and the upper triangle of qr
+ for (int row = FastMath.min(m, n) - 1; row >= 0; row--) {
+ cachedR.setEntry(row, row, rDiag[row]);
+ for (int col = row + 1; col < n; col++) {
+ cachedR.setEntry(row, col, qrt[col][row]);
+ }
+ }
+
+ }
+
+ // return the cached matrix
+ return cachedR;
+
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix getQ() {
+ if (cachedQ == null) {
+ cachedQ = getQT().transpose();
+ }
+ return cachedQ;
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix getQT() {
+
+ if (cachedQT == null) {
+
+ // QT is supposed to be m x m
+ final int n = qrt.length;
+ final int m = qrt[0].length;
+ cachedQT = MatrixUtils.createRealMatrix(m, m);
+
+ /*
+ * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then
+ * applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in
+ * succession to the result
+ */
+ for (int minor = m - 1; minor >= FastMath.min(m, n); minor--) {
+ cachedQT.setEntry(minor, minor, 1.0);
+ }
+
+ for (int minor = FastMath.min(m, n)-1; minor >= 0; minor--){
+ final double[] qrtMinor = qrt[minor];
+ cachedQT.setEntry(minor, minor, 1.0);
+ if (qrtMinor[minor] != 0.0) {
+ for (int col = minor; col < m; col++) {
+ double alpha = 0;
+ for (int row = minor; row < m; row++) {
+ alpha -= cachedQT.getEntry(col, row) * qrtMinor[row];
+ }
+ alpha /= rDiag[minor] * qrtMinor[minor];
+
+ for (int row = minor; row < m; row++) {
+ cachedQT.addToEntry(col, row, -alpha * qrtMinor[row]);
+ }
+ }
+ }
+ }
+
+ }
+
+ // return the cached matrix
+ return cachedQT;
+
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix getH() {
+
+ if (cachedH == null) {
+
+ final int n = qrt.length;
+ final int m = qrt[0].length;
+ cachedH = MatrixUtils.createRealMatrix(m, n);
+ for (int i = 0; i < m; ++i) {
+ for (int j = 0; j < FastMath.min(i + 1, n); ++j) {
+ cachedH.setEntry(i, j, qrt[j][i] / -rDiag[j]);
+ }
+ }
+
+ }
+
+ // return the cached matrix
+ return cachedH;
+
+ }
+
+ /** {@inheritDoc} */
+ public DecompositionSolver getSolver() {
+ return new Solver(qrt, rDiag);
+ }
+
+ /** Specialized solver. */
+ private static class Solver implements DecompositionSolver {
+
+ /**
+ * A packed TRANSPOSED representation of the QR decomposition.
+ * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
+ * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
+ * from which an explicit form of Q can be recomputed if desired.</p>
+ */
+ private final double[][] qrt;
+
+ /** The diagonal elements of R. */
+ private final double[] rDiag;
+
+ /**
+ * Build a solver from decomposed matrix.
+ * @param qrt packed TRANSPOSED representation of the QR decomposition
+ * @param rDiag diagonal elements of R
+ */
+ private Solver(final double[][] qrt, final double[] rDiag) {
+ this.qrt = qrt;
+ this.rDiag = rDiag;
+ }
+
+ /** {@inheritDoc} */
+ public boolean isNonSingular() {
+
+ for (double diag : rDiag) {
+ if (diag == 0) {
+ return false;
+ }
+ }
+ return true;
+
+ }
+
+ /** {@inheritDoc} */
+ public double[] solve(double[] b)
+ throws IllegalArgumentException, InvalidMatrixException {
+
+ final int n = qrt.length;
+ final int m = qrt[0].length;
+ if (b.length != m) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.VECTOR_LENGTH_MISMATCH,
+ b.length, m);
+ }
+ if (!isNonSingular()) {
+ throw new SingularMatrixException();
+ }
+
+ final double[] x = new double[n];
+ final double[] y = b.clone();
+
+ // apply Householder transforms to solve Q.y = b
+ for (int minor = 0; minor < FastMath.min(m, n); minor++) {
+
+ final double[] qrtMinor = qrt[minor];
+ double dotProduct = 0;
+ for (int row = minor; row < m; row++) {
+ dotProduct += y[row] * qrtMinor[row];
+ }
+ dotProduct /= rDiag[minor] * qrtMinor[minor];
+
+ for (int row = minor; row < m; row++) {
+ y[row] += dotProduct * qrtMinor[row];
+ }
+
+ }
+
+ // solve triangular system R.x = y
+ for (int row = rDiag.length - 1; row >= 0; --row) {
+ y[row] /= rDiag[row];
+ final double yRow = y[row];
+ final double[] qrtRow = qrt[row];
+ x[row] = yRow;
+ for (int i = 0; i < row; i++) {
+ y[i] -= yRow * qrtRow[i];
+ }
+ }
+
+ return x;
+
+ }
+
+ /** {@inheritDoc} */
+ public RealVector solve(RealVector b)
+ throws IllegalArgumentException, InvalidMatrixException {
+ try {
+ return solve((ArrayRealVector) b);
+ } catch (ClassCastException cce) {
+ return new ArrayRealVector(solve(b.getData()), false);
+ }
+ }
+
+ /** Solve the linear equation A &times; X = B.
+ * <p>The A matrix is implicit here. It is </p>
+ * @param b right-hand side of the equation A &times; X = B
+ * @return a vector X that minimizes the two norm of A &times; X - B
+ * @throws IllegalArgumentException if matrices dimensions don't match
+ * @throws InvalidMatrixException if decomposed matrix is singular
+ */
+ public ArrayRealVector solve(ArrayRealVector b)
+ throws IllegalArgumentException, InvalidMatrixException {
+ return new ArrayRealVector(solve(b.getDataRef()), false);
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix solve(RealMatrix b)
+ throws IllegalArgumentException, InvalidMatrixException {
+
+ final int n = qrt.length;
+ final int m = qrt[0].length;
+ if (b.getRowDimension() != m) {
+ throw MathRuntimeException.createIllegalArgumentException(
+ LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
+ b.getRowDimension(), b.getColumnDimension(), m, "n");
+ }
+ if (!isNonSingular()) {
+ throw new SingularMatrixException();
+ }
+
+ final int columns = b.getColumnDimension();
+ final int blockSize = BlockRealMatrix.BLOCK_SIZE;
+ final int cBlocks = (columns + blockSize - 1) / blockSize;
+ final double[][] xBlocks = BlockRealMatrix.createBlocksLayout(n, columns);
+ final double[][] y = new double[b.getRowDimension()][blockSize];
+ final double[] alpha = new double[blockSize];
+
+ for (int kBlock = 0; kBlock < cBlocks; ++kBlock) {
+ final int kStart = kBlock * blockSize;
+ final int kEnd = FastMath.min(kStart + blockSize, columns);
+ final int kWidth = kEnd - kStart;
+
+ // get the right hand side vector
+ b.copySubMatrix(0, m - 1, kStart, kEnd - 1, y);
+
+ // apply Householder transforms to solve Q.y = b
+ for (int minor = 0; minor < FastMath.min(m, n); minor++) {
+ final double[] qrtMinor = qrt[minor];
+ final double factor = 1.0 / (rDiag[minor] * qrtMinor[minor]);
+
+ Arrays.fill(alpha, 0, kWidth, 0.0);
+ for (int row = minor; row < m; ++row) {
+ final double d = qrtMinor[row];
+ final double[] yRow = y[row];
+ for (int k = 0; k < kWidth; ++k) {
+ alpha[k] += d * yRow[k];
+ }
+ }
+ for (int k = 0; k < kWidth; ++k) {
+ alpha[k] *= factor;
+ }
+
+ for (int row = minor; row < m; ++row) {
+ final double d = qrtMinor[row];
+ final double[] yRow = y[row];
+ for (int k = 0; k < kWidth; ++k) {
+ yRow[k] += alpha[k] * d;
+ }
+ }
+
+ }
+
+ // solve triangular system R.x = y
+ for (int j = rDiag.length - 1; j >= 0; --j) {
+ final int jBlock = j / blockSize;
+ final int jStart = jBlock * blockSize;
+ final double factor = 1.0 / rDiag[j];
+ final double[] yJ = y[j];
+ final double[] xBlock = xBlocks[jBlock * cBlocks + kBlock];
+ int index = (j - jStart) * kWidth;
+ for (int k = 0; k < kWidth; ++k) {
+ yJ[k] *= factor;
+ xBlock[index++] = yJ[k];
+ }
+
+ final double[] qrtJ = qrt[j];
+ for (int i = 0; i < j; ++i) {
+ final double rIJ = qrtJ[i];
+ final double[] yI = y[i];
+ for (int k = 0; k < kWidth; ++k) {
+ yI[k] -= yJ[k] * rIJ;
+ }
+ }
+
+ }
+
+ }
+
+ return new BlockRealMatrix(n, columns, xBlocks, false);
+
+ }
+
+ /** {@inheritDoc} */
+ public RealMatrix getInverse()
+ throws InvalidMatrixException {
+ return solve(MatrixUtils.createRealIdentityMatrix(rDiag.length));
+ }
+
+ }
+
+}