summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java')
-rw-r--r--src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java379
1 files changed, 379 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java b/src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
new file mode 100644
index 0000000..97e772e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math/ode/nonstiff/EmbeddedRungeKuttaIntegrator.java
@@ -0,0 +1,379 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.ode.nonstiff;
+
+import org.apache.commons.math.ode.DerivativeException;
+import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
+import org.apache.commons.math.ode.IntegratorException;
+import org.apache.commons.math.ode.sampling.AbstractStepInterpolator;
+import org.apache.commons.math.ode.sampling.DummyStepInterpolator;
+import org.apache.commons.math.ode.sampling.StepHandler;
+import org.apache.commons.math.util.FastMath;
+
+/**
+ * This class implements the common part of all embedded Runge-Kutta
+ * integrators for Ordinary Differential Equations.
+ *
+ * <p>These methods are embedded explicit Runge-Kutta methods with two
+ * sets of coefficients allowing to estimate the error, their Butcher
+ * arrays are as follows :
+ * <pre>
+ * 0 |
+ * c2 | a21
+ * c3 | a31 a32
+ * ... | ...
+ * cs | as1 as2 ... ass-1
+ * |--------------------------
+ * | b1 b2 ... bs-1 bs
+ * | b'1 b'2 ... b's-1 b's
+ * </pre>
+ * </p>
+ *
+ * <p>In fact, we rather use the array defined by ej = bj - b'j to
+ * compute directly the error rather than computing two estimates and
+ * then comparing them.</p>
+ *
+ * <p>Some methods are qualified as <i>fsal</i> (first same as last)
+ * methods. This means the last evaluation of the derivatives in one
+ * step is the same as the first in the next step. Then, this
+ * evaluation can be reused from one step to the next one and the cost
+ * of such a method is really s-1 evaluations despite the method still
+ * has s stages. This behaviour is true only for successful steps, if
+ * the step is rejected after the error estimation phase, no
+ * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
+ * asi = bi for all i.</p>
+ *
+ * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
+ * @since 1.2
+ */
+
+public abstract class EmbeddedRungeKuttaIntegrator
+ extends AdaptiveStepsizeIntegrator {
+
+ /** Indicator for <i>fsal</i> methods. */
+ private final boolean fsal;
+
+ /** Time steps from Butcher array (without the first zero). */
+ private final double[] c;
+
+ /** Internal weights from Butcher array (without the first empty row). */
+ private final double[][] a;
+
+ /** External weights for the high order method from Butcher array. */
+ private final double[] b;
+
+ /** Prototype of the step interpolator. */
+ private final RungeKuttaStepInterpolator prototype;
+
+ /** Stepsize control exponent. */
+ private final double exp;
+
+ /** Safety factor for stepsize control. */
+ private double safety;
+
+ /** Minimal reduction factor for stepsize control. */
+ private double minReduction;
+
+ /** Maximal growth factor for stepsize control. */
+ private double maxGrowth;
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param name name of the method
+ * @param fsal indicate that the method is an <i>fsal</i>
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward
+ * integration)
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(10.0);
+
+ }
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param name name of the method
+ * @param fsal indicate that the method is an <i>fsal</i>
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward
+ * integration)
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(0.9);
+ setMinReduction(0.2);
+ setMaxGrowth(10.0);
+
+ }
+
+ /** Get the order of the method.
+ * @return order of the method
+ */
+ public abstract int getOrder();
+
+ /** Get the safety factor for stepsize control.
+ * @return safety factor
+ */
+ public double getSafety() {
+ return safety;
+ }
+
+ /** Set the safety factor for stepsize control.
+ * @param safety safety factor
+ */
+ public void setSafety(final double safety) {
+ this.safety = safety;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public double integrate(final FirstOrderDifferentialEquations equations,
+ final double t0, final double[] y0,
+ final double t, final double[] y)
+ throws DerivativeException, IntegratorException {
+
+ sanityChecks(equations, t0, y0, t, y);
+ setEquations(equations);
+ resetEvaluations();
+ final boolean forward = t > t0;
+
+ // create some internal working arrays
+ final int stages = c.length + 1;
+ if (y != y0) {
+ System.arraycopy(y0, 0, y, 0, y0.length);
+ }
+ final double[][] yDotK = new double[stages][y0.length];
+ final double[] yTmp = new double[y0.length];
+ final double[] yDotTmp = new double[y0.length];
+
+ // set up an interpolator sharing the integrator arrays
+ AbstractStepInterpolator interpolator;
+ if (requiresDenseOutput()) {
+ final RungeKuttaStepInterpolator rki = (RungeKuttaStepInterpolator) prototype.copy();
+ rki.reinitialize(this, yTmp, yDotK, forward);
+ interpolator = rki;
+ } else {
+ interpolator = new DummyStepInterpolator(yTmp, yDotK[stages - 1], forward);
+ }
+ interpolator.storeTime(t0);
+
+ // set up integration control objects
+ stepStart = t0;
+ double hNew = 0;
+ boolean firstTime = true;
+ for (StepHandler handler : stepHandlers) {
+ handler.reset();
+ }
+ setStateInitialized(false);
+
+ // main integration loop
+ isLastStep = false;
+ do {
+
+ interpolator.shift();
+
+ // iterate over step size, ensuring local normalized error is smaller than 1
+ double error = 10;
+ while (error >= 1.0) {
+
+ if (firstTime || !fsal) {
+ // first stage
+ computeDerivatives(stepStart, y, yDotK[0]);
+ }
+
+ if (firstTime) {
+ final double[] scale = new double[mainSetDimension];
+ if (vecAbsoluteTolerance == null) {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * FastMath.abs(y[i]);
+ }
+ } else {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * FastMath.abs(y[i]);
+ }
+ }
+ hNew = initializeStep(equations, forward, getOrder(), scale,
+ stepStart, y, yDotK[0], yTmp, yDotK[1]);
+ firstTime = false;
+ }
+
+ stepSize = hNew;
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ double sum = a[k-1][0] * yDotK[0][j];
+ for (int l = 1; l < k; ++l) {
+ sum += a[k-1][l] * yDotK[l][j];
+ }
+ yTmp[j] = y[j] + stepSize * sum;
+ }
+
+ computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ double sum = b[0] * yDotK[0][j];
+ for (int l = 1; l < stages; ++l) {
+ sum += b[l] * yDotK[l][j];
+ }
+ yTmp[j] = y[j] + stepSize * sum;
+ }
+
+ // estimate the error at the end of the step
+ error = estimateError(yDotK, y, yTmp, stepSize);
+ if (error >= 1.0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final double factor =
+ FastMath.min(maxGrowth,
+ FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
+ hNew = filterStep(stepSize * factor, forward, false);
+ }
+
+ }
+
+ // local error is small enough: accept the step, trigger events and step handlers
+ interpolator.storeTime(stepStart + stepSize);
+ System.arraycopy(yTmp, 0, y, 0, y0.length);
+ System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length);
+ stepStart = acceptStep(interpolator, y, yDotTmp, t);
+
+ if (!isLastStep) {
+
+ // prepare next step
+ interpolator.storeTime(stepStart);
+
+ if (fsal) {
+ // save the last evaluation for the next step
+ System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length);
+ }
+
+ // stepsize control for next step
+ final double factor =
+ FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
+ final double scaledH = stepSize * factor;
+ final double nextT = stepStart + scaledH;
+ final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
+ hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final double filteredNextT = stepStart + hNew;
+ final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
+ if (filteredNextIsLast) {
+ hNew = t - stepStart;
+ }
+
+ }
+
+ } while (!isLastStep);
+
+ final double stopTime = stepStart;
+ resetInternalState();
+ return stopTime;
+
+ }
+
+ /** Get the minimal reduction factor for stepsize control.
+ * @return minimal reduction factor
+ */
+ public double getMinReduction() {
+ return minReduction;
+ }
+
+ /** Set the minimal reduction factor for stepsize control.
+ * @param minReduction minimal reduction factor
+ */
+ public void setMinReduction(final double minReduction) {
+ this.minReduction = minReduction;
+ }
+
+ /** Get the maximal growth factor for stepsize control.
+ * @return maximal growth factor
+ */
+ public double getMaxGrowth() {
+ return maxGrowth;
+ }
+
+ /** Set the maximal growth factor for stepsize control.
+ * @param maxGrowth maximal growth factor
+ */
+ public void setMaxGrowth(final double maxGrowth) {
+ this.maxGrowth = maxGrowth;
+ }
+
+ /** Compute the error ratio.
+ * @param yDotK derivatives computed during the first stages
+ * @param y0 estimate of the step at the start of the step
+ * @param y1 estimate of the step at the end of the step
+ * @param h current step
+ * @return error ratio, greater than 1 if step should be rejected
+ */
+ protected abstract double estimateError(double[][] yDotK,
+ double[] y0, double[] y1,
+ double h);
+
+}